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Example. Solve this system of linear equations:

3x+ 2y + z = 39

2x+ 3y + z = 34

x+ 2y + 3z = 26

Solution: Method of elimination (a.k.a. Gaussian elimination)

First appeared in:

The Nine Chapters on the Mathematical Art,

China, 2nd century

Later formalized by:

Newton, and then Gauss, among others.

Image by Gisling, CC BY 3.0, url.
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Solving linear systems in modern applications

Statistical inference

yi = f∗(xi) + ξi, f∗ ∈ F , (xi, yi) ∼ D.

Nonlinear optimization

Minimize f(x) =

n∑
i=1

log(1 + e−yia
>
i xi)

Partial differential equations

∂u

∂t
= Du∇2u− uv2 + F (1− u)
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What is the cost of solving an m× n linear system?

Answer: It depends...

... on the sparsity of the input matrix,

... on its singular value decay profile,

... on whether it has domain-specific structural properties

(e.g., Laplacian, Hankel, Toeplitz, circulant matrices, etc.),

... on whether we need exact, or high/machine precision, or

medium/low precision,

... on whether we can tolerate a small chance of failure.
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Two perspectives on solving linear systems

Task: Given A ∈ Rm×n and b ∈ Rn, solve a linear system Ax = b.
For simplicity, assume that the system is consistent and m = O(n).

m

n

a>
i

A

×

x

=

b

bi

Direct methods

Method of elimination

QR, LU, SVD, ...

O(n3) time︸ ︷︷ ︸
for “ill-conditioned systems”

Iterative methods

Conjugate gradient (CG)

MINRES, GMRES, LSQR, ...

O(n2) time × T iterations︸ ︷︷ ︸
for “well-conditioned systems”

Can we unify the two perspectives?
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Key ingredient: Randomization

Randomization

Using randomized algorithms to solve deterministic problems.

Early successes in NLA [AMT10]

“beats LAPACK’s direct dense least-squares

solver ...on essentially any dense tall matrix.”

Moving towards “RandLAPACK”

Murray et al. “Randomized Numerical Linear Algebra: A Perspective on

the Field with an Eye to Software,” arXiv:2302.11474, 2023.

[AMT10] Avron, Maymounkov, and Toledo. “Blendenpik: Supercharging LAPACK’s

least-squares solver”, SIAM Journal on Scientific Computing 32.3: 1217-1236, 2010.
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This talk: Randomization for general linear systems

Low-rank structure in ill-conditioned systems

In “typical” systems, a low-rank component causes ill-conditioning.

Randomized algorithms for low-rank structure

Randomized sketching-based methods can go beyond traditional

(Krylov-based) methods for solving low-rank structured systems.

Case study: Solving a dense 108 × 108 linear system

Scaling full Kernel Ridge Regression to massive datasets.

Unified perspective on the complexity of solving linear systems:

Õ
(

k3︸︷︷︸
low-rank

+ n2︸︷︷︸
well-conditioned

)
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Convergence of iterative methods

Task: Given A ∈ RO(n)×n and b ∈ Rn, solve a linear system Ax = b

Iterative methods

Conjugate gradient (CG)

MINRES, GMRES, LSQR, ...

Cost of v→ Av︸ ︷︷ ︸
O(n2) operations

× T iterations

How does the number of iterations T depend on A?

Näıve answer: T scales with the condition number, κ = σmax(A)
σmin(A) .

⇒ “Iterative methods perform poorly for ill-conditioned systems.”
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Typical ill-conditioned system

What does the spectrum of a “typical” ill-conditioned matrix look like?

Singular values
10-15

10-10

10-5

100

Ill-conditioned matrix

Random perturbation: Ã = A + G, ‖G‖ ≤ 10−5‖A‖
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Model: Systems with low-rank structure

Low-rank structure: Implicitly partition the spectrum of A

1 Ill-conditioned top-k: favors direct methods

2 Well-conditioned tail: favors iterative methods

σ1

σk+1

σmin

ill-conditioned well-conditioned (noise)

κk

κ

Systems with low-rank structure are ubiquitous across many areas!

“Signal + noise” data, e.g., smoothed analysis, stochastic rounding, ...

Deliberate regularization in ML/Stats/Opt, e.g., A = B + λI

Key subroutine in matrix norm and eigenvalue estimation methods
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Back to convergence of iterative methods

Task: Given A ∈ RO(n)×n and b ∈ Rn, solve a linear system Ax = b

Iterative methods

Conjugate gradient (CG)

MINRES, GMRES, LSQR, ...

Cost of v→ Av︸ ︷︷ ︸
O(n2) operations

× T iterations

How do they perform on systems with low-rank structure?

Answer: Convergence theory of Krylov Subspace Methods
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Krylov subspaces and polynomial approximation

Definition: Given square matrix A and vector b, the order-k Krylov
subspace is defined as:

Kk(A,b) = span
{
b, Ab, A2b, ..., Ak−1b

}
.

Property: Any vector v ∈ Kk(A,b) can be expressed as v = p(A)b,
where p(x) = c0 + c1x...+ ck−1x

k−1 is a polynomial of degree k − 1.

Recipe for linear solver: Gradually build a Krylov subspace and
maintain “best” approximation x̂ = p(A)b for A−1b in that subspace.

Dominant cost: Matrix-vector product to compute the next direction,

Akb = A · (Ak−1b) in O(n2) arithmetic operations.

14 / 48



Krylov subspaces and eigenvalue clusters

λ1

λ2

λ3

λmin

k
cl
u
st
er
s

n eigenvalues of real symmetric A

∃ p of degree k−1, s.t. p(λi) ≈ λ−1
i ∀i

⇒ p(A)b︸ ︷︷ ︸
∈Kk(A,b)

≈ A−1b

Conclusion: If the eigenvalues of A form k clusters, then Kk(A,b)
contains an accurate approximation to x∗ = A−1b.
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Krylov subspace methods: Convergence

Theorem ([AL86])

If A has singular values σ1 ≥ σ2 ≥ ... ≥ σmin with κk = σk+1

σmin
, there is

a Krylov subspace method (e.g., LSQR) that finds an ε-approximate

solution ‖Ax̂− b‖ ≤ ε‖b‖ in

T = O(k + κk log 1/ε) iterations.

σ1

σk+1

σmin

ill-conditioned well-conditioned (noise)

κk

κ

(We use singular values instead of eigenvalues to capture the non-symmetric case.)

[AL86] Axelsson and Lindskog. “On the rate of convergence of the preconditioned conjugate gradient

method,” Numerische Mathematik. 48:499-523, 1986.
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Krylov subspace methods and low-rank structure

Conclusion: To solve an O(n)× n linear system with at most k large
isolated singular values and a cluster of width κk, we need:

Cost of v→ Av︸ ︷︷ ︸
O(n2) operations

× O(k + κk log 1/ε) = O(n2k + n2κk log 1/ε)

Question: Can we avoid the n2k bottleneck in Krylov methods?

Yes! and No!

With direct access to A,

randomized methods do better.

With only v→ Av access to A,

Krylov methods are optimal.

Our result: Õ(k3 + n2κk log 1/ε)
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Main tool: Randomized sketching

Sketching operator: Random dimension reducing linear map (matrix S)

E.g.: Gaussian/sparse matrices, randomized Hadamard transforms, ...

Input A

F (A)

Crucially: Can be much faster than dense matrix multiplication

20 / 48
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Main tool: Randomized sketching

Sketching operator: Random dimension reducing linear map (matrix S)

E.g.: Gaussian/sparse matrices, randomized Hadamard transforms, ...

×

F (A)

→ Sketch Ã

F (Ã)≈
Example: row sampling

Crucially: Can be much faster than dense matrix multiplication
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Example: Least squares

Over-determined linear system: Many more equations than unknowns,
also known as least squares.

Compute x∗ = argmin
x
‖Ax− b‖22

for A ∈ Rn×d, b ∈ Rn

A

n

d

b

Sketching leverages this redundancy:

Compute x̃ = argmin
x
‖Ãx− b̃‖22

for Ã = SA︸ ︷︷ ︸
sketch of A

, b̃ = Sb︸ ︷︷ ︸
sketch of b

Ã

s

d

b̃
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for Ã = SA︸ ︷︷ ︸
sketch of A

, b̃ = Sb︸ ︷︷ ︸
sketch of b

Ã
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Why does sketching work for least squares?

Fact. In Õ(nd) time, we can compute

Ã ∈ RO(d)×d such that for i = 1, ..., d:

σ2
i (Ã) = (1± 1

2 )σ2
i (A)

Even better. This preserves the whole
covariance structure of the matrix:

Ã>Ã = (1± 1
2 )A>A.

Input A

n

d

O(d) Ã = SA

Fast least squares solver: Runs in Õ(d3 + nd) time

1 Rewrite least squares via normal equations, A>Ax = A>b

2 Precondition your favorite iterative method with Ã>Ã
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Fast least squares solver

Compute preconditioner: (Ã>Ã)−1 ≈ (A>A)−1 Cost: O(d3)

A>Ax = A>b

κ(A>A) is large

A>A(Ã>Ã)−1z = b

κ(A>A(Ã>Ã)−1) is small

23 / 48



Does this work for general linear systems?

Fact. In time Õ(n2), we can compute

Ã ∈ RO(k)×n such that for i = 1, ..., k:

σ2
i (Ã) = (1± 1

2 )σ2
i (A)± 1

k

∑
j>k

σ2
j (A)︸ ︷︷ ︸

tail noise

n

O(k)A Ã = SA

Bottom line: The sketch picks up noise from the spectral tail
⇒ weak preconditioner (both in theory and in practice)

Can we still produce a fast solver via sketching?

Yes! Just use multiple sketches:

1 Sketch-and-Project

2 Recursive Sketching
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O(k)A Ã = SA

Bottom line: The sketch picks up noise from the spectral tail
⇒ weak preconditioner (both in theory and in practice)

Can we still produce a fast solver via sketching?

Yes! Just use multiple sketches:

1 Sketch-and-Project

2 Recursive Sketching

24 / 48



Does this work for general linear systems?
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Fact. In time Õ(n2), we can compute
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Background: The Kaczmarz algorithm

Idea: Iteratively project onto the solutions of individual equations.

Starting at x0, for t = 0, 1, 2, ...

1 Select index It

2 Project current iterate xt onto

the solutions of It-th equation

Randomized Kaczmarz: Select indices via weighted sampling [SV09]

The first Kaczmarz algorithm with provable convergence rate.

[Kac37] Stefan Kaczmarz, “Angenäherte Auflösung von Systemen linearer

Gleichungen”, Bulletin International de l’Académie Polonaise des Sciences et des

Lettres 35:355–357, 1937.

[SV09] Strohmer and Vershynin, “A randomized Kaczmarz algorithm with exponential

convergence”, Journal of Fourier Analysis and Applications, 14.2:262-278, 2009.
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Powerful extension: Sketch-and-Project

Starting at x0 ∈ Rn, for t = 0, 1, 2, ...

1 Sample random O(k)×O(n) matrix St.

2 Project xt onto the solutions of StAx = Stb:

xt+1 = argmin
x
‖xt − x‖2 subject to StAx = Stb.

O(n)

A

×

x

=

b

sketch⇒

O(k)

StA

×
x

=
Stb

[GR15] Gower and Richtárik, “Randomized iterative methods for linear systems”,

SIAM Journal on Matrix Analysis and Applications, 36.4:1660-1690, 2015.
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Key insight: Sharp analysis of Sketch-and-Project

Theorem ([DR24])

If St is a Gaussian matrix, then Sketch-and-Project satisfies:

E ‖xt − x∗‖2 ≤
(

1− σ2
min(A)

1
k

∑
i>k σ

2
i (A)

)t
‖x0 − x∗‖2.

We again observe the tail noise from sketching.

Key insight:

Each sketch-and-project step runs on a -fraction of the data

This runtime gain should the tail noise ≤ σ2
k+1

Hang on, Gaussian sketching is still too expensive!

[DR24] Dereziński and Rebrova, “Sharp Analysis of Sketch-and-Project Methods via a

Connection to Randomized Singular Value Decomposition”, SIAM Journal on

Mathematics of Data Science, 6.1:127-153, 2024.
28 / 48
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‖x0 − x∗‖2.

We again observe the tail noise from sketching.

Key insight:

Each sketch-and-project step runs on a ��
k
n -fraction of the data

This runtime gain should cancel out the tail noise ≤ ��
n
kσ

2
k+1

Hang on, Gaussian sketching is still too expensive!

[DR24] Dereziński and Rebrova, “Sharp Analysis of Sketch-and-Project Methods via a

Connection to Randomized Singular Value Decomposition”, SIAM Journal on

Mathematics of Data Science, 6.1:127-153, 2024.
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Making this efficient

Advances in sketch-and-project for systems with low-rank structure:

1 Sketching: Gaussian guarantees for fast sketches

Randomized Hadamard transform [DY24]

Leverage score sampling [RFY+25]

2 Projecting: Fast computation of the projection step

Fast inner solver using PCG [DY24]

Amortizing projection cost across iterations [DNRY25]

3 Acceleration: Improved convergence using momentum

Convergence analysis with Nesterov’s momentum [DLNR24]

Adaptive tuning of momentum parameters [DNRY25]
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Making this efficient: Sketch-and-Project++

Theorem ([DNRY25])

Given any k, we can solve an O(n)× n linear system Ax = b in time:

Õ
(
nk2 + n2κk log 1/ε

)
, where κk = σk+1(A)

σmin(A) .

Overcomes the n2k bottleneck of Krylov subspace methods.

Sketch-and-Project++: New family of randomized linear solvers

Implementations: Kaczmarz++/CD++ [DNRY25], ASkotch [RFY+25]

(Still does not attain the promised k3 + n2 guarantee...)

[DNRY25] Dereziński, Needell, Rebrova, and Yang. “Randomized Kaczmarz methods

with beyond-Krylov convergence.” arXiv:2501.11673, 2025.

[RFY+25] Rathore, Frangella, Yang, Dereziński, and Udell. “Have ASkotch: Fast

cocktails for large-scale kernel ridge regression.” arXiv:2407.10070, 2025.
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Case study: Large-scale Kernel Ridge Regression

Task: Fitting non-linear functions f : X → R:

min
f∈H

1

n

n∑
i=1

(
f(φi)− yi

)2

+
λ

2
‖f‖2H

When H is a reproducing kernel Hilbert space defined by
k : X × X → R, this reduces to solving an n× n linear system:

(K + nλI)︸ ︷︷ ︸
low-rank structure

x = y, where K =
[
k(φi, φj)

]
i,j
.

What if we are given 100 million data points (φi, yi)?
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Solving a dense 108 × 108 linear system

Solving KRR for New York City taxi transportation data (n = 108)

1 Storage: 40, 000TB (terabytes) to store K in single precision

2 Compute: State-of-the-art solvers take > 24h for single iteration

Popular workarounds:

Compress the matrix K and solve a smaller problem

SGD-type solvers with heuristically chosen hyper-parameters

We attack the original problem with a provably convergent solver!
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Solving a dense 108 × 108 linear system

Method: ASkotch (“Sketch-and-Project++” developed for GPUs)

Baselines: EigenPro 2.0 [MB19] and Falkon [RCR17]

Test RMSE: Root mean squared error on the test set.

[RFY+25] Rathore, Frangella, Yang, Dereziński, and Udell. “Have ASkotch: Fast

cocktails for large-scale kernel ridge regression.” arXiv:2407.10070, 2025.
33 / 48



Case study: Large-scale Kernel Ridge Regression

Method: ASkotch (“Sketch-and-Project++” developed for GPUs)

Baselines: EigenPro [MB19], Falkon [RCR17], and Nyström PCG [FTU23]

Experiment: 23 tasks, including particle physics (4 datasets) and
computational chemistry (9 datasets), with dimensions at least 105.
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The code is available at https://github.com/pratikrathore8/fast_krr.
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Roadmap

Complexity of solving linear systems with low-rank structure:

Krylov methods: Õ
(
n2k + n2κk

)

Sketch-and-Project++: Õ
(
nk2 + n2κk

)

Recursive Sketching: Õ
(
k3 + n2κk

)

σ1

σk+1

σmin

ill-conditioned well-conditioned (noise)

κk

κ
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(
n2k + n2κk

)

Sketch-and-Project++: Õ
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Key idea: Recursive Sketching

Ã1S1

Ã2S2

Ã3S3

...
...

× →A

1 Precondition A using large sketch Ã1 = S1A,

2 Precondition Ã1 using smaller sketch Ã2 = S2A,

3 Precondition Ã2 using even smaller sketch Ã3 = S3A, etc.

Inspired by domain-specific preconditioning techniques:

Recursive solvers for graph Laplacians in theoretical computer science

Multigrid solvers for differential equations in scientific computing

[DS25] Dereziński and Sidford. “Approaching Optimality for Solving Dense Linear

Systems with Low-Rank Structure.” arXiv:2507.11724, 2025.
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3 Precondition Ã2 using even smaller sketch Ã3 = S3A, etc.
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3 Precondition Ã2 using even smaller sketch Ã3 = S3A, etc.
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Reminder: Single-sketch preconditioner fails

Fact. In time Õ(n2), we can compute

Ã ∈ RO(k)×n such that for i = 1, ..., k:

σ2
i (Ã) = (1± 1

2 )σ2
i (A)± 1

k

∑
j>k

σ2
j (A)︸ ︷︷ ︸

tail noise

n

O(k)A Ã = SA

Bottom line: The sketch picks up noise from the spectral tail

⇒ Ã>Ã 6≈ A>A

but Ã>Ã + λI ≈ A>A + λI︸ ︷︷ ︸
more low-rank

, for λ =
1

k

∑
j>k

σ2
j (A).

Idea: Impose stricter low-rank structure on the system.

Wait! Are we allowed to do that?
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Fact. In time Õ(n2), we can compute
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O(k)A Ã = SA

Bottom line: The sketch picks up noise from the spectral tail
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Strategy: Gradually impose stricter low-rank structure

Ã1S1

Ã2S2

Ã3S3

...
...

× →A

A>A ≈ A>A + σ2
nI

≈
Ã>

1 Ã1 + λ1I, λ1 > σ2
n

≈

Ã>
2 Ã2 + λ2I, λ2 > λ1

≈

Ã>
3 Ã3 + λ3I, λ3 > λ2

...
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Ã>
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Recursive Sketching: Main result

Theorem ([DS25])

Given any k, we can solve an O(n)× n linear system Ax = b in time:

Õ
(
k3 + n2κk log 1/ε

)
, where κk = σk+1(A)

σmin(A) .

Natural complexity limit for systems with low-rank structure

Even better: κk can be replaced by a smoothed condition number,

κ̄k =
1

n− k
∑
i>k

σi
σmin

< κk

Application: The first algorithm for approximating the nuclear norm

‖A‖1 =
∑
i σi of an n× n matrix in nearly linear time Õ(n2).

[DS25] Dereziński and Sidford. “Approaching Optimality for Solving Dense Linear

Systems with Low-Rank Structure.” arXiv:2507.11724, 2025.
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Conclusions

Linear systems with low-rank structure: a natural model for
ill-conditioned matrices, e.g., in ML/Opt/Stats applications.

Randomized algorithms:

Sketch-and-Project++: New family of randomized linear solvers

that scaled to massive problem sizes.

Recursive Sketching : Attains nearly optimal complexity for

solving dense linear systems with low-rank structure.

Next steps:

Extending to sparse matrices and other access models

Extending to other natural singular/eigenvalue profiles
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Micha l Dereziński, Feynman T Liang, Zhenyu Liao, and Michael W Mahoney.

Precise expressions for random projections: Low-rank approximation and randomized newton.

Advances in Neural Information Processing Systems, 33, 2020.
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Randomized iterative methods for linear systems.

SIAM Journal on Matrix Analysis and Applications, 36(4):1660–1690, 2015.

M. S. Kaczmarz.

Angenaherte auflosung von systemen linearer gleichungen.

Bulletin International de l’Academie Polonaise des Sciences et des Lettres, 35:355–357, 1937.

Siyuan Ma and Mikhail Belkin.

Kernel machines that adapt to gpus for effective large batch training.

Proceedings of Machine Learning and Systems, 1:360–373, 2019.

Alessandro Rudi, Luigi Carratino, and Lorenzo Rosasco.

Falkon: An optimal large scale kernel method.

Advances in neural information processing systems, 30, 2017.

Pratik Rathore, Zachary Frangella, Jiaming Yang, Micha l Dereziński, and Madeleine Udell.
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Pseudocode for Kaczmarz++ back to slide

1: Input: A ∈ Rm×n, b ∈ Rm, B, k, x0, tmax, η, ρ, λ
2: D→ diag(random ± 1/

√
m)

3: A← HDA and b← HDb . Randomized Hadamard
4: m0 ← 0;
5: Sample B = {S1, ..., SB} ⊆

(
[m]
k

)
. Random blocks

6: for t = 0, 1, . . . , (tmax − 1) do
7: Draw a random subset S from B . Fast sketching
8: rt ← ASxt − bS
9: wt ≈ argminw

{
‖ASw − rt‖2 + λ‖w‖2

}
. Fast projection

10: mt+1 ← 1−ρ
1+ρ (mt −wt)

11: xt+1 ← xt −wt + ηmt . Momentum acceleration
12: end for
13: return x̃ = xtmax

;

The code is available at https://github.com/EdwinYang7/kaczmarz-plusplus
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