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o Introduction



Example. Solve this system of linear equations:

3x+2y+2=239
20+ 3y+2=34
4+ 2y+ 32 =26


https://commons.wikimedia.org/w/index.php?curid=10459057

Example. Solve this system of linear equations:

3x+2y+2=239
20 +3y+2=34
4+ 2y+ 32 =26

Solution: Method of elimination (a.k.a. Gaussian elimination)
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Solving linear systems in modern applications

Statistical inference

yi = f(xi) + & ffeF, (xi,y)~D.

Nonlinear optimization

Minimize f(x) = Z log(1 + e*yiajxl')

=1

Partial differential equations

0
a—? = D,V?u —uwv® + F(1 — u)




What is the cost of solving an m x n linear system?

Answer: It depends...

@ ... on the sparsity of the input matrix,
@ ... on its singular value decay profile,

@ ... on whether it has domain-specific structural properties

(e.g., Laplacian, Hankel, Toeplitz, circulant matrices, etc.),

@ ... on whether we need exact, or high/machine precision, or

medium/low precision,

@ ... on whether we can tolerate a small chance of failure.



Two perspectives on solving linear systems

Task: Given A € R™*™ and b € R", solve a linear system Ax = b.
For simplicity, assume that the system is consistent and m = O(n).

n

A

P

Direct methods
@ Method of elimination

e QR, LU, SVD, ...

O(n®) time

for “ill-conditioned systems”

Iterative methods

@ Conjugate gradient (CG)
e MINRES, GMRES, LSQR, ...

O(n?) time x T iterations

for “well-conditioned systems”

Can we unify the two perspectives?



Key ingredient: Randomization

Randomization

Using randomized algorithms to solve deterministic problems.

Early successes in NLA [AMT10]

Tim (sec)

“beats LAPACK s direct dense least-squares

solver ...on essentially any dense tall matriz.”

Moving towards “RandLAPACK”

Murray et al. “Randomized Numerical Linear Algebra: A Perspective on
the Field with an Eye to Software,” arXiv:2302.11474, 2023.

[AMT10] Avron, Maymounkov, and Toledo. “Blendenpik: Supercharging LAPACK’s
least-squares solver”, SIAM Journal on Scientific Computing 32.3: 1217-1236, 2010.



This talk: Randomization for general linear systems

o Low-rank structure in ill-conditioned systems

In “typical” systems, a low-rank component causes ill-conditioning.

o Randomized algorithms for low-rank structure

Randomized sketching-based methods can go beyond traditional

(Krylov-based) methods for solving low-rank structured systems.

o Case study: Solving a dense 108 x 108 linear system

Scaling full Kernel Ridge Regression to massive datasets.

o Unified perspective on the complexity of solving linear systems:

oL )

low-rank  well-conditioned



© Low-Rank Structure



Convergence of iterative methods

Task: Given A € RO(*" and b € R”, solve a linear system Ax = b

Iterative methods e

@ Conjugate gradient (CG) s
o MINRES, GMRES, LSQR, ... -

Cost of v— Av x T iterations
_——

O(n?) operations

How does the number of iterations T depend on A ?



Convergence of iterative methods

Task: Given A € RO(*" and b € R”, solve a linear system Ax = b

Iterative methods e

@ Conjugate gradient (CG) s
o MINRES, GMRES, LSQR, ... -

Cost of v— Av x T iterations
_——

O(n?) operations

How does the number of iterations T depend on A ?

OJmax (A)

Naive answer: T' scales with the condition number, kK = —*2 A

= “Iterative methods perform poorly for ill-conditioned systems.”




Typical ill-conditioned system

What does the spectrum of a “typical” ill-conditioned matriz look like?

10°
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Typical ill-conditioned system

What does the spectrum of a “typical” ill-conditioned matriz look like?
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Random perturbation: A=A+G, |G| < 1075||A||



Model: Systems with low-rank structure

Low-rank structure: Implicitly partition the spectrum of A

@ Ill-conditioned top-k: favors direct methods
@ Well-conditioned tail: favors iterative methods

o1

—_——
ill-conditioned well-conditioned (noise)

Systems with low-rank structure are ubiquitous across many areas!
@ “Signal + noise” data, e.g., smoothed analysis, stochastic rounding, ...
@ Deliberate regularization in ML/Stats/Opt, e.g., A = B + AI

@ Key subroutine in matrix norm and eigenvalue estimation methods



Back to convergence of iterative methods

Task: Given A € RO(™*" and b € R”, solve a linear system Ax = b

Iterative methods A S

@ Conjugate gradient (CG) s
o MINRES, GMRES, LSQR, ... &

Cost of v— Av  x T iterations
_———

O(n?) operations

How do they perform on systems with low-rank structure?



Back to convergence of iterative methods

Task: Given A € RO(™*" and b € R”, solve a linear system Ax = b

Iterative methods e

@ Conjugate gradient (CG) ‘
o MINRES, GMRES, LSQR, ... .

Cost of v— Av  x T iterations
_———

O(n?) operations

How do they perform on systems with low-rank structure?

Answer: Convergence theory of Krylov Subspace Methods




Krylov subspaces and polynomial approximation

Definition: Given square matrix A and vector b, the order-k Krylov
subspace is defined as:

Ki(A,b) = span {b, Ab, A%b, ..., A’Hb}.

Property: Any vector v € (A, b) can be expressed as v = p(A)b,
where p(z) = co + c12... + cx_12%~! is a polynomial of degree k — 1.

Recipe for linear solver: Gradually build a Krylov subspace and
maintain “best” approximation X = p(A)b for A~!b in that subspace.

Dominant cost: Matrix-vector product to compute the next direction,

A*b=A- (A" 'b) in O(n?) arithmetic operations.



Krylov subspaces and eigenvalue clusters

A1

A2

A3

)\min
o o ) o o o o o 0

n eigenvalues of real symmetric A



Krylov subspaces and eigenvalue clusters

A1

)\min
o o ) o o o o o 0

n eigenvalues of real symmetric A



Krylov subspaces and eigenvalue clusters

A1

3 p of degree k—1, s.t. p(\;) = A\;7' VY,

= p(A)b ~ A 'b
N——
€Kk (A,b)

k clusters

n eigenvalues of real symmetric A



Krylov subspaces and eigenvalue clusters

A1
3 p of degree k—1, s.t. p(\;) = A\;7' VY,
= p(A)b ~A~'b
% ——
2 €KL (A,b)
=
o
=
n eigenvalues of real symmetric A
Conclusion: If the eigenvalues of A form k clusters, then ICr (A, b)

contains an accurate approximation to x* = A~1b.



Krylov subspace methods: Convergence

Theorem ([AL86])

If A has singular values o1 > 09 > ... > Opin With ki = Z”_l , there is

a Krylov subspace method (e.g., LSQR) that finds an e-approzimate
solution ||[Ax — bl| < ¢||b|| in

T = O(k + kg log1/e) iterations.

o1
A
ce
o
B .‘“.
K ,.“.
[
e
Tk+1 v
Ba' >
. Porgee
Hk’{ Omin .
: ' %
6—06—06—06—0—06—06—0—0 .
—_——
ill-conditioned well-conditioned (noise)

(We use singular values instead of eigenvalues to capture the non-symmetric case.)

[AL86] Axelsson and Lindskog. “On the rate of convergence of the preconditioned conjugate gradient
method,” Numerische Mathematik. 48:499-523, 1986.



Krylov subspace methods and low-rank structure

Conclusion: To solve an O(n) x n linear system with at most k large
isolated singular values and a cluster of width k;, we need:

Cost of v — Av x O(k + ki logl/e) = O(n’k + nnylog1/e)
_——

O(n?) operations
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Conclusion: To solve an O(n) x n linear system with at most k large
isolated singular values and a cluster of width k;, we need:

Cost of v — Av x O(k + ki logl/e) = O(n’k + nnylog1/e)
_——

O(n?) operations

Question: Can we avoid the n?k bottleneck in Krylov methods?
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Krylov subspace methods and low-rank structure

Conclusion: To solve an O(n) x n linear system with at most k large
isolated singular values and a cluster of width k;, we need:

Cost of v — Av x O(k + ki logl/e) = O(n’k + nnylog1/e)
_——

O(n?) operations

Question: Can we avoid the n?k bottleneck in Krylov methods?

Yes! and No!

With only v — Av access to A,

Krylov methods are optimal.



Krylov subspace methods and low-rank structure

Conclusion: To solve an O(n) x n linear system with at most k large
isolated singular values and a cluster of width k;, we need:

Cost of v — Av x O(k + ki logl/e) = O(n’k + nnylog1/e)
_——

O(n?) operations

Question: Can we avoid the n?k bottleneck in Krylov methods?

Yes! and No!
With direct access to A, With only v — Av access to A,
randomized methods do better. Krylov methods are optimal.

Our result: O(k* + n%ky log1/e)



© Randomized Algorithms
e Sketching
o Sketch-and-Project

@ Recursive Sketching



© Randomized Algorithms
e Sketching



Main tool: Randomized sketching

Sketching operator: Random dimension reducing linear map (matrix S)

E.g.: Gaussian/sparse matrices, randomized Hadamard transforms, ...

Crucially: Can be much faster than dense matrix multiplication



Main tool: Randomized sketching

Sketching operator: Random dimension reducing linear map (matrix S)

E.g.: Gaussian/sparse matrices, randomized Hadamard transforms, ...

1%

F(A) F(A)

T T

Sketching matrix S X Input A | — | Sketch A

Crucially: Can be much faster than dense matrix multiplication



Main tool: Randomized sketching

Sketching operator: Random dimension reducing linear map (matrix S)

E.g.: Gaussian/sparse matrices, randomized Hadamard transforms, ...

F(A) ~ F(A)
Example: row sampling T T
[T
TT
TT H ~
L1 - X — | Sketch A
O
TT
T

Crucially: Can be much faster than dense matrix multiplication



Example: Least squares

Over-determined linear system: Many more equations than unknowns,
also known as least squares.

A

Compute x* = argmin |Ax — b3
X
n

for AeR"™ beR"




Example: Least squares

Over-determined linear system: Many more equations than unknowns,
also known as least squares.

d
A b
Compute x* = argmin |Ax — b3
x n
for AeR"™ beR"
Sketching leverages this redundancy: d
~ e 12 A BE— B
Compute X = argmin ||Ax — b||5
~ * ~ S
for - A=SA, b=Sb
—_— N——
sketch of A sketch of b




Why does sketching work for least squares?

Fact. In O(nd) time, we can compute
A € RO@Wxd guch that for i =1, ..., d:

B>

Input A O(d) =SA

o} (A) = (1% 5)07(A)




Why does sketching work for least squares?

Fact. In O(nd) time, we can compute —_—
A € RO@Wxd guch that for i =1, ..., d:

B>

Input A O(d) =SA

o} (A) = (1% 5)07(A)

Even better. This preserves the whole
covariance structure of the matrix:

ATA=(1+1)ATA.




Why does sketching work for least squares?

Fact. In O(nd) time, we can compute —_—

A € RODxd guch that for i = 1, ..., d:
. N Input A |O(d)
oi(A)=(1£3)0;(A)

B>

=SA

Even better. This preserves the whole
covariance structure of the matrix:

ATA=(1+1)ATA.

Fast least squares solver: Runs in O(d® + nd) time

@ Rewrite least squares via normal equations, ATAx = A"b

@ Precondition your favorite iterative method with ATA




Fast least squares solver

Compute preconditioner: (ATA)"! ~ (ATA)™! Cost: O(d?)

Orlgmal problem (large k) 5 Preconditioned problem (small x)

ATAx=A"b ATA(ATA) lz=b
k(ATA) is large K(ATA(ATA)™Y) is small



Does this work for general linear systems?




Does this work for general linear systems?

n
Fact. In time O(n?), we can compute -
A € ROK)IXn guch that for i = 1,..., k: A O(k¥| A =SA
ol(A)=(1+1 Z o
7>l
—_——

tail noise



Does this work for general linear systems?

Fact. In time O(n?), we can compute

A e RO®xn guch that for i = 1,..., k:

ol(A)=(1+1 Za
7>l

tail noise

B>

=SA

Bottom line: The sketch picks up noise from the spectral tail
= weak preconditioner (both in theory and in practice)




Does this work for general linear systems?

Fact. In time O(n?), we can compute
A € ROF)*n guch that for i = 1, ..., k: A O(k)

B>

=SA

- . 1 (
o} (A) = (1£3)07(A) £ o ;#w
J=R

tail noise

Bottom line: The sketch picks up noise from the spectral tail
= weak preconditioner (both in theory and in practice)

Can we still produce a fast solver via sketching?



Does this work for general linear systems?

Fact. In time O(n?), we can compute
A € ROF)*n guch that for i = 1, ..., k: A O(k)

B>

=SA

- . 1 (
o} (A) = (1£3)07(A) £ o ;#w
J=R

tail noise

Bottom line: The sketch picks up noise from the spectral tail
= weak preconditioner (both in theory and in practice)

Can we still produce a fast solver via sketching?

Yes! Just use multiple sketches:
@ Sketch-and-Project

@ Recursive Sketching



© Randomized Algorithms

o Sketch-and-Project



Background: The Kaczmarz algorithm

Idea: Iteratively project onto the solutions of individual equations.

Starting at xq, for t =0,1,2, ...
@ Select index Iy

@ Project current iterate x; onto

the solutions of I;-th equation

Randomized Kaczmarz: Select indices via weighted sampling [SV09]

The first Kaczmarz algorithm with provable convergence rate.

[Kac37] Stefan Kaczmarz, “Angeniaherte Auflésung von Systemen linearer
Gleichungen”, Bulletin International de I’Académie Polonaise des Sciences et des
Lettres 35:355-357, 1937.

[SV09] Strohmer and Vershynin, “A randomized Kaczmarz algorithm with exponential
convergence”, Journal of Fourier Analysis and Applications, 14.2:262-278, 2009.



Powerful extension: Sketch-and-Project

Starting at xg € R™, for t =0, 1,2, ...

@ Sample random O(k) x O(n) matrix S;. \ pd
@ Project x; onto the solutions of StAx = S;b: ':}x,’.’,
N
X1 = argmin ||x; — x||° subject to S;Ax = S;b. o
A X b S:A X S:b
o] | -
O(n) % _ skgch

[GR15] Gower and Richtéarik, “Randomized iterative methods for linear systems”,
SIAM Journal on Matriz Analysis and Applications, 36.4:1660-1690, 2015.



Key insight: Sharp analysis of Sketch-and-Project

Theorem ([DR24])

If S; is a Gaussian matriz, then Sketch-and-Project satisfies:

o2

min(A)

t
Elx - x*|]? < (1) o — x* |2
%ZDkU?(A)

[DR24] Dereziniski and Rebrova, “Sharp Analysis of Sketch-and-Project Methods via a
Connection to Randomized Singular Value Decomposition”, SIAM Journal on
Mathematics of Data Science, 6.1:127-153, 2024.
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If S; is a Gaussian matriz, then Sketch-and-Project satisfies:

2(A) !
Elx - x*|]? < (1““) o — x* |2
iZDkU?(A)

We again observe the tail noise from sketching.

[DR24] Dereziniski and Rebrova, “Sharp Analysis of Sketch-and-Project Methods via a
Connection to Randomized Singular Value Decomposition”, SIAM Journal on
Mathematics of Data Science, 6.1:127-153, 2024.



Key insight: Sharp analysis of Sketch-and-Project

Theorem ([DR24])

If S; is a Gaussian matriz, then Sketch-and-Project satisfies:

2(A) !
Elx - x*|]? < (1““) o — x* |2
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We again observe the tail noise from sketching.

Key insight:
o Each sketch-and-project step runs on a f{-fraction of the data

e This runtime gain should cancel out the tail noise < %0§+1
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Connection to Randomized Singular Value Decomposition”, SIAM Journal on
Mathematics of Data Science, 6.1:127-153, 2024.
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Key insight: Sharp analysis of Sketch-and-Project

Theorem ([DR24])

If S; is a Gaussian matriz, then Sketch-and-Project satisfies:

2(A) !
Elx - x*|]? < (1““) o — x* |2
iZDkU?(A)

We again observe the tail noise from sketching.

Key insight:
o Each sketch-and-project step runs on a %-fraction of the data

e This runtime gain should cancel out the tail noise < %0§+1

Hang on, Gaussian sketching is still too expensive!

[DR24] Dereziniski and Rebrova, “Sharp Analysis of Sketch-and-Project Methods via a
Connection to Randomized Singular Value Decomposition”, SIAM Journal on
Mathematics of Data Science, 6.1:127-153, 2024.



Making this efficient

Advances in sketch-and-project for systems with low-rank structure:

@ Sketching: Gaussian guarantees for fast sketches

o Randomized Hadamard transform [DY24]
o Leverage score sampling [RFY25]

@ Projecting: Fast computation of the projection step
o Fast inner solver using PCG [DY24]

e Amortizing projection cost across iterations [DNRY25]

@ Acceleration: Improved convergence using momentum

o Convergence analysis with Nesterov’s momentum [DLNR24]

o Adaptive tuning of momentum parameters [DNRY25]



Making this efficient: Sketch-and-Project++4

Theorem ([DNRY25])

Given any k, we can solve an O(n) X n linear system Ax = b in time:

O(u/.-2 + n%ky, log 1/€), where Ky = %((AA)).

e Overcomes the n?k bottleneck of Krylov subspace methods.

o Sketch-and-Project++: New family of randomized linear solvers
Implementations: Kaczmarz++,/CD++ [DNRY25], ASkotch [RFY™T25]

Still does not attain the promised k® 4+ n? guarantee...
g

[DNRY25] Dereziriski, Needell, Rebrova, and Yang. “Randomized Kaczmarz methods
with beyond-Krylov convergence.” arXiv:2501.11673, 2025.

[RFY+25] Rathore, Frangella, Yang, Derezinski, and Udell. “Have ASkotch: Fast
cocktails for large-scale kernel ridge regression.” arXiv:2407.10070, 2025.



Case study: Large-scale Kernel Ridge Regression

Task: Fitting non-linear functions f: X — R:

min > (700 )+ 3151
' 1

1=

When H is a reproducing kernel Hilbert space defined by
k: X x X — R, this reduces to solving an n X n linear system:

(K+nAI)x = vy, where K = I:k((bi’(bj)]ij‘
—_———— s

low-rank structure



Case study: Large-scale Kernel Ridge Regression

Task: Fitting non-linear functions f: X — R:

min > (700 )+ 3151
' 1

1=

When H is a reproducing kernel Hilbert space defined by
k: X x X — R, this reduces to solving an n X n linear system:

(K+nAI)x = vy, where K = I:k((bi’(bj)]ij‘
—_———— s

low-rank structure

What if we are given 100 million data points (¢, y;)?



Solving a dense 10% x 10® linear system

Solving KRR for New York City taxi transportation data (n = 108)
@ Storage: 40,000TB (terabytes) to store K in single precision

@ Compute: State-of-the-art solvers take > 24h for single iteration
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Solving KRR for New York City taxi transportation data (n = 108)
@ Storage: 40,000TB (terabytes) to store K in single precision

@ Compute: State-of-the-art solvers take > 24h for single iteration

Popular workarounds:

o Compress the matrix K and solve a smaller problem

o SGD-type solvers with heuristically chosen hyper-parameters



Solving a dense 10% x 10® linear system

Solving KRR for New York City taxi transportation data (n = 108)
@ Storage: 40,000TB (terabytes) to store K in single precision

@ Compute: State-of-the-art solvers take > 24h for single iteration

Popular workarounds:

o Compress the matrix K and solve a smaller problem

o SGD-type solvers with heuristically chosen hyper-parameters

We attack the original problem with a provably convergent solver!



Solving a dense 10% x 10® linear system

Method: ASkotch (“Sketch-and-Project++" developed for GPUs)
Baselines: EigenPro 2.0 [MB19] and Falkon [RCR17]
Test RMSE: Root mean squared error on the test set.

. 08
20 taxi (n = 1.00 - 10%)
320

300

Test RMSE
ot
8

260
240
—
0 20000 40000 60000 80000
Time (s)
ASkotch, Nystrom, p = damped, r = 50, uniform ~ —e—  ASkotch, Nystrom, p = damped, r = 200, uniform EigenPro 2.0

—e— ASkotch, Nystrém, p = damped, r = 100, uniform —e— ASkotch, Nystrém, p = damped, r = 500, uniform —+— Falkon, m = 20000

[RFY+25] Rathore, Frangella, Yang, Derezinski, and Udell. “Have ASkotch: Fast
cocktails for large-scale kernel ridge regression.” arXiv:2407.10070, 2025.



Case study: Large-scale Kernel Ridge Regression

Method: ASkotch (“Sketch-and-Project++" developed for GPUs)
Baselines: EigenPro [MB19], Falkon [RCR17], and Nystrom PCG [FTU23]

Experiment: 23 tasks, including particle physics (4 datasets) and
computational chemistry (9 datasets), with dimensions at least 10°.

Classification Regression

0.8 1.0
g £o08
Z06 £
z %
S 206
204 {—17 2
kS 504
g g
£0.2 k5 L
E 2oz | /
= =

0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Fraction of time budget Fraction of time budget
——— ASkotch —— EigenPro 3.0 —— Falkon
EigenPro 2.0 — PCG

The code is available at https://github.com/pratikrathore8/fast_krr.


https://github.com/pratikrathore8/fast_krr

© Randomized Algorithms
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Complexity of solving linear systems with low-rank structure:

Krylov methods: O( n’k + n’ky )
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ill-conditioned well-conditioned (noise)



Complexity of solving linear systems with low-rank structure:

Krylov methods: O( n’k + n’ky )

Sketch-and-Project++: O( nk? + n%ky )

g1
A
ce
o0
i
(N
K .‘g‘:-&
D
v
) >
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ill-conditioned well-conditioned (noise)



Complexity of solving linear systems with low-rank structure:

Krylov methods: O( n’k + n’ky )
Sketch-and-Project++: O( nk? + n%ky )
Recursive Sketching: O( k> 4+ n2ky )
o1
A
K ...'::;:
643?..“‘.. L ) R
K . s,
k{ Omin XY

ill-conditioned well-conditioned (noise)



Key idea: Recursive Sketching

Sl Al

@ Precondition A using large sketch A= S1A,

[DS25] Dereziriski and Sidford. “Approaching Optimality for Solving Dense Linear
Systems with Low-Rank Structure.” arXiv:2507.11724, 2025.



Key idea: Recursive Sketching

S2 A2
Sl Al

@ Precondition A using large sketch A= S1A,
© Precondition Al using smaller sketch AQ = S,A,

[DS25] Dereziriski and Sidford. “Approaching Optimality for Solving Dense Linear
Systems with Low-Rank Structure.” arXiv:2507.11724, 2025.



Key idea: Recursive Sketching

S, X A - A,
S2 AQ
Sl Al

@ Precondition A using large sketch A= S1A,
© Precondition Al using smaller sketch AQ = S,A,

@ Precondition A.Q using even smaller sketch Ag = S3A, etc.

[DS25] Dereziriski and Sidford. “Approaching Optimality for Solving Dense Linear
Systems with Low-Rank Structure.” arXiv:2507.11724, 2025.



Key idea: Recursive Sketching

S5 X A - A,
S2 AQ
Sl Al

@ Precondition A using large sketch A= S1A,
© Precondition Al using smaller sketch AQ = S,A,

@ Precondition A.Q using even smaller sketch Ag = S3A, etc

Inspired by domain-specific preconditioning techniques:

@ Recursive solvers for graph Laplacians in theoretical computer science

@ Multigrid solvers for differential equations in scientific computing

[DS25] Dereziriski and Sidford. “Approaching Optimality for Solving Dense Linear
Systems with Low-Rank Structure.” arXiv:2507.11724, 2025.
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Reminder: Single-sketch preconditioner fails

Fact. In time O(n?), we can compute

A € ROF)xn guch that for i = 1, ..., k: A O(k)| A =SA
2
o} A)=(1+3 o Za
i>k

tail noise

Bottom line: The sketch picks up noise from the spectral tail

= ATA % ATA
L 1 )
but ATA+M ~ ATA+ A, for )\:%Zaj(A).

more low-rank Ji>k

Idea: Impose stricter low-rank structure on the system.

Wait! Are we allowed to do that?



Strategy: Gradually impose stricter low-rank structure

Sl Al
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Strategy: Gradually impose stricter low-rank structure

Ss X A - A3
SQ A2
Sl Al

ATA ~ ATA +0°1
2
ATA + NI, M\ >o02
2
AJAy + 00, N>\
2
AJA3 + 031, 3> N



Recursive Sketching: Main result

Theorem ([DS25])

4

Given any k, we can solve an O(n) X n linear system Ax =b in time:

O~(]<'3 + n%ky, log 1/€), where Ky = Z’:“nl((:))

o Natural complexity limit for systems with low-rank structure

o Even better: ki can be replaced by a smoothed condition number,

_ 1 g

< Kk
Omi
Z>k min

Application: The first algorithm for approximating the nuclear norm
|All1 =3, 0; of an n x n matrix in nearly linear time O(n?).

[DS25] Dereziriski and Sidford. “Approaching Optimality for Solving Dense Linear
Systems with Low-Rank Structure.” arXiv:2507.11724, 2025.




© Conclusions



Conclusions

Linear systems with low-rank structure: a natural model for
ill-conditioned matrices, e.g., in ML/Opt/Stats applications.

Randomized algorithms:

o Sketch-and-Project++: New family of randomized linear solvers

that scaled to massive problem sizes.

o Recursive Sketching: Attains nearly optimal complexity for

solving dense linear systems with low-rank structure.

Next steps:
@ KEzxtending to sparse matrices and other access models

o [Extending to other natural singular/eigenvalue profiles
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Pseudocode for Kaczmarz-+-+

1: Input: A € R™*" b e R™, B, k, Xg, tmax, 7, Ps A

2: D — diag(random =+ 1/y/m)

3: A+ HDA and b < HDb > Randomized Hadamard
4: mg < 0;

5. Sample B = {S1,...,Sp} C ([ZL]) > Random blocks
6: for t =0,1,...,(tmax — 1) do

7 Draw a random subset S from B > Fast sketching
8: r; < Agx; — bg

9: wy ~ argming, {[|Asw —1y]|2 + Allw||?} > Fast projection
10: mg,q 1+p(mt — W)
11: X1 ¢ X¢ — Wy + my > Momentum acceleration
12: end for
13: return X = x¢__ ;

The code is available at https://github.com/EdwinYang7/kaczmarz-plusplus


https://github.com/EdwinYang7/kaczmarz-plusplus
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