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ABSTRACT

The principal purpose of this research is to discover the underlying
properties of linear threshold devices and networks of linear threshold
devices. Questions of concern include finding the information storage
capacity, the ability to implement all functions, the ability to generalize
with respect to past data, and the ability to implement large classes

of decision surfaces for linear threshold devices operating on a set of

~ pattern wvectors.

The most important theoretical developments of this investigation
are the theorems counting the number of sides of all dimensions of the
solution cones and dual cones for the set of all assignments of inequal-
ities to a system of linear inequalities. The total measure of the
cones and boundaries of the cones is also found. Although nothing
specifié can be said about any given cone, the number and volume of the
sides of the totality of cones is an intrinsic property of a system of
linear inequalities, depending only on a weak general position require-
ment on the set of inegualities. These combinatorial geometric results
have applications in the theory of games and geometric probability as
well as to the analysis linear threshold functions, and tend to make
the theory of linear inequalities as concrete, in many respects, as the

theory of linear equations.
An important extension of known theory to new domains of application

is made by finding the number of dichotomies of a set of pattern vectors
that can be separated by large classes of surfaces including hyperspheres,
hypercones, and quadrics.

Finally, it is demonstrated that 2d 1is a natural definition of the
information storage capacity of a d-input linear threshold device.
Moreofer, it is showm that an infinite, random, linearly separable set
of d-dimensional pattern vectors can be completely characterized, on

the average, by a 2d element subset of extreme patterns.
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I. INTRODUCTION

A. PURPOSE

The basic problem attacked by this investigation is that of analyzing
and describing the intrinsic properties of systems of simultaneous linear
inequalities—those properties that depend solely on simple nondegeneracy
properties of the system, not on the numerical values of the ccefficients
themselves. Although this work has applications in the fields of linear
programming, game theory, and geometric probability, the primary purpose
6f this research has been to develop the underlying mathematical proper-
ties of linear threshold devices and networks of linear threshold devices .
such as Adaline [Ref. 1) and the Perceptron [Ref. 2]. Since the function
of;a linear threshold device i1s described in terms of linear inequalities,
the two problems of investigation are formally the same. However, the
emphasis will be on the applications of the theory to the behavior of
linear threshcld devices.

These devices form a class of information processing machines whose

primary application at this time is to the problem of pattern recognition—

‘the general problem of assigning objects to categories. The properties

developed will be independent, in some sense, of the specific pattern
recognition problems to which the linear threshold devices are applied.

Schematically, a linear threshold device, as represented in Fig. 1,

FIG. 1. HOMOGENEOUS LINEAR THRESHOLD UNIT AND IMPLEMENTATION
OF SEPARATING HYPERPLANE.
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is a d-input device that takes the sign of the sum of the products of

the pattern inputs with the corresponding weights. The patterns and

the weights can be represented as vectors in a Euclidean - d~dimensional
space. The linear threshold device then assigns to each pattern vector
the sign of the inner product of the pattern vector with the weight vector.
Geometrically, such a device separates the space into two regions by a

(a- 1)- dlmen51onal hyperplane “through the orlgln of the space. This
separating hyperplane is orthogonal to the weight vector.

The synthesis problem, concerned prlmarlly with 1mplement1ng Boolean
functions with networks of linear threshold devices, 15 belng pursued
by Mattson [Ref. 3], Winder [Ref. 47, and others. The analy51s problem,
which is the primary concern of this study, will be initially restricted
to the analysis of the fundamental building block of llnear threshold
systems——the linear threshold unit itself.

The following questions are of concern in describing a llnear
threshold unit.

1. How does a linear threshold device work?
- What are its capabilities as an information Processing element?

. What is its capacity as an informetion storage element?

£ W

« On what basis does such an element generalize with respect to
past inputs? :

5. What families of decision surfaces can it implement?

6. What constraints are put on the internal state of a linear threshold
unit by a given problem?
B. APPROACH

In order to answer the questions posed in the previous section, the
pattern recognition problem for linear threshold devices is presented
as a problem in solv1ng a system of llnear inequalities. See, for
example, Refs. 5 and 6. Then the study of a specific pattern recogni-
tion problem is imbedded in the study of all systems of linear inequal-
ities. In several cases this imbedding has served to 51mp11fy the
problem or to expand the domain of application of previously known ideas.
For example, when a linear threshold unit operates on a set of pattern

vectors that are the vertices of a binary n—cube'(ae when -used in the
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synthesis of Boolean functions or in the reCOgnltlon of quantized patterns),
the mathematlcal analysis of the device becomes simpler when the class
of patterns in the domain of operation of the device is allowed to be
all finite sets of vectors satisfying a weak nondegeneracy requirement
in n-space. Then the problem, when the domain of operation is restricted
to the binary n-cube, becomes a special (degenerate) case of the 51mpler,
more general analys1s. It was such an approach that allowed Winder
[Ref. 4] and Cameron [Ref. 7] to give an upper bound on the number of
linearly separable fruth functions on n variables. It is this gpproach
that is used herein.

Imbedding also plays an important role when, by the simple device
of considering augmented pattern vectors, it is possible to extend the
class of separating surfaces treated by present theory from the class
of all hyperplanes to the class of all surfaces that are linear in their
parameters. The extended class of surfaces includes hypercones, hyper-
spheres, quadrics, and many general surfaces without names.

Although the analysis is kept on a reasonably abstract and rigorous
level in an attempt to identify the fundamental principles in the theoxry

of linear threshold functions, many of the theorems grew out of conjec-

-tures arising from empirical research. For example, the conjecture that

the capacity of a linear threshold device is twice the number of inputs
was suggested experimentally in research on random inputs by Koford

[Ref. 8] and was subsequently elaborated on experimentally by Brown
[Ref. 9].

The principal contributions developed in this investigation of linear
threshold devices are: 7
1. The demonstration that 24 is a natural definition of the information-
storage capacity of a d-input linear threshold device.
2. The counting of the number of dichotomies of a finite set of patterns

that can be separated by a surface from a family of surfaces linear
in their parameters.

3+ The description of the solution cone—the set of weight vectors
implementing a given dichotomy of the pattern vectors—in terms
of the expected number of sides of all dimensions and the expected
boundary areas of all dimensions, with the implications for toler-
ance requirements on the internal state of a linear threshold device.
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4. The description of the dual cone-——the set of vectors that are posi-
tive linear combinations of the pattern vectors—in terms of the
. expected number of sides of all dimensions and the expected boundary

areas of all dimensions, with implications for the training proce-
dures. : ' '

5. The demonstration that a subset of 24 patterns in d dimensions
is sufficient, on the average, to characterize the classification
of an infinite, random, separable set of patterns.

6. The demonstration that,'for a large number of patterns, the expected
set of solution weight vectors looks like a d-cube.

The combinatorial geometric analysis of the solution cones and dual
coﬁes for a system of linear inequalities is considered by the author
to be the theoretical backbone of the research. Although this work has
immediate,interpretation in terms of tolerance requirements for linear
threéhold devices, the most important consequence of a thorough under-
standing of these results will be a development of an intuitive under-
standing of linear inegualities and solutions of systems of linear
inequalities—a subject which, in many respects, is as concrete as the
-theory of linear equalities.
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II. DEFINITIONS AND HISTORY OF FUNCTION-COUNTING THEOREMS

A. DEFINITIONS

Consider a set of patterns represented by a set of vectors in a

d-dimensicnal Euclidean space Ed. A homogeneous linear threshold

function f: Ed - {-1,0;1} is defined in terms of a parameter or

weight vector w for every vector x in this space:

1, wex >0
flx;w) = 0, wex = 0 (2.1)
-1, wex <0 '

vhere wex 1s understcod to mean the inner-product of the vector w
and X. Any function of this form has the simple implementation by a
linear threshold unit indicated schematically in Fig. 1.

Thus every homogeneous linear threshold function naturally dichoto-
mizes the set of pattern vectors into two sets, the set of vectors x
such that f(x;w) = 1 and the set of vectors x such that f(x;w) = -1.
‘These two sets are separated by the hyperplane

{g: fx;w) = 0} = {3: XeW = O} (2.2)

which is the (d-1)-dimensional subspace orthogonal to the weight vector
we Let X De an arbitrary set of vectors in Ed. A dichotomy {K+,X_}

of X' is linearly separable 1if and only if there exists a weight vector

.w in Ed and a scalar t such that
W > t, if xeX'
(2.3)

xw < t, if xeX”

The dichotomy {X+,X_} is said to be homogeneously linearly separable

if it is linearly separable with + = O.
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By the considerations of Chapter ITI it-wiii'be'possibie to consider
the inhomogeneous case as a special case of the homogeneous case (with
one more variable). Therefore, rafher than continue to make the distine-
-tion between the homogeneous and inhomogeneous cases, the definitions
and theorems are here restricted to the homogeneous case and the reader
can make the elementary application of Chapter IIT to generalize the

theorems. A vector w -satisfying

wex > 0, xeX"
(2.1)
S wex < -0, xeX

will be called a solution vector and -the corrésponding orthogonal hyper-

plane {x: x.w-= 0} will be called a separating hyperplane for the

dichotomy {X X } In this, “the homogeneous case, the separating
hyperplane passes through the crigin .of the- ‘space and is, in fact, the
(d-1)-dimensional orthogonal subspace to W. :

Note that the full generality :of ‘the definition of the linear threshold
fuﬂétiOQ f(x;w) given in Eq. (2.1) has not been used—the set of patterns
x such that f(x;w) =0 form a potential third category. For complete-

ness the case of -counting the number of ternary-valued homogeneous linear

threshold functions is later treated in Chapter V.

Finally, a set of N. vectors is.in general position in d-space if

~every -d element subset-of vectors is linearly independent. - That is,
if a set of vectors is in general position then any “d of -the N- vectors
span the d-space and any k vectors. generate a k-dimensional subspace

for k < d.

B. THE FUNCTICN-COUNTING THEOREM

The foundations heve been laid-for the presentation of the funda-
mental function counting theorem which counts the number of homogeneously

.- linearly separable dichotomies of N p01nts in 4 dlmen31onal
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Theorem 1. (Function-Counting Theorem.) There are C(N,d) homogeneously
linearly separable dichotomies of N points in general position in '

FBuclidean d-space where

d-1
c(N,a) = 2 }Z (#;1) . (2.5)
k=0

The notation ; denotes the binomial coefficient formally defined
for all real s and integer k as the coefficient of xk in the
expansion

«©
(1x)® = ) (;)xk : (2.5
k=0 :
That is,
s\ _ s(s-1)...(s-k+1) "
(k) = TR(E-1)...2°1 | (2.7)

In particular, for integer s

(2.8}

Thus
o(w,a) = &, N<a , (2.9)

from which it can be seen that, for N < d, all dichotomies of N points
in d dimensions aré homogeneously linearly separable—a result which
also follows immediately from the fact that there are fewer inequalities
than unknowns. Note that C(N,d) is just the number of sequences of
N-1 0's and 1's that contain d-1 or fewer 1's.

Theorem 1 has been independently proved'in different forms by many

authors [Refs. 4, 7, 10, 11, 127, but Winder [Ref. L], Cameron [Ref. 7],
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Perkins, Whitmore, and Willis [Ref. 117, and Joseph [Ref. 10] have
emphasized the application of Theorem 1 to counting the number of

linearly separable dichotomies of a set. In addition, Winder [Ref. 4]

and Cameron [Ref. 7] independently applied Theorem 1 to the vectors

that are the vertices of a binary n-cube in order to find an upper

bound on the number of linearly separable truth functions of n variables.
All the authors listed abofe have used a variant of a proof, which seems
to have first appeared in Schlafli [Ref. 12], of Theorem 2 or its dual

statement Theorem 2'.

Theorem 2. N hyperplanes in general position passing through the origin

of d-space divide the space into C(N,d) regions.

Theorem 2'. A d-dimensional subspace in general position in N-space
intersects C(N,d) orthants.

A set of hyperplanes is in general position in Theorem 2 if every
intersection of d hyperplanes is a zero-dimensional subspace (the
origin)., A d-dimensional subspace is in general position in N-space
if every orthogonal projection onto a d-dimensional coordinate axis
is d-dimensional.

- A proof of Theorem 2 is sketched using geometrical terminology. See
Schlafli [Ref. 12], Cameron [Ref. 7), Winder [Ref. 4], and Wendel [Ref. 13]
for similar treatments. Proofs in terms of the dual statement, Theorem 2',
can be found in Schlafli [Ref. 12 and Joseph [Ref. 10].

Proof of Theorem 2. Let C(N,d) be the number of regions formed by

the intersection of N (d-1)-dimensional subspaces in general position

in d-space. Consider a (N+l)th (d-1)-dimensional subspace such that
the set of N+1 subspaces is in general position. This subspace is
intersected by each of the N subspaces in a (d-2)-dimensional subspace.
And from the original assumption of general posifioh, it follows that

the gset of N (d-2)—dimensional subspaces is in general position in

this (d-1)-dimensional subspace, and hence divide the new subspace

into C(N,d-1)} regions. Thus the (N+l)th subspace intersects C(W,d-1)
of the C(N,d) regions, forming C(N,d-1) nev regions. The total number
of regions formed by the N+l planes is then given by the recurrence

-relation
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c(N+l,d4) = c(m,a) + o(N,a-1) . (2.10)
Using the obvious boundary conditions

c(N,1) = 2, N

1L,2,...
(2,11)
c(y,d)

n

Ju
2
!

=1,2,...
it is easily verified by induction that C(N,d) is given by Eq. {2.5).

C. ALGEBRAIC PROCF

An alternative procf of Theorém 1 to those found in the literature
is now given along more algebraic lines. First a geometrically obvious
lemma is established which will be applied in Chapter VI on generaliza-
tion. In geometrical terms, lemma 1 says that a new point can be adjoined
to both halves of a separable dichotomy to form two new separable dicho-

tomies if and only if there exists a separating hyperplane through the

new point which separates the old dichotomy. This is reasonable because

if such a hyperplane exists, small displacements of the hyperplane will

allow arbitrary classification of the new point without affecting the

separation of the old dichotomy.
Lemma 1. Let {;&,X—} be a dichotomy of {;l,xg,...,xw el ang

Xy, & Point in EL." Then {X+LJ{3N+1})X- and {K+’X_k’{xm+1}} are
both homdgeneously linearly separable if and only if X#,X—j is

homogeneously linearly separable by a (d-l)-dimensional subspace through

1 - 7
Proof. The dichotomy {?#LJ{§N+1};X-} is homogeneously linearly separ-
able if and only if there exists w such that

wv.> 0, xeX%
wexp . > 0, (2.12)
wex < 0, xeX
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and {x&,X-LJ{§N+l}} is homogeneously linearly separable if and only if

there exists w such that

wex > 0, xext
Wexy,, < 0, (2.13)
Wwex < 0, xeX

Using the connectedness of the open.set {V: w'x >0 for xeX+,
and w'x <0 for xeX—} of separating vectors for {X+,Xf} and the
continuity of the inner product, it is seen that Egs. (2.12) and (2.13)
hold:if and only if there exists a vector weEd“ separating {?f,x‘} such
that

. == - V : . J‘.L
Ve = O , _ (2.14)

: 's - o
Then the hyperplane {v: v.w = 0} separates 1X+,X } and contains
the point X1 S ' ' ' )

Proof of Theorem l. Again the method of proof is induction on N and

d. Let C(N,d) be the number of homogeneously linearly separable
dichotomies of the set X = Xy eoey . Consider a new point
¥ e e ¥y
such that XU is in general position and consider the
1 W+l

. 2N
C(N,d) ‘homogeneously linearly separable dichotomies {?&,X j of X.

-~

Since {?&,X_ is separable, either {KﬂJ {3N+l},x'} or
- . i )
{?&,X L)1?N+l } is separable. However, both dichotomies are separable,

by lemms 1, if and only if there exists a separating vector w for

{;&,Xn} lying in the (d-1)-dimensional subspace orthogonal to X1t
A dichotomy of X is separable by such a w if and only if the pro-

jection of the set X onto the (d-1)-dimensional orthogonal subspace
to xy ., 1s separable. By the induction hypothesis there are C(N,d-1)

such separable dichotomies. Hence

c(m+l,4) = c(w,4) + c(m,a-1) . (2.15)
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Repeated application of Eq. (2.15) to the terms on the right yields

N-1
N- o -
c{w,a) = z (k)C(l,d-k) , (2.18)
- k=0 A '
‘from which the theorem follows immédiately on noting
2, m>1

c(1,m) = | o (2a7)
' Lo, m<l .
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II1. SEPARABITLITY BY ARBITRARY SURFACES

A. MEASUREMENTS

A change in peint of view permits application of the results of
Chapter II to classes of separating surfaces that are geometrically
different from hyperplanes, But analytically quite similar. Consider
& family of surfaces, each of which naturally divides a given space
into two regions, and a collection of N points in this space, each of
-which is assigned to one of two classes X or X . This dichotomy
of the points is said to be separable relative to the family of surfaces
if there exists at least one surface such that all the X' points are
in one region and all the X  points are in the other. The crucial
propérty of the family of surfaces, in order that the results of the
Previous section apply, is that the family can be parameterized in such
a way that it is linear in its parameters. Hyperplanes, hyperspheres,
and polynomial surfaces are specilal examples of such families.

Consider the set of N objects X = {31,...,XN}. The elements of
X will be referred to as patterns for intuitive reasons. These patterns
need not be considered as vectors in a vector space. On each pattern

xeX a set of real valued measurement functions ¢1’¢2""’¢d comprises

the vector of measurements
d
- @ X~ E (3.1)

where ¢(X) = (¢'1(X): ¢2(x))“'J¢d(x))) xeX,
A dichotomy (binary partition) {Xx, X'} of X is @-separable
if there exists a vector w such that

we(x) > o, xex"
(3.2)

wed(x) < o, xeX .

Observe that the separating surface in the measurement space is the hyper-

plane w-¢ = 0. The inverse image of this hyperplane is the separating

‘SEL-64-052 S -12-
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surface {x: w'@(x) = 0} in the pattern space. The advantage of this
general formulation of the problem is that many classes of interesting
nonlinear surfaces in the pattern space can be mapped into the class of
~ hyperplanes in another space where the results of Chapter II will apply.
Nonlinear analysis may be suggested by the physical origin of the
problem. For example, the pattern separation problem of isolating a
cancerous area from good tissue might suggest spheres as the natural
class of linear threshold implementable separating surfaces, rather than
~ Planes or intersections of planes. If there is pbviousrcorrelation in
the input measurements, -second and third orderrcorrelatiohs should be
incofpbrated into new measurements to augment the old. A decision
thebry a?proach might suggest a canonical class of separating surfaces
" for.a given class of statistical problemé. Even when the suggested class
of surfaces is not linear in its parameters, arbitrarily close approxi-
‘mations can be made by ¢-su}faces.: In ail these cases the function
counting theorem applied to @-surfaces will yield the number of
f-separable dichotomies of the pattern set and will provide a basis for
comparing linear tests on pattern recognition problems when the number

~-of measurements in the tests differ.

B. CENERAL POSITION

Definition. Let the vector-valued measurement function ¢ be

defined on the set of patterns
d -
¢: X= {Xl,---,XN}"R e (3'3)

Then, a set of patterns X -is in '¢—general position if the following

equivalent conditions hold:

1. Bvery d element subset of the set of d-dimensional measurement
vectors [¢(xl),...,¢(xw)} is linearly independent.

1's Every @ X d submatrix of the N X d matrix

=13 -  SEL-6L-052




g (x) B0x) oo Bylx)
B, (x,) o
¥ = : ' (3.4)

has a non-zero determinant.

1". No d + 1 patterns lie on the same @-surface {x: P(x):w = 0}
in the pattern space.

Clearly Definition 1' is just an explicit algebraic statement of
Definition 1. Note that general position is a strengthened rank condi-
tion on the matrix ¢ (¥ has maximal rank d if at least one 4 Xd
submétrix has nonzero determinant). Definition 1" relates general
position in the measurement space to general position ;n the pattern

space.

C. COUNTING THE {-SEPARABLE DICHOTOMIES

Theorem 3. Let X = {;l,xz,...,xm} be in @-general position where
B(x) = (B, (x),8,(x),..-,8,(x)). Then precisely C(N,a) of the Z'
dichotomies of X are @-separable where
a-1
cw,a) = 2 ) (N;l)- (3.5)
i=0
If the @-space ={_x: H(x)ow = O}, is constrained to contain the
set of points ¥y = Y13Y s oo ¥y [ where
Yo {$(y1),98(yp)s++,8(y)} 1is linearly independent, and

2. the projection of {@(xy),@(xs),...,8(xy)} into the orthogonal
subspace to the space spanned by {¢(y1§,¢(y2),...,¢(yk)} is in
general position, )

then there are C(N,d-k) @-separable dichotomies of X.

Proof. Every d-element subset of the N vectors ¢(xl),...,¢(xN) is
linearly independent by hypothesis. Hence, there are precisely C(N,d)
homogeneously linearly separable dichotomies of {Q(xi): i=1,2,. ..,I\I}.
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By definition these dichotomies correspond to the @-separable dichotomies
2f X

The second part of the theorem simply states that k independent
constraints with respect to a @-surface reduce the number of degrees
of freedom of the surface by k. The condition that the @-surface
contains the set Y is that the weight vector w which characterizes

the surface must lie in the (d-k)-dimensional subspace L where.
L = {F:‘w-¢(yi) = 0, i= l,2,...,k} .
ﬁet @ be the orthogonal projection of ¢ onto L. Then, since
wp = whew@h - wh (3.6

for all w is L, it can be seen that a set of vectors {1 is
separable by a weight vector in L 1f and only if the set of their pro-
jections {8} is separable. Since the vectors a(xl),...,a(;w) are
in ﬁLgeneral position in L by hypothesis (2), there are C(N,d-k)
homogeneously linearly separable dichotomies of {¢(xi): i=1,2...,N}

by a vector w in L.

D. POLYNOMIAL SEPARABILITY

A natural generalization of linear separability is polynomial
separability. For the ensuing discussion, consider the patterns to be
vectors in an m-dimensional space. .The measurement function @ then
maps points in m-space into points in d-space.

Consider a natural class of mappings obtained by adjoining r-wise
products of the pattern vector coordinates. The natural separating
surfaces corresponding to such mappings are known as rth-order rational
varieties. A rational varlety of order r obtained in a space of m

dimensions is represented by a homogeneous equation in the coordinates

(x)i of the ot degree
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) a LG )y )y = 0, (3e1)
r 1

i i LA ] 1
0<i <i,< 0SS 12 2 *

where (x); is the e component of x in E" and (x)o is set
equal to 1 1in order to write the expression in homogeneous form. A

simple counting argument gives the number of coefficients Fmr in

Eq. (3.7) as
(") SR |

First-corder rational varieties are hyperplanes and second-order

~Iw

F(r)
m

k=0

rational varieties are quadrics. Hyperspheres are guadrics with certain
linear constraints on the coefficients. Figure 2 illustrates three
dichotomies of the same set of points. All three dichotomles are
quadrically separable (in two dimensions the phrase would be quadratically

separable).

a, ‘Linearly separable dichotomy b. Spherically separable dichotomy

c. Quadrically separable dichotonmy

FIG. 2. EXAMPLES OF ¢-SEPARABLE DICHOTOMIES OF 5 POINTS IN TWO DIMENSIONS.
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o(5)
In Theorem 3, the mapping @: E- - E defined by

B = (L, (R eees Gy () oo 0,0 ey D) (3:9)

yields the following result: A set of N points in m-space, such that
no F&?) points lie on the same rth—order rational variety, has pre-
cisely C(N,Fé?)) dichotomies which are separable by an rth-order
rational variety. If the variety is constrained to contain k inde-
pendent peints, the number of separable dichotomies is reduced to

C(N,Flslr)-k) .

E. DISCUSSION

Bishop [Ref. 14)] has exhaustively found the number Lm of quadric-
ally separable truth functions of m arguments for low m. From the

foregoing it can be seen that Lm is bounded above by

I, < c(zm, (mz,l)+m+1) /200 Logn) . (3.15)

Koford [Ref.l15] has observed that augmenting the vector erd to yield
a vector @(x) as in Eq. (3.9) is especially easy to implement when the
coefficients are binary. In addition, Koford notes that, if the aug-
mented vector @(x) is used as an input to a linear threshold device
(as in Fig. 3), then the standard training procedure will converge
[Ref.16] (by the Perceptron convergence theorem) in a finite number of
steps to a separating @-surface if one exists.

Table 1 lists several examples of families of separating surfaces.
All patterns x should be considered as vectors in an m-dimensional
space. The function @(x) = (1,x) is a (m+l)-dimensional vector. The
final column of Table 1 lists the separating capacities of the ¢—surfaces—-
a measure of the expected maximum number of random patterns which can be
separated. The separating capacity will be made plausible as a useful

idea in the next chapter.

- 17 - SEL-64-052



qf) { 1, wee>0
~l,w-$d<o

SET OF d Ba(x)

MEASUREMENT

4 P
YARIABLE WEIGHTS
- -REPRESENTATION OF

PATTERN AS A d-COORDINATE

MEASUREMENT VECTOR

FUNCTIONS OK
 THE PATTERNS

FIG. 3.
SEPARATING ¢-SURFACE. :

MEASUREMENT TRANSFORMATION AND IMPLEMENTATION OF

Table I

EXAMPLES OF SEPARATING SURFACES WITH THE CORRESPONDING NUMBER

OF SEPARABLE DICHOTOMIES OF N POINTS IN m DIMENSIONS

MAPPING ¢ SEPARATING NUMBER OF PARAMETERS GECMETRICAL NUMBER OF SEPARATING
DEFINED ON SURFACE IM OF @-SURFACE MEANING OF @~SEPARABLE CAPACITY OF
: PATTERN SPACE ) ¢-GENERAL DICHOTOMIES @=-SURFACE
. POSITION OF N POINTS
olx) = x Hyperplane m Every m c(x, m) Zm
through origin poeints
- linearly
independent
o(x) = (1, x) Hyperplane m o+ 1 No m + 1 (N, m + 1) Zm + 2
points cn uny
hyperplene
2
a{x} = (1,x,0x1°) | Hypersphere m o+ 2 No m + 2 C{N, m + 2) 2m + k4
pulnts on any
hypercphere
o{x) = (x,H0xl} Hypercone with m o+ 1 No m +1 C(N, m+ 1) 2m + 2
vertex at origin poiats on
hypercone
r
g(x) as in Rational rth D 1) wo FF) o(n, )y 2R ¥)
Eq. (3.9) order variety m k=0 ( ‘k n m m
. points on
same rth-order
raticnol variety
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1V. -SEPARABILITY OF RANDOM PATTERNS

A. THE PROBLEM

In this chapter two kinds of randomness are considered in the pattern
dichotomization problem:

1. The patterns are fixed in position but are classified independently
with equal probability into one of two categories.

2. The patterns themselves are randomly distributed in space, and the
desired dichotomization may either be random of fixed.

" Under these conditions the separability of the set of pattern vectors
becomes a random event depending on the dichotomy chosen and the position
of the patterns. The probability of this random event and the maximum
number of random patterns that can be separated by a given family of
decision surfaces are to be determined.

It is shown that the expected meximum number of randomly assigned
vectors that are linearly separable in d dimensions is equal to 2d.
It is thus possible to conclude that a linear threshold device has an
information-storage capacity—relative to learning random dichotomies
of a set of‘patterns-—of two patterns per variable weight. This result
was originally conjectured and experimentally supported by Koford [Ref. &],
for the case of pattern vectors chosen at random from the set of vertices
of a binary d-cube. Brown [Ref. 17] found experimentally that the con-
Jecture held for patterns distributed at random in the unit dJ-sphere.
Since Brown had stated the problem in a form such that the pattern
vectors were in general position with probability 1, the way was open
for the direct application of the function-counting theorem to establish
the conjecture theoretically. This was done independently by Winder
[Ref. 4] and Cover and Efron [Ref. 19].

B. GENERAL POSITION WITH PROBABILITY 1

There are C(N,d) homogeneously linearly separable dichotomies of
a set of N pattern vectors chosen at random according to some proba-
bility distribution over d-space if and cnly if the set of pattern
vectors is in general position with probability 1. Since the requirement

of general position is very weak, it is not surprising to learn that the
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class of probability distributions for which general position is satis-
fied with probability 1 is very large. 1In fact, this class includes
all the "smooth" distributions—the probability distributions that have
probability densities and are free from delta functions.

Suppose that the patterns xl’XE""’XN are chosen independently
according %o a probability measure u on the pattern space. It is
easily verified that necessary and sufficient conditions on u such that
X)rKpy oo, Xy are in general position in d-space is that the probability
be zero that any point fall on any given (d-1)-dimensional subspace.
Rewording this statement for @-surfaces, a set of vectors chosen inde-
pendently accofding to a probability measure p is in ¢-general positicn
with probability 1 if and only if every @-surface {geEd: weB(x) = O}
has  measure zero.

Thus, since, for any @, every ¢—surface has natural Lebesgue
measure zero in the pattern space, it is sufficient (but not necessary)
for u to be absolutely continuous with respect to natural Lebesgue

measure in the d-space in order that general position hold with proba-

bility 1.

C, SEPARABILITY OF RANDOM DICHOTOMIES

Suppose that a dichotomy of X = Xl’XE""’XN} is chosen at random
with equal probability from the EN equiprobable possible dichotomies
of X. Let X be in @-general position with probability 1, and let
P(N,d) be the probability that the random dichotomy is @-separable,
vhere the class of (@-surfaces has d degrees of freedom. Then with

probability 1 there are C(N,d) f-separable dichotomies, and

d-1
N ' N-1 ' (N- ]
awa) = @ ema) - Y (), o
k=0
vhich 1s juzt the cumulative binomial distribution corresponding 4o the

probability that N-1 flips of a fair coin result in d-1 or fever

successes.
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D. RANDOM POINTS ON A HYPERSPHERE

One of the first applications of the function-counting theorems to
random pattern vectors was by Wendel [Ref. 137, who found the rrobability

that N random points lie in some hemisphere. Let the vectors
XysXpyeeer Xy ON the surface of a d-sphere be in general position with

probability 1. In addition let the joint distribution of XysXpy ooy Xy
be unchanged by the reflection of any subset of the set of vectors through

the origin. Under these restrictions Wendel proves that the probability

that & set of N vectors randomly distributed on the surface of a

d-sphere 1s contained in some hemisphere is

d-1
) = @) () (4.2)
=0

The proof of this result follows immediately from the reflection invar-
iance of the Jjolnt probability distribution of X. This invariance
implies that the probability (conditicned on X) that a random dichotomy
of X Dbe separable is equal to the unconditional probability that a

particular dichotomy of X (all N points in one hemisphere) be separ-

‘able.

E. SEPARATING CAPACITY OF A SURFACE

Let {gl,xg,....} be a sequence of random patterns as above and
define the random variable N to be the largest integer such that
{gl,xg,...,xw} is ¢—separable, where the @-surface has d degrees
of freedom. Then from Eq. (4.1)

I

P {N=n} P(N,d) - p(W-1,qd)

() (gj) ,

which is just the negative binomial distribution {shifted d units

(%.3)

right with parameters da -and %). Thus N corresponds to the waiting

time for the dth fallure in a series of tosses of a fair coin, and
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E(N) = 2a
(h.b)
Median(N) = 24
The asymptotic probability that N patterns are separable in
d %1\12— + % 1/1\1— dimensions is
N o '
PN, 5+%5 VN ) ~ &(q) - (hs)
vhere ¢(a) is the cumulative normal distribution
: 2
a(o) = = [* e F /g . (1.6)
Y an
In addition, for € >0,
lim P(2a(1+e),d) = O
A
P(24,d) = 3 (%.7)
lim P(2d(1-€),d) = 1

d—e

as was shown by Winder [Ref. 4]. Thus the probability of separability
shows a pronounced threshold effect when the number of patterns is equal
to twice the number of dimensions. These results confirm Koford's con-
Jecture [Ref. 8] and suggest that 2d is a natural definition of the

separating capacity of a family of decision surfaces having d degrees

of freedom.

In the-following chapters, the fact that 24 is indeed a critical
number for a system of linear inequalities in d unknowns is established.
It has already been shown that fewer than 2d random inequalities in 4
unknowns can usually be solved, while more than 23 inequalities usually
can not be solved. It is shown that the expected number of extreme

inequalities; which are necessary and sufficient to imply the entire set,
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tends to 24 as the number of consistent inequalities tends to infinity.
Hence the amount of sufficient information characterizing an infinite

system of inequalities has a finite expectation.
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V. GEOMETRICAL PROPERTIES OF SOLUTION CONE AND DUAL CONE

A. TINTRODUCTCRY REMARKS
Consider the set of ternary-valued, homogeneous, linear threshold

functions, parameterized by a weight vector w, defined on N points

XysXpy vy Xy
defined by

in Euclidean d-space taking on values in the set {-1,0,1)}

1, xew >0
fx;w) = 0, xew=0 (5.1)
d
-1, xw <0, Xe xl,xe,...,xN},weE( )

The number of such functions in this section will be counted, and, in
the process, the following two sets will be intreduced.
l. The solution set W, which consists of all those weight vectors

\
w that correspond to a given function f: {31,...,XN} - {fl,O,lj.
2. The set W* of all positive linear combinations of the pattern

vectors xl’xe""’XN}'

The sets W and W* will be shown to be polyhedral convex cones in
d-space. The number of boundary faces of 0,1,2,...,d-1 dimensions
of W and W* depends on the function to which the sets correspond.

The expected number and volume of the boundary>faces of the solution
cone and its dual cone are obtained under the assumption that the linear
threshold functions are chosen at random with equal probability. For
the special case, when the pattern set itself is randomly distributed
according to a uniform diétribution on the surface of a d-sphere, the
variénce of the volume of the solution cone will be calculated.

These results may have applications to the design and construction
of linear threshold units such as Adaline [Ref. 1] and Perceptron [Ref. 2].
For example, the shape and size of the solution set W corresponding to
a given function to be implemented will dictate certain tolerance require-
ments on the internal weights in order that:

1. The weight vector will not drift out of the solution cone and begin

to implement a different function, and
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2. The weight vector will have sufficient resolution to implement any
desired linear threshold function.
The count of the actual number of linear threshold functions places a
lower bound on the number of internal states of a linear threshold unit
in order that it be capable of implementing all those functions for which
it is theoretically designed.

The suggested algorithms for changing the internal state of a linear
threshold device such as relaxation adaption [Ref. 21 7] and fixed-increment
.adaption [Ref. 221 all have in common the feature that the correction
vectors are positive linear multiples of the pattern vectors. Hence, if
the initial weight vector is zero, W* is precisely the set of admissible
state vectors under the class of all reasonable correction procedures.

(It has been proved [Ref. 22] that the two correction procedures mentioned
above converge to a solution vector in W in a finite number of steps.)
Thus the study of the properties of W* is related to the study of con-
vergence algorithms. However, from a mathematical standpoint, W?* is
even more intimately related to W. It is shown that W* is the dual
cone to W and that every k-dimensional boundary plane to W corre-
sponds to a (d-k)-dimensional boundary plane for W* In particular,

the extreme rays of W*, corresponding to the extreme patterns, are
orthogonal to the dominating boundary hyperplanes of W.

One of the most significant applications of this chapter follows
from counting the extreme rays of W* in Proposition 2. For a random*
linearly separable dichotomy of the pattern set, the expected number of
extreme patterns tends to 24 as the number of patterns in d-space
tends to infinity. In other words, the expected number of dominating
inequalities for a consistent infinite set of inhomogeneous linear
inequalities is just twice the number of variables in each inequality.
Therefore, since the set of extreme patterns completely characterizes
the set of patterns, this result suggests that a finite set of Adaline

weights (on the order of 2d2) can store all the information with respect

to the classification of past; present and future d-dimensional patterns,

4The usual liberty will be taken of using the word "random" to imply
an equiprobable distribution over the set in question-—in this case, the
set of all linearly separable dichotomies of the pattern set.
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even as the number of patterns grows without bound. A computer with finite
storage capacity, if it has means of updating its memory by replacing the
old extreme patterns by the new,‘will be able to store the essential infor-
mation in a random pattern set with a probability which is inversely pro-

portional to the capacity of the computer.

B. NUMBER OF TERNARY-VALUED HOMOGENEOUS LINEAR THRESHOLD FUNCTIONS

Consider a homogeneous linear threshold function, defined on a single
vector x, taking on values in the set {-1,0,1} as defined in Eq. (5.1).
Tnis threshold function on x partitions the weight vectors into three
equivalence classes—those sets of weight vectors for which x-w 1is
greatér-than, equal to, and less than zero. Figure 4 illustrates the
equivalence classes intersected with the unit d-sphere. Two vectors
in the same equivalence class correspond to the same function or assign-
ment of the pattern vector. The (d-1)-dimensional subspace {w: x-w =0}

corresponds to the set of weight vectors for which f{x;w) = 0. Let

fwe w e x >0 = {w flx;w) =1}

{w: w e+ x=0}= {w: f(x;w)=0}

{wt we x<0} = {w: f{x;w)=~1}

FIG. 4. FEQUIVALENCE CLASSES OF WEIGHT VECTORS INDUCED BY THE
HOMOGENEOUS LINEAR THRESHOLD FUNCTIONS ON x.
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T = (fl’fE""’fN)’ fie{-l,o,l}, denote a function on the N vectors
X)sXp ++, Xy in d-space where £(x,) = £, for each 1. Let the
solution set W(f) corresponding to the function f be defined by

-

W(E) = w: f(xsw) =f, x= Xl’XE""’xN} (5.2)

where f(x;w) is defined in Eq. (5.1). Clearly f is a homogeneous
linear threshold function on xl,xg,...,xN if and only if W(f) is
‘nonempty, and W(f)} is precisely the equivalence class of weight vectors
which implements the function f.

For example, the shaded region ABCP in Fig. 5 is the intersection
of the solution set W(1,1,1,1) with the surface of a three-sphere
centéred at the origin. The arc AB 1is the solution set for the function
(1,1,1,0), and the point E is the solution set for the function
(1,0,-1,0). The function (1,-1,1,-1) has an empty solution set and

thus is not a homogeneous linear threshold function on xl’XE’x3’Xh'

FIG. 5. EQUIVALENCE CLASSES OF WEIGHT VECTORS INDUCED BY THE
HOMOGENEOUS LINEAR THRESHOLD FUNCTIONS DEFINED ON 4 POINTS ON
THE SURFACE OF A 3-SPHERE,
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The following theorem from Chapter II is used here.

Theorem 4. Let X1y KXoy e ey Xy be a set of N vectors in  d- space such
that any subset of d vectors is linearly independent. Then “the N
normal subspaces {yeE( ): Vex; = O} partition d-space into C(N,d)

regions where

d-1 .
cwa) - 2y (7). RO
k=0

Theorem 4 implies that there are precisely C(N,d) functions

T Xl’x2""’XN} — {fl,l} defined on a set of ‘points {gl,xg,...,xm}
in general position in d-space where I 1is of the form

1, x*w >0

f(x) = o (5-&)

-1, xw <0

Because it is not desired to define f unsymmetrically with respect

to the inequality, Theorem h will be used to count the number of func-
tions having the symmetric form of Eq. (5.1). At the same time a foun-
dation for the counting of the number of sides of the solution sets will

be laid.

Theorem 5. Let Xl’xé""’XN be a set of N vectors in Euclidean
d-space such that every subset of d ‘vectors is llnearly 1ndependewt

Let F be the class of functions f {;1, Koy eee ’&NI { 1,0 lj defined
by

1, X; W >0
f(xi) = 0, x;°w= 0
-1, X, W <0, i=212...,8 ,

—~~
\Ji
-
\J
S

where w is any vector in the space. Then there are Q(N,d) functions

in F where
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N d-k-1

ama) = 2 ) Z(ﬂ)(m'i‘l) . (5.6)

k=0 m=0

Proof. Let Fk be the class of functions in F that take on the value
zero for precisely k points. There are i ways to select the k
zero points from the set of N points. Consider, without loss of gen-
erality, that f(xi) =0, 1=1,2,...,k and f(xi) =11, i=k+l,k+2,...,N.
The solution cone W(f) has the form
hl N bl
W(r) = {w: wex, =0, 1= 1,2,...,1{} N {w: wex, 2 oj (5.7)
i . i
i=k+1
Thus W 1s the intersection of the (d-k)-dimensional space orthogonal
to X s Kpyeees Xy with the cone formed by the intersection of the open
half spaces corresponding to the N-k remaining vectors. Rewriting
Eq. (5.7) as the intersection of a set of N-k half spaces in a (d-k)-
dimensional subspace
N

w(r) = N LE Wex, Z 0, wexs =0, §= 1,2,...,1{}, (5.8)
i=k+1

it follows from Theorem 1 and the general position of the vectors
{;l,...,xN} that there are precisely C{(N-k,d-k) functions of the

form f(xi) =0, 1=1,2...,k f_(xi) =T 1, i=k+l,...,N. Hence,

since there are (g ways to select the k zerces of f, there are
(ﬁ)C(N-k,d-k) funétions in F,> and the theorem follows on summing
over k. ‘
There are 3N functions defined on N points taking values in the
set {-1,0,1}. Q(N,d) of these functions are the threshold functions
as defined in Eq. (5.1). If the number of points N is not greater
than the number of dimensions d, then it will be shown that Q(N,d) = 3N.
Recall that the binomial coefficient (;) for real s and integer k

is defined as the coefficient of x- 1in the expansion

(14x)° = Z(;)xk . (5.9)
=0 ,_
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In particular, for N an integer,

(ﬁ) = 0, for m>N . (5.10)
Thus we find, for N <4,
N-k-1

o)

éN-k

g(m)

(5.11)

Therefore’
N

()

k=0

2 %(g)(%)k | (5.12)
k=0

a(N,a)

Fa+ V- N (w<a)

L]

It has been verified that all functions with range {-1,0,1} defined
on N points in general position in 'd (N < d) dimensions may be expressed
in the form shown in Eq. (5.1). This is certainly no surprise, for there
are fewer equations (or inequalities) than unknowns.

It will now be shown that the limiting'ratio of the number of ternary-
~valued, homogeneous, linear threshold functions Q(N,d) “to the number
of homogeneous linear threshold functions ¢(N,d) is 24140 the Limit
for a large number of pattern vectors N 1in a space of fixéd dimension d.

If the asymptotlcally negligible initial terms are dropped in the sums of

the form
d-k-1
E: (N—k—])
m b
m=0
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from Eq. (5.6),

(5.13)
Canceling terms and taking the limit gives
o d-1
oew,a) YV fa-1y . a-1
Uneoyrey = L\ ) = &7 - (5.1%)
N . - E .
k=0
C. THE SOLUTION CONE: COUNTING THE SIDES
Consider the set of N homogeneous linear inequalities in 4
variables
wex; >0, 1i=1,2...,8 , (5.15)

where KpsXpyeees Xy and w are vectors in Buclidean d-space. A vector

W satisfying Eq. (5.15) is a feasible vector or solution vector for

the set of inequalities. If such a vector exists, the set of inequalities
is consistent. 1In accordance with the definitions in Chapter VA, let

W(1,1,...1) be the solution cone comprised of the solution vectors for

the given set of inequalities, i.e.,
w(l,1,...,1) = {w: wex; >0, i=1,2,...,1\1} . (5.16)
W may be rewritten as a finite intersection of open half spaces
N |
w(i,1,...,1) = N Adw: Wex, >0JL . (5.17)

i=1

The solution set W 1is a convex cone in the sense that
1. ov belongs to W if @ >0 and v belongs to W. _
2. The sum vy t+ v, of two vectors Viy Vo belonging to W belongs
to W.

!
(W8
'_.I
]
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A set formed by the intersection of a finite number of half spaces is
called a polyhedral convex cone. So W is an open polyhedral convex
cone in Euclidean d-space. The closure of W, denoted by ﬁ, is the

intersection of the closed half spaces which define W,

N
W o= N qw: wex, > O} (5.18)
. i -
i=1
Equivalently, W is the smallest closed set containing W. Clearly W
is a closed polyhedral convex cohe.
The nonempty sets W(fi’fE""’fN)’ where the f, take on the value
1 or O, forma partition of W(1,1,...,1). That is, if f # g, then

W) NW(g) = - (5.19)
and
uUw(f) = W(1,1,...,1)} , (5.20)

where the union is taken over all N-tuples f of O's and 1l's. The
W(f)'s partition W(1,1,...,1) because for each index 1 the sets
{y: vex, > O} and W Wex; = 0} partition {F: Wex; > O}, and the
W(f)'s are defined as all possible intersections (over i) of these
elementary sets. N

Let Fk(l,l,...,l) be the set of all N-tuples f = (f,f, ..., f)
such that fis[O,l} for each i =1,2...,N, and f, =0 for precisely

k indices i. For example, Fo(l,l,...,l) is just the N-tuples 1
(1,1,...,1). It will be shown that the set of nonempty W(f), TeFy
is the set of open k-dimensional boundary faces of W(1l,l,...,1); where

a k-boundary B of a cone W~ is defined by the following two properties:
1. {Boundary property) Any 7y belonging to B where ¥ 1s written
as a sum of two vectors .yl, y, in w(1,1,...,1) implies that
either y, or y, is in w(f).
2. (Nondegeneracy property) The linear space generated by B is

k-dimensional.
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W(f) has property 1., as can be seen directly from the definition
of W(1,1,...,1) and W(f). Since yeW(f),

yex; = 0, for all 1 such that fi =0
(5.21)
yx, =z 0, ° for all 1 such that fi =1
and since y,, yZGW(l,l,...,l),
Y% 2 o, for gll 1
(5.22)
Vo%; 2 0, for all i . '
Sc y = ¥y + Yo implies
X, o= Yytx t Yo Xy o= o, ir fi = 0
_ (5.23)
¥yo%y + ¥orxg > 0, if fi =1

Since Yyt%g and Yo%, are nonnegative quantities, Eq. (5.23) implies
that

yytxy = o, if f, =20

- (5.24)

Il
(=]
)
[ utd
H
'—b
1
o

Yor¥y
Thus both y, and y, are in ﬁ(f). Property 2. follows from the
general position of Txl,x2,...,xN s Which insures the nondegeneracy of .
the intersection of the cone qw: wex, > 0 for all i such that fi = 1j
with the k-dimensional subspace orthogonal to the set of xi's “for which
fi = 0.

In Fig. 5, for example, the open arc AB, which is the intersection

of the cone W(1l,1,1,0) with the surface of a three-sphere centered at

the origin, is a two-dimensional boundary face of W(1,1,1,1)}. The cone
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W(0,1,1,0), corresponding to the point B, 1is a one-dimensional boundary
of W(1,1,1,1); and the origin of the space is the unique O-boundary or
vertex of the cone W(1,1,1,1).

With these preliminaries out of the way, 1t is now possible to count
the number of faces of the solution cones. There are C(N,d) nonempty
d-dimensional cones formed by the intersection of N (d-l)-dimensional
subspaces in general position in d-space. Index these cones '

Wi’W2""’wb(N,d)' Let Rk(Wi) be the number of k-boundaries of W, .

Proposition 1. (Counting the Sides of the Solution Cones.) Let

xi,xa,x3,...gN be vectors in general position in d-space. Let

WoaWoy e W be the solution cones for the homogeneous linear
12727 (N, q)

threshold functions f: {;l,x2,...,;m} - {-l,l}. Then

c(N,d) ‘
Rk(wi) = 2d-k(d?\_1k)c(N‘d+ka) (5 . 25)
i=1

for k=1,2,...,d. Hence the expected number of k-boundaries of the
solution set of a function chosen according to an equiprobable distribu-
tion over the class of homogeneous linear threshold functions is

2d'k(dN )C(N-d+k,k)

E[R (V)] - &) : (5. 26)

The behavior of Eqs. (5.25) and (5.26) will be studied in Chapter VF,
after the dual cone has been discussed. The Primary reason for empha. -
sizing the probabilistic interpretation of Rk arises when the patterns
themselves are randomly distributed and it is desired, for example, to
'describe the solution cone of g 51222 dichotomy of the patterns. Propo-
sition 1 holds with probability 1 in the case of random pattefn vectors
when the set {;l,xz,...,xw is chosen according to some probability
distribution such that the set 1s in general position with Probability 1.

Thus, for example, let the X be independent, identically distributed,
random vectors chosen according to a uniform distribution on the surface

of the unit sphere in d-space, and let W be the set of all north poles
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on the d-sphere such that the hemisphere corresponding to the north pole
contains all the X, i =1,2,...,N. Then the expected number of sides

of W is given in Eq. (5.26).

Proof of Provosition. Let Fk be the set of all N-tuples

f = (fl,fe,...,fN) such that f,e{-1,0,1} for each i = 1,2,...,N,
»and fi = 0 for precisely k indices 1. Thus there are ﬂ EN'k
elements in Fk'

It is desired to count the k-boundaries of W(f) over all TeF
- for which W(f) is nonempty. The k-boundaries of W(f), feF , are the
totality of nonempty k-cones W(g), where geFy_,» and g oagrees with
f in the nonzero coordinates. For each feFO there are dﬁk) g's in
Fd-k which agree with f 1in the nonzero coordinates.

"In other words, the set of k-boundaries of the W(f)'s, feF , is
contained in the set of W(g)'s, geF, - Now it is observed that esch
W(g), geFy ,» 1s a k-boundary for exactly 22K of the d-cones
W(f), feF . In fact, W(g) is a k-boundary for those W(f), féFJ that
agree with g 1in the nonzero coordinates.

The results developed in the proof of Theorem 5 of Chapter VB yield

the number of nonempty W(g), gng_k, to be (;?g)C(N-d+k,k). Then,
since each W(g) 1is counted 2K imes
N a-kf N \.,. -
[‘:_J Rk(W(f)) = 2 (d_ )c(N-d+k,k) (5.27

feF :
O

as desired.

D. THE DUAL CONE TO THE SOLUTION CONE

Let B Dbe a convex cone defined in a Euclidean d-dimensional space.

The dual cone or polar cone of B, denoted B*, is defined to be the

set of all vectors in the spaces that form an acute angle with every

vector in B. More precisely,
B* = {w: wb >0, all beB} . (=.23)

If W(f) is the polyhedral convex cone of solution vectors to the
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set of inequalities

Il
'_l

wex., > 0, for all i such that fi
(5.29)

wex, < 0, for all i such that fi =1

Then W*(f) may be expressed alternatively as the convex cone spamned

by the set of wvectors {?lxl’fEXE""’foN} defined by
W r) = {F‘ W= E: ofix, o > 0}' . (5.30)

The equivalence of Egs. (5.28) and (5.30) as definitions of W*(f) is
very ﬁseful in the study of convex cones. rThe proof, due to Farkas
[Ref. 23], is presented in Theorem 3 of Goldman and Tucker [Ref. g].
Notice that W*, the set of all nonnegative linear combinations of the
patiern vectors as expressed in Eq. (5.30),is the set of>all admissible
training states of an Adaiine under those training procedures listed in
Chapter VA, _

An example of the convex cone spanned by four vectors in three
dimensions is illustrated in Fig. 6. The reader should convince himself
that the cone spanned by xl,xe,x3,xh is indeed the set of all vectors
forming a nonnegative inner product with every vector in the cone ABCD
in Fig. 5. The one-boundaries of W‘(l,l,l,l) are the rays Axi for

A>0 and 1i= 1,23,k The two-boundaries are the four two-dimensional

cones spanned by {31,x2}, {32,x3}, x3,xh}, and {Fl’xh}' The

three-boundary of W (1,1,1,1) is W (1,1,1,1) itself. If there exists

no half space containing all the X5 then the cone spanned by the X,

is the vwhole space. A cone that is not the whole space is a proper cone.
Previous results on the solution cone will carry over to the dual

cone because of the following 1emma

Lemma 2. (Correspondence Between Boundaries of Solution Cone and Dual Cone. )

Let X)sXpy e ooy Xy be vectors in d-space. Let

W o= {w: wex, >0, 1= 1,2,...,1\1} ' (5.31)
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ARCS OF GREAY CIRCLES

FIG. 6. INTERSECTION OF SPHERE WITH CONVEX CONE SPANNED BY
Xys X9, x3, %4. DUAL CONE TO CONE ABCD IN FIG. 5.

and let the polar cone of W be
W* = {v: vew >0, for all weW} , (5.32)

which, by previous remarks is also given by
N
Ww* = {v: V= z %Lx, O ZO} . (5.33)
: i=1-

Let H be a subset of {xl’XE""’xN}' Then -

B = {w: wx =0, xei; wex >0, xﬂH} (5.34)

is a. (d-k)-face of W if and only if

b

= {v: V= Z %x;, @& >0, and o =0 if xijﬁH} (5.35)

. + _ »
is a k-face of WY Thus, Ek(W) = Rd_k(w ).
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Note that B is not the dual cone to B. In fact, B* as defined
in Bq. (5.28) is given from Eq. (5.34) by

- il
B* = {y: v = E:a.x., o >0 for x. ¢H, and ., unrestricted for x.eHj.
A S M i i i

| (5. 30)
Thus by the lemma, interchanging k and d-k in the proof of
Proposition 1 gives a corresponding proposition counting the number Rk

of k-boundaries of the dual cones to the solution cones.

Proposition 2. (Counting the Sides of the Dual Cones.) Let Xy 5 Xy

Xy vees Xy be vectors in general position in d-space. Let wl,Wé?.. 5

3"
Wc_:,(m,d)
tions f: {31: Kpgeoe ’xN} { 1, l} Let Wy w2"" ¢{N,d) be the corre-

spondlng ‘dual cones, i.e., all p0581b1e proper cones spanned by
L-— x]-, LS 2, seey i- X-N}- ThEn
¢, d)

Y R = zk(ﬁ)c(N-'k,d—k) » (5.37)

i=1

be the solution cones for the homogeneous linear threshold func-

for k= 0,1,2,...,d-1. Hence the expected number of k-boundaries of
the convex cone spanned by the 1 x;'s chosen according to an equi-
probable distribution over the set of all proper cones generated by the

+t x.'s is
1

. Ek(ﬁ)C(N-k, a-k) B
E[Rk(W )] = (W, d) . (5.38)

The implications of Proposition 2 will not become apparent until the
1imiting behavior of Eq.. (5.38) is found in Sec. F of this chapter.
Again it is surprising that the total number of k-boundaries of the N;
is essentially independent of the configuration of-the pattern vectors )
which generate them. Proposition 2 has immediate application to many
problems in geometrical probability—enabling, for certain distributions,
the calculation of the expected number of extreme points of convex poly-

hedrons generated by random points in d-space.
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E. VOLUME OF THE SOLUTION CONE AND THE DUAL CONE

Let p be some finite measure defined on the d-space in which the
pattern vectors are defined: It is assumed here that-rp 1s absolutely
continuous with respect to natural Lebesgue measure in this'space in order
to avoid the slight complications arising when p is such that the bound-
aries of the solution cone or dual cone have nonzero measure. Let us
further assume that the p measure of the whole space is 1. 7

In this section the expected measure of the set of k-boundaries of

-the solution cone and the dual cone corresponding to a random set of
consistent linear inequalities is found for all k. In a special case,
where the pattern vectors themselves are randomly distributed according
to a uniform probability distribution over the surface of the unit d-sphere,
an explicit exﬁression is founa for the variance of the measure of the
solution cone. In any case a simple probability bound on the measure
of the random cones will be found.

The C(N,d) nonempty solution cones of a set of linear threshold
functions on N vectors in general position in d-space partition the

space. Thus,

c(w,a) c(y,a)
R N A (5.39)
i=1 e

and the expected measure of a random nonempty solution cone is

SN g——— (5.%0)

Similarly, if p(k) is a measure on d-space assigning measure 1 to

every k-dimensional subspace, then the measure of the union of all the

. . Ce Aa N
k-boundaries of the solutlog_cones wl’w2""’wb(N,d) is Just (g—k)

‘ 4The work on finding the expected measure of W and W* as well as
finding the expected number of (d-l)-boundaries of W was begun with
B. Efron of Stanford University, with whom a joint paper is being pre-
pared for publication. R. Brown of Stanford University has shown the
expected measure of W to be (3N when all 2N Qaichotomies are
equiprobable.
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the number of different k-dimensional subspaces corresponding to inter-
sections of subspaces orthogonal to the N wvectors. Since each
k-boundary is counted d-k times in this union, and since there are

c(N,d) solution cones, the following proposition has been‘established.

Proposition 3. (The Volume of the Solution Cones.) The sum of the

measures of the sets ,ng) of k-boundaries of the nonempty solution
cones Wi for a set of homogeneous linear threshold functions defined

on N vectors in general position in d-space is

C(N;d) -
24 u(k){ng)} = gd-k(dlfk)’ “k=1,2,...,4 (5.;41)

i=1

and thé expected measure of the uk-boundaries of a random nonempty solu-
tion cone is

Ed—k N

E“(k){?(k)}' = 77T N?ék (5.42)

Although it is in general a difficult problem to find the measure of
the dual cone W* in terms of the definition of the sclution cone W,
the fact that the solution cones partition the space together with the
crucial fact that every (d-1)-dimensional subspace intersects the same
number of solution cones will allow the computation of the total measure

of all the proper dual cones.

Proposition L. (?he Volume of the Dual Cones.) Let Xq Xy vy Xy be
be the

vectors in general position in d-space. Let Wl’WE""’wC(N,d)

solution cones for the homogeneous linear threshold function
T
: - - 7- ® * -c.- ol i
f: igl,xe{...,xm} { l,l} Let W},W3, ’WC(N,d) be the corresponding

dual cones. Then for a measure y, assighing measure one to d-space,

c(N,d)

) e - (5)

and hence the expected measure of a random (proper) dual cone is

SEL-64-052 - 40 -




Ep{W*} = (5. bk)

Proof. Define the indicator function fi. of the cone WI on the
d-dimensional space as follows: '
1, veW*
: i
0, V¢WE .

rThen’
ww) = [0 auv) ,
and
C(N,d) ' 4C(N:d) .
W) = ) [ £ (v) au(v)
i=1 i=1 ( !.)
c(v,a) .
= [ ) 00 autn .
i=l‘

But for almost every vector v it can be shown that

JUJ. _
_ fN-1 L8
Z fi(V) - (d-l) (5'“!"‘))
i=1 . :
independent of v. Thus Eq. (5.47) becomes

c(§3d) ,

Lo - (e - (52) 0 e

i=1

because the p-measure of the whole space is assumed to be 1.
To establish Eq. (5.48), let the vector v partition the set S

of solution cones into three sets defined by
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§f = {Hsﬁj vew >0, all wew}
8, = {Weg: vew = 0, some WGW} R (5.50)
87 = '{ng: vew <0, all wew} .

There are C(N,d) cones in S; and there are C(N,d-1) cones in S
by the general position of v with respect to {;l,xa,...,Xﬂ eEd} for
almost every v. The number of cones in S  is equal to the number of
cones in §- because the reflection of a solution cone through the
origiﬁ is also a solutibﬂ cone (of:thé cdmﬁiémentary function). Thus

the number of elements in S+ is

3fema) - one) - (1)

Finally, neglecting a set of points of p-measure zero, v is in Wi (and

(5.51)

fi(t) = 1), if and only if 'wi' is in 8. Thus fi(v) is equal to
1 for precisely g:i indices: i and Eq. (5.48) and the proposition

are established.
A separate argument will be required to find the measure of the

boundaries of the dual cones.

Proposition 5. (The Volume of the Boundaries of the Dual Cones.) Let

b SR be in general position in d-space. Let W, W% ..., W*
T X e ¥y + 8 B P 12 e fe(n,a)
be the set of proper cones spanned by sets of N vectors of the form
tﬁ X5 T Xpwavy + XN}- Thep for a measure k) assigning measure 1
to every k-dimensicnal subspace, the sum of the measures of the set

.ng) of k-boundaries of the proper cones Wi is

c(w,a) -
‘z Jmﬁgw =(®dmmmm, K=0,1,2...,d-1 .
= o | (5.52)
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Thus the expected measure of the set of k-boundaries of a random prcper

cone is

. _
Eu(k){g(k)} _ (k)céggféé-k) , k=0,1,2...,d-1 . (5.53)

Proof. There are g) ways to select a k-element su@set H of
{xl,XZ,...,xN}. Each of the 2k cones generated by if X, * xieH} is
‘a. proper k-dimensional cone. Moreover, these 2k cones partition the
k-dimensional subspace spanned by H. Hence the sum of the measures

of the cones generated by H 1is 1, by hypothesis on u(k).

For each of the 2k cones generated by H there are, by the
func%ion-counting theorem, C(N-k,d-k) homogeneously linearly separable
dichotomies of H® (the remaining N-k vectors) in the (d-k)-dimensional
épace orthogonal to that spanned by H. In these cases, and only these

cases,nis the generated cone a boundary face. Thus there are

1~
1Y

E)C(N—k,d-k) sets of 2’k boundary k-faces, and each such set of =

boundary k-faces has total measure 1. Therefore, Eq. (5.52) is verified,

The variance of the measure of the solution cone can be obtained in
the special, but interesting, case when g 1is the natural measure of
the surface area of a d-dimensiocnal sphere of unit area centered at the
origin of the d-space. Thus the measure of a cone is the sclid angle
subtended by the cone.

Define the indicator function
1, vew(1,1,...,1)
f(v) = (5.5%)

o, . v#i(1i,1,...,1} ,

vhere, as usual, W 1is the soclution cone of vectors w such that

Then
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W} = [ 2(v) au(v) (5.55)
and, squaring this and taking expected values, |
B0} = B [ £(v) £(v') an(v) au(v) (5.56)
But £(v)f(v') = 1 only if

vex, > 0, 1=1,2...,8
| | (5-57)
V"X > 0’ i = 1,2,0--,N - 7

Then if the x; are independent identically distributed according
to L, the probability that all Xi5 i=14,2...,N 1lie in the wedge
{y: wev >0, wev' > 0} (and thus f£(v)f(v') # 0) is equal to the kA

power of the area of the wedge. Thus Eq. (5.56) becomes

.1 _ -
o Jg P sin® Cacyay
BufW) = " ; (5.58)
JE sind_aanydy ’

which can also be expressed in terms of gamma functions. ~However, a
probability bound on p{w) which is almost as informative as Eq. (5.58)
will be derived in Proposition 6. ‘ :

Finally, since the number of k-boundaries Rk(W) .and the measure
of the set of k-boundaries u(k){ﬁ(k)} of a random, nonempty solution
cone are positive random variables, the followihg proposition bounding
the probability that R and ~u exceed a given constant is an elementary
consequence of Egqs. (5.26) and (5.42) expressing the expected values of
R and p. '

Proposition 6. For t >0, for a random nomempty solution cone W of

a set of homogeneous linear threshold functions on N vectors in
general position in d dimensions, the distribution of the number Rk

and messure “(k) of the set of k-boundaries of W ocbey
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Pr{Rk(w) Ztﬁ} < %— (5.59)
Pr{u(k){B(k)}ztﬁ} < £, k=1,2...,d4 (5.60)
where
, Ed'k(de)C(N-d+k,k)“ A
R = = ' ' (5.6L)
(W, a)
and
d-xf N
o
—_— d- : -
o= cm,ak . . _'(5'02)

Proof., If R is a positive random variable with distribution F and

mean ﬁ, then

T = J: rdF(r) Zt‘[:d‘f“(r)—-: mé{agu . (5.53)

Example. Consider a setibfzéoo pattern vectors in general position in
a 100-dimensional space. There are 2200 dichotomies of the pattern
set of which precisely C{200, 100) = 2199
separable. Therefore a random dichotomy is separable with probability

are homogeneously linearliy

%. Then the average measure of a solution cone, conditioned on the event

that the pattern set is homogeﬁebusly linearly separable, is
100 1 1
51wy = (1 (5.64)

and, by Eq. (5.60), the conditional probability is less than (»é—)l‘l‘ that
the measure of the solution cone is greater than (%)150. Thus with
overwhelming probability a random solution cone is quite small. (For

comparison, an orthant in 100-space has natural measure__(%)lOQ.),
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F. LIMITING BEHAVIOR OF SIZE AND SHAPE OF SOLUTION CONE AND DUAL CONE

In this section the previous sections are tied together by finding
limiting values of the expected number of k-boundaries and the expected
values of volumes of solution cones and dual cones for large numbers of
patterns in a large dimensional space. The results obtained will simplify
greatly the understanding and visualization of the nature of the solution
cone and dual cone. It will be possible to show that, in a sense, the
average set of solution vectors looks like a (d-1)-cube, and the average
convex set generated by the pattern vectors looks like the standard geo-
metrical dual of a (d-1)-cube. Moreover, the pronounced change in
character of the description of the solution and dual cones as the ratio
of patterns to dimensions exceeds 2 will be apparent, emphasizing again
that the capacity N/d = 2 of a linear threshold device plays a critical
role in the description of the performance of the device.

In the following the limit of the ratios of two cumulative binomial
distributions will be important. The author is indebted to B. Elspas4

for the following useful result.

Proposition 7. Let

d
ewa) = ¥ (PY(5) (5.5)
1i=0
and let
¢*(g) = lim G(pd,d) . (5.66)
g o«
Then
C 0C<px2
G*(p) = (5.57)

+B. Elspas of Stanford Research Institute; personal communication.
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Proof. Observe that G(N,d) satisfies the recursion

‘ a
¢{N,d) = 1+ T a¢(w,a-1)

(5.68)
1
B-1

1+ ¢(N,d-1)

for B = N/d. For B-l >1, the finite limiting value G*(B)} of
6{N,d) is the solution of '

1

G*() = 1+ gmare) . - (5.69)
Thus
a*(g) = Ef% for p>2 . (5.70)
Now
a*(g) = = for 0 <p <2 (5.71)
because
ﬁiﬁnG(a&’d) = (5.72)

and G(pd,d) is monotonic decreasing with B ‘in the range 0 < B <2
In fact, for 0 <B <1 and finite 4,

G(pa,d) = = (5.73)

follows from the fact that the denominator (dlf ) of G(N,d) is equal
to zero by definition for N < d-1.
Let W be the solution cone for a set of N homogeneous inequalities

in d unknowns,

wx, 2 0, i=21,2...,8 , (5.74)
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where it is assumed thatrthe set {;l,...,xN} is in general posiﬁion

. and that the set of inequalities is chosen from an equiprobable distri-
bution over the class of C{N,d) consistent sets of inequalities.
Recall that the random variables R (W) and Rk(W*) are defined to be
the number of k-boundaries of W and W* respectively. In particular,
Rl(W*) is the number of extreme rays of W* FEach extreme ray corre-

sponds to a positive multiple of one of the X; Thus, for N >4,
a < R(W") < W, (5.75)

for all proper cones W*. The subset 2Z of extreme vectors in
{;l,xg,.;.sgw} completely characterizes the set, with respect to a
given homogeneous linear threshold function f, in the sense that, for
all w satisfylng

wex, = £f., for all i such that x,eZ , (5.76)

.the following complete system of inequalities must hold:

wex, = f, for all x, e{xl’XE""’xN} . (5.77)

The vectors in Z form the boundary matrix investigated by Mays [Ref. 22).
The expected number of extreme vectors of {;l,xg,...,xm} will be shown

to be bounded as N approaches infinity.

Proposition 8. The asymptotic number of k-boundaries of W and W*

are

1in 2R (1)} - 2d'k(gj{) (5.78a)

N

lim E{Rk(w*)} - ek(dl‘{l) (5.78b)

N—bw
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Proof. From Eq. {5.38),

F Mook, a-k)
Lim E{ngw‘)} = (IS)C(N,d)

1\]’-—» o«

d-k-1

) 2 (1)

. i=0
lim T (5.79)

N—)oo \T‘ (N_ )
L\ 1

i=0

which, dropping the asymptotically negligible initial terms of each of

the two summations,

- lﬁmw N-1
da-1
. a-1) N .
= ].—ZI-.’i’t'l.c0 Zk( k) Tk (D.LO)
s
= oKfd-
- k
Equation (5.78a) follows from the identity
R (W) = Ry, (W) , (5.81)

which is a conseguence of the duality of W and W*. Q.E.D.
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Thus the expected number of boundaries for W and W' tends to a
1imit that is characteristic of the dimension of the space in which the
pattern vectors lie. Moreover, this limit suggests that the average
solution cone is like a (d-1)-cube. To see this, determine the number
of sides of each dimension of a (d-l)-dimensional cube. If an n-cube
has mj(n) j-boundaries, J = 0,1,2,...,n, then by translating the
n-cube parallel to itself and connecting the vertices, the number of

j-boundaries of a (n+l)-cube is given by
mj(n+l) = 2mj(n) + mj_l(n), J=0,1,2,...,n0+L (5.82)

resulting from counting the Jj=boundaries in initial and final position

and the j-boundaries swept out by the {j-1)-boundaries.

J

Multiplying by an indeterminate x and summing over j gives

Mo (x) = M (x) + 3 (x) (5-83)
where
M (x) = i my(x) =3 (5.84)
3=0
Hence
M (x) = (200 (x) = (2)" (5-85)

and the number of Jj-boundaries of an n-cube is just the coefficient

of x° in (2+x)™:

n 2n-j -
m.(n) = . . 5.86
KR ) (5.86)
Thus, by comparison with Eq. (5.78a), it can be seen that the intersection
of the polyhedral solution cone W with the unit sphere in d-space is

~ & polyhedral body (now in a (d-1)-dimensional variety), which has
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precisely the same expected number of j-boundaries as does a (d-1)-cube.
Thus, the prototype solution cone (for a large number of inequalities)
intersects the d-sphere in a (d-1)-cube.

Similarly, the intersection of W* with the unit d-sphere looks
like the dual of a {d-1)-cube (the dual of a 3-cube is an octahedron).
It is perhaps surprising that so few of the N inequalities are essential
in the determination of W and W".

When these results are applied to the inhomogeneous case of a large
number of random lines distributed at random in the plane, the expected
region formed is found to be a quadrilateral, which agrees with Kendall
and Moran [Ref. 24, p. 57]. (

- Note that the expected number of extreme inequalities (the number
of patterns in the boundary matrix of Mays [Ref. 22]) tends to 2{d-1)
in the limit for an infinite conéistent set of homogeneous linear
inequalities in d unknowns. ,

In the following proposition the number of extreme patterns in a
random dichotomy is examined when both the number of patterns N and
the number of dimensions d is large, but the ratio of N to & is

finite.

Proposition 9. (The Asymptotic Number of Extreme Inequalities.) If,

as before, Rl(W*) is the number of extreme vectors of the convex cone

spanned by N d-dimensional vectors of random sign, then

(w) %: 0<p<2
1im E{ L (5.87)
p=N/da 1, B2 . -

d—e

(W)

Proof. Note that the llmLtlng behavior of E{Tg—i———} is also given
by (5.87). From Eq. (5.38),

R (w )-
Ei %)

} o c(N-1,d-1)
© T c(W,d)

1
~
\Ji

@]
w
—
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Substituting the recursion relation

c(N,a) = c(m-1,d4) + ¢(N-1,a-1) - | (5.89)
gives
E»'Rl(w*)} .~ c(N-1,a-1)
2d d CN-1,d) + c(W-1,4-1) °

Tt can be verified by substitution that

E{él(w*) _ w(a(N-1,d-1)-1)
23S T WAZ@-La-10-1)

vhere G(N,d) is defined in Eq. (5.65). Thus, by Proposition 7,

. Rl(W*) B(g*(p)-1)
5i§?a = } = Eéﬁiégbii*

d—-jm

= e (5.92)

First, note that the limiting average number of extreme vectors is
independent of B for p > 2. The capacity has played a role again.
In fact, it is now possible to draw a parallel between the theory of
systems of linear equalities and the theory of systems of linear inequal-
ities. '

In a system of linear equalities in d variables, the "capacity"
is de——the maximum number of consistent equations. In a system of
(random) inequalities the (statistical) capacity has been shown (in
Chapter IV) to be 2d& (in the limit for large d). Moreover, while the
number of independent equations grows linearly with the number of equa-
tions until the nunber of eguations equals & and then remains constant,

the asymptotic expected number of "independent" inequalities (i.e., the
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extreme inequalities of the system of inequaiities) grows: linearly with
the number of inequalities until the nunber of inequalities equals 24,
and then remains constant. o

The behavior of the asymptotic expected number of extreme inequalities,
as expressed in Eq. (5.87) is shown in Fig. 7Tb. The probability of
separability (Fig. 7a) and the expected measure of the duél cone to the

solution cone (Fig. 7c) are shown for comparison.
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FIG. 7. LIMITING GEOMETRIC PROBABILITIES.
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VI. GENERALIZATICON AND LEARNING

A. DEFINITIONS OF GENERALIZATTON

Consider a set X of N pattern vectors in general position in
d-space. This set of pattern vectors, together with a dichotomy of the

set into two categories X" and X~ will constitute a training set.

On what basis can a new point Xneq be categorized into one of the two
training categories? This is the problem of generalization.

If each pattern vectof is drawn according to some probability dis-
tribution, then methods of decision theory provide schemes of classifi-
cation basedron criteria such as minimiiing the probability of error.
For example, if patterns in X+2 are chosen from a normal distribution
with mean g+ and covariénce matrix K+, while patterns in X~ are
chosen from a normsl distribution with mean | and covariance matrix
K-, then the optimal decision surface with respect to minimizing the
probability of error is a quadric surface, which degenerates to a hyper-
plane if K' = K~. Recall from Chapter ITI that augmented linear
threshold devices can implement quadrics and will converge, using standard
training algorithms, to a separating quadric when one exists.

Consider the problem of generalizing from the training set with
respect to a given admissible family of decision surfaces—that family
of surfaces that can be implemented by linear threshold devices. By
some process, a decision surface from the admissible class will be
selected which correctly separates the training set into the desired
categories. Then the new pattern will be assigned to the category lying
on the same side of the decision surface.

An important related problem to that of choosing a good decision
surface from the admissible class is the problem of selecting the natural
admissible class of decision surfaces. Presumably, in physical problems,
some basis for selection will exist. For example, for two categories
normally distributed with different means and identical covariances,
the class of all hyperplanes would be the natural admissible class of
separating surfaces. It would not be wise to let the class of all quadrics

by the admissible class because, although a hyperplane is a special gquadric,
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the additional degrees of freedom of quadrics would cause longer conver-
gence times and greater probability of ambiguous response. A very weak
definition of generalization has been given here, in that no statistical
knowledge of the pattern distribution is assumed, and no metrical con-
cepts of closeness are introduced. There is no "best" separating deci-
sion surface among the class of separating surfaces.

Clearly, for some dichotoﬁies of the set of training patterns, the
assignment of cétégory_ﬁili not be unique. However, it is generally
believed that, after a "lafge humber" of training patterns, the state
of a linear threshold device is sufficiently cbnstrained to jield a
unigue response to a néw pattern. If all the training sets are equally
likely, it will be shoﬁn in the next section that the number of training
patterns must exceed the statlistical capécity of the 1inear threshold

device before unique generalization becomes probable.

B. AMBIGUITY

The classification of a pattern y with respect to the training set

,{3?,x'} is said to be ambiguous relative to a given class of @-surfaces,
if there exists one @-surface in the class that induces the dichotomy
{?&L}{y},x- and another @-surface in the class that induces the
dichotomy xf,x’k){y}}. That is, there exist two @-surfaces, both
correctly separating the training set, buﬁ'yielding different classifi-
cations of the new pattern y. - Thus, if Wy and W5 are the parameter

weight vectors for the two @-surfaces, then

Wy X >0 and WorX > 0, for xeX
wirx <0 and wyex <0, for xeX
and either
wyey >0 apd wyy <O (6.%)

or
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Wy ey < 0 and VoY > o .

In addition, y 1is saidrto be ambiguous with respect to the training
set if the training set is not separable.

In Fig. §, for example, points ¥y and ¥, are unambiguous and
point y3 is ambiguous with respect to the training set {;?,X'}

2

e )3

FIG. 8. AMBIGUOUS GENERALIZATION,

rélative”to;theuclass of all lines in the plane (not necessarily through

the origin). Points ¥y and ¥y, are uniquely classified into sets
X" and X~ respectively by any line separating X' and X", while
Yo is classified either way by lines ll and 22.

The following proposition establishes that, with respect to random

-dichotomies, the probability“that“a new pattern is ambiguous with respect

to a random dichotomy of the training set is independent of the configur-

ation of the pattern vectors.

Proposition 10. Let XLJ{y} = {?1’x2""’xﬁ’»y} be in @-general
position in d-space, where § = (¢1,¢2,...,¢d). Then y is ambiguous
with respect to C(N,d-1) dichotomies of X relative to the class of

all ¢-sur£aces. Hence, if each of the @-separable dichotomies of X

has equal probability, then the probaﬁility F(N,d) that y 1is ambiguous
with respect to a random ¢-separable dichotomy of X is
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¢(N,d-1) k=0 :
F(N,d) = m = I o (6.2)

Proof. From lemma 1 of Chapter IIL, the point y is ambiguous with
respect to {?&,X-} if and only if there exists a @-surface containing
y which separates {?&,X—}. The propesition then feollows from Theorem 3

of Chapter III, on noting that the separating vector w 1is constrained

by ) . _
w(y) = 0 . (6.3)

Applying the proposition to the example in Fig. 8, where X has 10

points, it can be seen that each of the ¥ is ambiguous with respect

to 0{10,2) = 20 dichotomies of X relative to the class of all lines
in the plane. Now .C(10,3) = 92 dichotomies of X are separable by
the class of all lines in the plane. - Thus a new pattern is.ambiguous
with respect to a random, linearly separable, dichotomy of X ~with
probability

(6.4}

C. LIMITING FORM OF PROBABILITY OF AMBIGUITY

Proposition 7 of Chapter V will be applied to find the limiting

form of F(N,d) for large N and d. Write, using the definition in
Eq. (5'60): 7
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z N-1
K N-1
k:o d"l 1 o
F(N,a) = 33 = 1-33 = l-awaen - (e3)

,Hence we have the asymptotic probability of ambiguity

. . 1 PR
F(p) = éii‘F(Bd;d) = 1-598y (6.8)
or
1, o<p<2
F*(p) = . (6.7)
1
B-T ’ Bp>2

by the conclusion of Proposition 7. The graph of F*(B) is shown in

Fig. 9.

RESPONSE, F (B)

PROBABILITY OF AMBIGUOUS

| ! {
0 i 2 3 Y 5

ﬂ:ﬂ- PATTERKS
d DIMENSION

FIG. 9. ASYMPTOTIC PROBABILITY OF AMBIGUOUS GENERALIZATION.

“Note the relatively large number of training patterns required feor

unambiguous generalization. If it is recalled that the capacity of &
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linear threshold device is £ = 2 patterns per variable weight, it can
again be seen that the capacity is a critical number in the description
of the behavior of a linear threshsld device. Indeed, in this case, the
probabiiity of ambiguity in generalization remains high even after the

probability of a consistent training set tends toward zero.

D. GENERALIZING WITH RESPECT TO RANDOM PATTERNS

In the event that the patterns themselves are randomly distributed,
the comments of Chapter IV concerning randomly distributed patterns and
random dichotomies of the pattern set apply in full to this chapter.

The crucial condition is that the pattern set by in general position
with probability 1.

Thus, if a linear threshold device is trained on a set of N points
chosen at random according to a uniform distribution on the surface of
2 unit sphere in d-space, and these points are classified independently
with equal probability into one of two categories, then it is readily
seen that the ﬁfobability of error on a new pattern similarly chosen,

conditioned on the separability of the entire set, is just <F(N,d).

E. NECESSARY CONDITICNS FOR MEANINGFUL EXPERIMENTS IN GENERALIZATTION

Consider an experiment consisting of training a 100-input linear
threshold device on 70 patterns, followed by a test on 20 new patterns.
It is evident that, since there are fewer equations than unknowns (i.e.,

fewer patterns than dimensions)}, any classification whatsoever can be
made of the 20 new patterns. 4
The following three quantities must be specified in order to complete
the descfiption of the experiment:
1. The training algorithm; -
2. The training sequence;
3. The initial state vector of the linear threshold device.
The effects of these factors on the response of the device to the
new patterns can be quite remarkable. Concerning factor 3, for example,
it can be shown that there exist initial state 2ectars, correctly separ-

" ating the training set, such that any of the 2‘0 dichotomizations of
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the new patterns can be made. If;-on the other'hand, the initial weight
vector is zero, then the class of training algorithms that form only
positive linear combinations of the pattern vectors will generate a
solution vector that lies in the intersection of the sclution cone with
the dual cone—a restriction that may reduce the number of classifications
that can be made on the new set of patterns.

Suppose that the training algorithm and the initial weight vector
have been specified, but the training seguence is chosen at randon.
Then the response of the device to the new pattern set will be random.
In this case, it is suggested that the problem be presented many times
with sequences chosen at random in order that a proper statistical analysis
can be made of the device performance.

Finally, when there is no natural dis tinction as t: which K of ¥
patterns in d dimensions shall be used to train the device in order
to recognize the remaining N-K patterns, a condition &% specifying
which subset is used as o training set should be made, because it has
been shown in Chapter V that, on the average, the specification of the
classification of 24 patterns (the extreme patterns) is sufficient
to establish the unambiguous classification of the remainder. Therefore,
if the extreme pétterns formed the training set, the linear thresho>ld
device would respond perfectly to the rest of the patterns. AL the
very least, condition 4 could be replaced by the condition that a
series of experiments be perfbrmed on suitably random choices of training
subsets.

A major point to be emphasized is fhat a unique response on new

patterns cannot be made, even with fixed data, unless factors 1, 2, 3, and

% are defined. If these factors are not precisely given, bnt rather
are unknown or random, then the experiment. should be repeated several
times on the same data in order to provide a basis for a good statistical

description of the performance of the device.

AV]
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VII. MINIMUM COMPLEXITY OF A NETWORK

In this chapter the function counting theorem of Chapter IT will be
applied to a ldrge class.of networks of linear threshold units in order
to place a lower bound on the number of variable weights in a universal
network. A network will be called universal with respect to a set of
N pattern vectors if the network can implement each of the EN func-
tions from the pattern set to {-1,1}. Cameron [Ref. 7], Winder [Ref. 1&]
and Joseph [Ref. 10] have‘studied severél specific network organizations
of iinear’threshold units and have determined lower bounds on the number

of linear threshold units (gates) in a universal network,

- It has been shown that a single linear threshold unit has a capacity
of two patterns per variable weight. Hence it is natural to ask for
the capacity of a network of linear threshold units in terms of the total

number of variable weights.

Consider a class é of networks of linear threshold units imbedded

in fixed but arbitrary circuitry, as depicted in Fig. 10.

11

-

iNPUT } X@_
PATTERN - %1

YECTORS OF -@ _ il
UNSPECI F1ED . _ :

DIMENSION

FIG. 10. NETWORK OF LINEAR THRESHOLD UNITS TMBEDDED IN
ARBITRARY BUT FIXED CIRCUITRY. ’

However, in order to avoid problems of timing and stability it is required
that there be no feedback from the cutput of any linear threshold unit

to its input. Order the linear threshold units in any way that is not
inconsistent with the flow of signal from input to output of the network,

and let Ki denote the nunber of variable weights in the ith linear
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threshold unit. Note that it is not required that all the inputs to the
ith linear threshold unit be utilized, nor is it required that all the
dimensions of the input patterns be accomodated by the network. Let T
denote the total number of weights in a given network in the class A,
That is,

T = ZK. . : (7.1)

Proposition 1l. ZIf a network in A containing a total of T wvariable

weights is universal with respect to an input set of N patterns, then

N
SR w v (7:2)

Proof. An upper bound is to be placed on the number of states of any
T-weight network in A. Consider the rth linear threshold unit, with
the weight vectors of the first r-1 linear threshold units fixed. The
rth unit receives input Kr-tuples {gi,x',...,xﬁ} corresponding to
the set of W input states Xl’XE""’XNT to the network. Then, from
the function-counting theorem, there are at most C(N,K ) different
states of the r'' unit with respect to {xi,xé,...,xﬁ . (There are
precisely C(N,Kr) states if every Kr element subset of {xi,xé,...,xﬁ}-
is linearly independent.) Hence, an upper bound r(N,T) on the number

of states of the network is

r(N,7) = max MC(NK) . (7.3)
% Ki:T
1

Consider the crude bound on C(N,K) holding for all positive integers
N and K:

K-1 K-1
c(N,K) = 2 L (N;ll) < 2 Z o< oak (7.%)
m=0 m=0
Thus
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K, |
r(N,T) < max I (&%) (7.5)

oY
r(N,T) < (20) . (7.6)

.
There are éN functions mapping i;l’XE""’XN} to éifl,l}._ Thus

the number of states of a universal network must exceed That is,
(@ - & (7.7)

or
T o> N (7.8)

1+ logzN
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VIII. SUMMARY AND CONCLUSIONS

Most of the foregoing analysis has been devoted to determining the
intrinsic properties of linear threshold functions. The properties
obtained, when suitably interpreted, provide an intuitive and reasonably
concrete understanding of the nature of linear threshold functions and
systems of simultaneous linear inequalities.

The essential contribution of this research to the theory of linear
inequalities is the description of the set of all solution cones and
dual.cones corresponding to a system of N homogeneous inequalities in
d unknowns. The sum of the number of k-boundaries of the solution
cones and dual cones and the sum of the volumes of the solution cones
and dual cones were found to be independent of the pattern configuraticn.
For large N and inhomogeneous inequalities the solution set can be
said to "look like" a d-cube. 7

Applications of these geometrical results can be found in the theory
of games, linear prbgramming, and geometrical Probability, in addition
to the theory of linear threshold devices. Also, there are immediate
applications of the geometrical analysis of the solution cones to
expected toleraﬁce requirements on the weight vectors of linear threshold
devices.

Two distinet ideas of the capacity of a linear threshold device have
been developed. The first idea—developed in Chapter IV—concerns the
number of random patterns that a linear threshold device can be expected
to separate. It is seen that the probability is quite small that more
than 24 random patterns in d dimensions can be separated. In fact,
the number of additional patterns which are separable in excess of the
capacity is a good index of the degree of correlation between pattern
category and pattern position. Following this reasoning, different
classes of separating surfaces can be tested on separating random
patterns, and the class with the highest ratio of separated patterns to
degrees of freedom of the separating surface will then be the most
natural class of surfaces for that particular problem.

The second idea concerning the storage capacity of networks of
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linear threshold devices resulted from counting the expected number of
extreme patterns in a random, separable, dichotomy. It was found that
the expected number of extreme patterns was egual to 24, in the limit,
for an infinite number of linearly separable pattern vectors in d
dimensions, and that the probability that the number of extreme patterns
exceeds 23t is less than 1/t. The implication for pattern recogni-
tion devices is that the essential information in an infinite training
set can be expected to be stored in a computer of finite storage capacity.
' Finally, the extension of the function counting theorem to so-called
‘nonlinear threshold functions opens a wide area of applicafidn. "Although
the option of augmenting pattern vectors in order to generate nonlinear’
decision surfaces has always been open, it is now possible to evaluate
the probability of separability by hyperspheres and other surfaces given
the null hypothesis that pattern position and category are independent.
Thus pattern recognition schemes having different dimensions and having

different families of decision surfaces can be compared.
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IX. SUGGESTIONS FOR FUTURE WORK

A. COUNTING THE NUMBER OF CONFIGURATIONS

In the previous chapters characteristics of systems of linear

inequalities that are essentially configuration-free have been investi-

gated. That is, subject only to the weak requirement of general position,
the characteristics of the set of linear threshold functions are independent
of the precise configufation of the set of pattern vectors on which the
functions are defined; Thus, for example, the number of linear threshold
functions and the total volume and the number of k-boundaries of the
solution cones and dual cones depends only on the number of patterns- N
and the dimension d of the space.

However, many counting problems defy easy analysis because they are
not configuration—free. Such problems include:

1. Counting the number assignments of inequalities that are within w»
or fewer of being consistent (when r = 0, there are C(N,d) such
assignments).

2. Counting the number of dichotomies that can be achieved by forming
unions of regions formed by several hyperplanes (as in a Madaline
or Perceptron).

Two indexed families of points in a vector space are said to have
differenent configurations (with respect to the class of all homogeneous
lineér threshold functions) if there exists a homogeneous linear thfeshold
function on one family that does not exist on the other. The author has
a geometric characterization of the properties of a set of points that
determine its configuration, and has counted the number of configurations
of N points in 3 dimensions, but work remains to be done on the general
problem of counting the number of configuraticns.

If the pattern vectors are randomly distributed, it is possible in
some cases to find the relative probabilities of the various configura-
tions. In o simple case this problem is known as Sylvester's problem—
finding the probability that one of four points taken at random in a
convex domain lies within the triangle formed by the other three—and
Delthiel [Ref. 257 has carried cut the calculation of this probability

in many regular cases.
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B. COUNTING THE FUNCTIONS REALIZABLE BY NETWORKS

Although the function counting theorems allow development cof upper
bounds on the capacities of networks of linear threshold deviceé
[Refs. 7, 10, 18], there is hope that exact answers can be obtained for
special networks such as Madalines or Perceptrons. o

If a set of pattern.vectoré is not separable, thers are two possible
procedures for increasing the complexity of the separating surface in
order to separate the set using primarily implementation‘by'linear '
threshold devices., The first scheme—described in Chapter IIT—is to
augmenf the pattern vector with appropriate nonlinear functions of itself
and separate the new set of augmented patterns by hyperplanes in the
higher dimensional space. All of the 0ld theory continues to apply.
The second scheme is to pass several planes through the original pattern
space and tc form a dichotomy of the pattern space by taking éppropriate
unions of the regions thus created. The latter scheme is essentially
the Madéline or Perceptron apprecach. An important series of questions
concerns the comparison of the two schemes in terms of

1. Flexibility or universality—how many functions can be implemented?

2. Naturalness of the separating surfaces—will the generalizations
be good? ’

3. Matching of machine capacity to the dimension of the problem—will
a "full" machine tend to give a uriique response to new patterns?
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