
Randomized Algorithms for Solving
Linear Systems with Low-Rank Structure

Micha l Dereziński
Computer Science and Engineering, University of Michigan

Based on joint works with Zachary Frangella, Daniel LeJeune, Christopher
Musco, Deanna Needell, Pratik Rathore, Elizaveta Rebrova, Aaron Sidford,

Madeleine Udell, and Jiaming Yang

ISL Colloquium, Stanford University

October 2, 2025

1 / 48



Outline

1 Introduction

2 Low-Rank Structure

3 Randomized Algorithms

Sketching

Sketch-and-Project

Recursive Sketching

4 Conclusions

2 / 48



Example. Solve this system of linear equations:

3x+ 2y + z = 39

2x+ 3y + z = 34

x+ 2y + 3z = 26

Solution: Method of elimination (a.k.a. Gaussian elimination)

First appeared in:

The Nine Chapters on the Mathematical Art,

China, 2nd century

Later formalized by:

Newton, and then Gauss, among others.

Image by Gisling, CC BY 3.0, url.

3 / 48

https://commons.wikimedia.org/w/index.php?curid=10459057


Example. Solve this system of linear equations:

3x+ 2y + z = 39

2x+ 3y + z = 34

x+ 2y + 3z = 26

Solution: Method of elimination (a.k.a. Gaussian elimination)

First appeared in:

The Nine Chapters on the Mathematical Art,

China, 2nd century

Later formalized by:

Newton, and then Gauss, among others.

Image by Gisling, CC BY 3.0, url.

3 / 48

https://commons.wikimedia.org/w/index.php?curid=10459057


Solving linear systems in modern applications

Statistical inference

yi = f∗(xi) + ξi, f∗ ∈ F , (xi, yi) ∼ D.

Nonlinear optimization

Minimize f(x) =

n∑
i=1

log(1 + e−yia
>
i xi)

Partial differential equations

∂u

∂t
= Du∇2u− uv2 + F (1− u)

4 / 48



What is the cost of solving an m× n linear system?

Answer: It depends...

... on the sparsity of the input matrix,

... on its singular value decay profile,

... on whether it has domain-specific structural properties

(e.g., Laplacian, Hankel, Toeplitz, circulant matrices, etc.),

... on whether we need exact, or high/machine precision, or

medium/low precision,

... on whether we can tolerate a small chance of failure.

5 / 48



Two perspectives on solving linear systems

Task: Given A ∈ Rm×n and b ∈ Rn, solve a linear system Ax = b.
For simplicity, assume that the system is consistent and m = O(n).

m

n

a>
i

A

×

x

=

b

bi

Direct methods

Method of elimination

QR, LU, SVD, ...

O(n3) time︸ ︷︷ ︸
for “ill-conditioned systems”

Iterative methods

Conjugate gradient (CG)

MINRES, GMRES, LSQR, ...

O(n2) time × T iterations︸ ︷︷ ︸
for “well-conditioned systems”

Can we unify the two perspectives?
6 / 48



Key ingredient: Randomization

Randomization

Using randomized algorithms to solve deterministic problems.

Early successes in NLA [AMT10]

“beats LAPACK’s direct dense least-squares

solver ...on essentially any dense tall matrix.”

Moving towards “RandLAPACK”

Murray et al. “Randomized Numerical Linear Algebra: A Perspective on

the Field with an Eye to Software,” arXiv:2302.11474, 2023.

[AMT10] Avron, Maymounkov, and Toledo. “Blendenpik: Supercharging LAPACK’s

least-squares solver”, SIAM Journal on Scientific Computing 32.3: 1217-1236, 2010.
7 / 48



This talk: Randomization for general linear systems

Low-rank structure in ill-conditioned systems

In “typical” systems, a low-rank component causes ill-conditioning.

Randomized algorithms for low-rank structure

Randomized sketching-based methods can go beyond traditional

(Krylov-based) methods for solving low-rank structured systems.

Case study: Solving a dense 108 × 108 linear system

Scaling full Kernel Ridge Regression to massive datasets.

Unified perspective on the complexity of solving linear systems:

Õ
(

k3︸︷︷︸
low-rank

+ n2︸︷︷︸
well-conditioned

)
8 / 48



Outline

1 Introduction

2 Low-Rank Structure

3 Randomized Algorithms

Sketching

Sketch-and-Project

Recursive Sketching

4 Conclusions

9 / 48



Convergence of iterative methods

Task: Given A ∈ RO(n)×n and b ∈ Rn, solve a linear system Ax = b

Iterative methods

Conjugate gradient (CG)

MINRES, GMRES, LSQR, ...

Cost of v→ Av︸ ︷︷ ︸
O(n2) operations

× T iterations

How does the number of iterations T depend on A?

Näıve answer: T scales with the condition number, κ = σmax(A)
σmin(A) .

⇒ “Iterative methods perform poorly for ill-conditioned systems.”

10 / 48



Convergence of iterative methods

Task: Given A ∈ RO(n)×n and b ∈ Rn, solve a linear system Ax = b

Iterative methods

Conjugate gradient (CG)

MINRES, GMRES, LSQR, ...

Cost of v→ Av︸ ︷︷ ︸
O(n2) operations

× T iterations

How does the number of iterations T depend on A?

Näıve answer: T scales with the condition number, κ = σmax(A)
σmin(A) .

⇒ “Iterative methods perform poorly for ill-conditioned systems.”

10 / 48



Typical ill-conditioned system

What does the spectrum of a “typical” ill-conditioned matrix look like?

Singular values
10-15

10-10

10-5

100

Ill-conditioned matrix

Random perturbation: Ã = A + G, ‖G‖ ≤ 10−5‖A‖

11 / 48



Typical ill-conditioned system

What does the spectrum of a “typical” ill-conditioned matrix look like?

Singular values
10-15

10-10

10-5

100

Ill-conditioned matrix

Random perturbation

Random perturbation: Ã = A + G, ‖G‖ ≤ 10−5‖A‖

11 / 48



Model: Systems with low-rank structure

Low-rank structure: Implicitly partition the spectrum of A

1 Ill-conditioned top-k: favors direct methods

2 Well-conditioned tail: favors iterative methods

σ1

σk+1

σmin

ill-conditioned well-conditioned (noise)

κk

κ

Systems with low-rank structure are ubiquitous across many areas!

“Signal + noise” data, e.g., smoothed analysis, stochastic rounding, ...

Deliberate regularization in ML/Stats/Opt, e.g., A = B + λI

Key subroutine in matrix norm and eigenvalue estimation methods

12 / 48



Back to convergence of iterative methods

Task: Given A ∈ RO(n)×n and b ∈ Rn, solve a linear system Ax = b

Iterative methods

Conjugate gradient (CG)

MINRES, GMRES, LSQR, ...

Cost of v→ Av︸ ︷︷ ︸
O(n2) operations

× T iterations

How do they perform on systems with low-rank structure?

Answer: Convergence theory of Krylov Subspace Methods

13 / 48



Back to convergence of iterative methods

Task: Given A ∈ RO(n)×n and b ∈ Rn, solve a linear system Ax = b

Iterative methods

Conjugate gradient (CG)

MINRES, GMRES, LSQR, ...

Cost of v→ Av︸ ︷︷ ︸
O(n2) operations

× T iterations

How do they perform on systems with low-rank structure?

Answer: Convergence theory of Krylov Subspace Methods

13 / 48



Krylov subspaces and polynomial approximation

Definition: Given square matrix A and vector b, the order-k Krylov
subspace is defined as:

Kk(A,b) = span
{
b, Ab, A2b, ..., Ak−1b

}
.

Property: Any vector v ∈ Kk(A,b) can be expressed as v = p(A)b,
where p(x) = c0 + c1x...+ ck−1x

k−1 is a polynomial of degree k − 1.

Recipe for linear solver: Gradually build a Krylov subspace and
maintain “best” approximation x̂ = p(A)b for A−1b in that subspace.

Dominant cost: Matrix-vector product to compute the next direction,

Akb = A · (Ak−1b) in O(n2) arithmetic operations.

14 / 48



Krylov subspaces and eigenvalue clusters

λ1

λ2

λ3

λmin

k
cl
u
st
er
s

n eigenvalues of real symmetric A

∃ p of degree k−1, s.t. p(λi) ≈ λ−1
i ∀i

⇒ p(A)b︸ ︷︷ ︸
∈Kk(A,b)

≈ A−1b

Conclusion: If the eigenvalues of A form k clusters, then Kk(A,b)
contains an accurate approximation to x∗ = A−1b.

15 / 48



Krylov subspaces and eigenvalue clusters

λ1

λ2

λ3

λmin

k
cl
u
st
er
s

n eigenvalues of real symmetric A

∃ p of degree k−1, s.t. p(λi) ≈ λ−1
i ∀i

⇒ p(A)b︸ ︷︷ ︸
∈Kk(A,b)

≈ A−1b

Conclusion: If the eigenvalues of A form k clusters, then Kk(A,b)
contains an accurate approximation to x∗ = A−1b.

15 / 48



Krylov subspaces and eigenvalue clusters

λ1

λ2

λ3

λmin

k
cl
u
st
er
s

n eigenvalues of real symmetric A

∃ p of degree k−1, s.t. p(λi) ≈ λ−1
i ∀i

⇒ p(A)b︸ ︷︷ ︸
∈Kk(A,b)

≈ A−1b

Conclusion: If the eigenvalues of A form k clusters, then Kk(A,b)
contains an accurate approximation to x∗ = A−1b.

15 / 48



Krylov subspaces and eigenvalue clusters

λ1

λ2

λ3

λmin

k
cl
u
st
er
s

n eigenvalues of real symmetric A

∃ p of degree k−1, s.t. p(λi) ≈ λ−1
i ∀i

⇒ p(A)b︸ ︷︷ ︸
∈Kk(A,b)

≈ A−1b

Conclusion: If the eigenvalues of A form k clusters, then Kk(A,b)
contains an accurate approximation to x∗ = A−1b.

15 / 48



Krylov subspace methods: Convergence

Theorem ([AL86])

If A has singular values σ1 ≥ σ2 ≥ ... ≥ σmin with κk = σk+1

σmin
, there is

a Krylov subspace method (e.g., LSQR) that finds an ε-approximate

solution ‖Ax̂− b‖ ≤ ε‖b‖ in

T = O(k + κk log 1/ε) iterations.

σ1

σk+1

σmin

ill-conditioned well-conditioned (noise)

κk

κ

(We use singular values instead of eigenvalues to capture the non-symmetric case.)

[AL86] Axelsson and Lindskog. “On the rate of convergence of the preconditioned conjugate gradient

method,” Numerische Mathematik. 48:499-523, 1986.
16 / 48



Krylov subspace methods and low-rank structure

Conclusion: To solve an O(n)× n linear system with at most k large
isolated singular values and a cluster of width κk, we need:

Cost of v→ Av︸ ︷︷ ︸
O(n2) operations

× O(k + κk log 1/ε) = O(n2k + n2κk log 1/ε)

Question: Can we avoid the n2k bottleneck in Krylov methods?

Yes! and No!

With direct access to A,

randomized methods do better.

With only v→ Av access to A,

Krylov methods are optimal.

Our result: Õ(k3 + n2κk log 1/ε)

17 / 48



Krylov subspace methods and low-rank structure

Conclusion: To solve an O(n)× n linear system with at most k large
isolated singular values and a cluster of width κk, we need:

Cost of v→ Av︸ ︷︷ ︸
O(n2) operations

× O(k + κk log 1/ε) = O(n2k + n2κk log 1/ε)

Question: Can we avoid the n2k bottleneck in Krylov methods?

Yes! and No!

With direct access to A,

randomized methods do better.

With only v→ Av access to A,

Krylov methods are optimal.

Our result: Õ(k3 + n2κk log 1/ε)

17 / 48



Krylov subspace methods and low-rank structure

Conclusion: To solve an O(n)× n linear system with at most k large
isolated singular values and a cluster of width κk, we need:

Cost of v→ Av︸ ︷︷ ︸
O(n2) operations

× O(k + κk log 1/ε) = O(n2k + n2κk log 1/ε)

Question: Can we avoid the n2k bottleneck in Krylov methods?

Yes! and No!

With direct access to A,

randomized methods do better.

With only v→ Av access to A,

Krylov methods are optimal.

Our result: Õ(k3 + n2κk log 1/ε)

17 / 48



Krylov subspace methods and low-rank structure

Conclusion: To solve an O(n)× n linear system with at most k large
isolated singular values and a cluster of width κk, we need:

Cost of v→ Av︸ ︷︷ ︸
O(n2) operations

× O(k + κk log 1/ε) = O(n2k + n2κk log 1/ε)

Question: Can we avoid the n2k bottleneck in Krylov methods?

Yes! and No!

With direct access to A,

randomized methods do better.

With only v→ Av access to A,

Krylov methods are optimal.

Our result: Õ(k3 + n2κk log 1/ε)

17 / 48



Krylov subspace methods and low-rank structure

Conclusion: To solve an O(n)× n linear system with at most k large
isolated singular values and a cluster of width κk, we need:

Cost of v→ Av︸ ︷︷ ︸
O(n2) operations

× O(k + κk log 1/ε) = O(n2k + n2κk log 1/ε)

Question: Can we avoid the n2k bottleneck in Krylov methods?

Yes! and No!

With direct access to A,

randomized methods do better.

With only v→ Av access to A,

Krylov methods are optimal.

Our result: Õ(k3 + n2κk log 1/ε)

17 / 48



Outline

1 Introduction

2 Low-Rank Structure

3 Randomized Algorithms

Sketching

Sketch-and-Project

Recursive Sketching

4 Conclusions

18 / 48



Outline

1 Introduction

2 Low-Rank Structure

3 Randomized Algorithms

Sketching

Sketch-and-Project

Recursive Sketching

4 Conclusions

19 / 48



Main tool: Randomized sketching

Sketching operator: Random dimension reducing linear map (matrix S)

E.g.: Gaussian/sparse matrices, randomized Hadamard transforms, ...

Input A

F (A)

Crucially: Can be much faster than dense matrix multiplication

20 / 48



Main tool: Randomized sketching

Sketching operator: Random dimension reducing linear map (matrix S)

E.g.: Gaussian/sparse matrices, randomized Hadamard transforms, ...

Sketching matrix S × Input A

F (A)

→ Sketch Ã

F (Ã)≈

Crucially: Can be much faster than dense matrix multiplication

20 / 48



Main tool: Randomized sketching

Sketching operator: Random dimension reducing linear map (matrix S)

E.g.: Gaussian/sparse matrices, randomized Hadamard transforms, ...

×

F (A)

→ Sketch Ã

F (Ã)≈
Example: row sampling

Crucially: Can be much faster than dense matrix multiplication

20 / 48



Example: Least squares

Over-determined linear system: Many more equations than unknowns,
also known as least squares.

Compute x∗ = argmin
x
‖Ax− b‖22

for A ∈ Rn×d, b ∈ Rn

A

n

d

b

Sketching leverages this redundancy:

Compute x̃ = argmin
x
‖Ãx− b̃‖22

for Ã = SA︸ ︷︷ ︸
sketch of A

, b̃ = Sb︸ ︷︷ ︸
sketch of b

Ã

s

d

b̃

21 / 48



Example: Least squares

Over-determined linear system: Many more equations than unknowns,
also known as least squares.

Compute x∗ = argmin
x
‖Ax− b‖22

for A ∈ Rn×d, b ∈ Rn

A

n

d

b

Sketching leverages this redundancy:

Compute x̃ = argmin
x
‖Ãx− b̃‖22

for Ã = SA︸ ︷︷ ︸
sketch of A

, b̃ = Sb︸ ︷︷ ︸
sketch of b

Ã

s

d

b̃

21 / 48



Why does sketching work for least squares?

Fact. In Õ(nd) time, we can compute

Ã ∈ RO(d)×d such that for i = 1, ..., d:

σ2
i (Ã) = (1± 1

2 )σ2
i (A)

Even better. This preserves the whole
covariance structure of the matrix:

Ã>Ã = (1± 1
2 )A>A.

Input A

n

d

O(d) Ã = SA

Fast least squares solver: Runs in Õ(d3 + nd) time

1 Rewrite least squares via normal equations, A>Ax = A>b

2 Precondition your favorite iterative method with Ã>Ã

22 / 48



Why does sketching work for least squares?

Fact. In Õ(nd) time, we can compute

Ã ∈ RO(d)×d such that for i = 1, ..., d:

σ2
i (Ã) = (1± 1

2 )σ2
i (A)

Even better. This preserves the whole
covariance structure of the matrix:

Ã>Ã = (1± 1
2 )A>A.

Input A

n

d

O(d) Ã = SA

Fast least squares solver: Runs in Õ(d3 + nd) time

1 Rewrite least squares via normal equations, A>Ax = A>b

2 Precondition your favorite iterative method with Ã>Ã

22 / 48



Why does sketching work for least squares?

Fact. In Õ(nd) time, we can compute

Ã ∈ RO(d)×d such that for i = 1, ..., d:

σ2
i (Ã) = (1± 1

2 )σ2
i (A)

Even better. This preserves the whole
covariance structure of the matrix:

Ã>Ã = (1± 1
2 )A>A.

Input A

n

d

O(d) Ã = SA

Fast least squares solver: Runs in Õ(d3 + nd) time

1 Rewrite least squares via normal equations, A>Ax = A>b

2 Precondition your favorite iterative method with Ã>Ã

22 / 48



Fast least squares solver

Compute preconditioner: (Ã>Ã)−1 ≈ (A>A)−1 Cost: O(d3)

A>Ax = A>b

κ(A>A) is large

A>A(Ã>Ã)−1z = b

κ(A>A(Ã>Ã)−1) is small

23 / 48



Does this work for general linear systems?

Fact. In time Õ(n2), we can compute

Ã ∈ RO(k)×n such that for i = 1, ..., k:

σ2
i (Ã) = (1± 1

2 )σ2
i (A)± 1

k

∑
j>k

σ2
j (A)︸ ︷︷ ︸

tail noise

n

O(k)A Ã = SA

Bottom line: The sketch picks up noise from the spectral tail
⇒ weak preconditioner (both in theory and in practice)

Can we still produce a fast solver via sketching?

Yes! Just use multiple sketches:

1 Sketch-and-Project

2 Recursive Sketching

24 / 48



Does this work for general linear systems?

Fact. In time Õ(n2), we can compute

Ã ∈ RO(k)×n such that for i = 1, ..., k:

σ2
i (Ã) = (1± 1

2 )σ2
i (A)± 1

k

∑
j>k

σ2
j (A)︸ ︷︷ ︸

tail noise

n

O(k)A Ã = SA

Bottom line: The sketch picks up noise from the spectral tail
⇒ weak preconditioner (both in theory and in practice)

Can we still produce a fast solver via sketching?

Yes! Just use multiple sketches:

1 Sketch-and-Project

2 Recursive Sketching

24 / 48



Does this work for general linear systems?

Fact. In time Õ(n2), we can compute

Ã ∈ RO(k)×n such that for i = 1, ..., k:

σ2
i (Ã) = (1± 1

2 )σ2
i (A)± 1

k

∑
j>k

σ2
j (A)︸ ︷︷ ︸

tail noise

n

O(k)A Ã = SA

Bottom line: The sketch picks up noise from the spectral tail
⇒ weak preconditioner (both in theory and in practice)

Can we still produce a fast solver via sketching?

Yes! Just use multiple sketches:

1 Sketch-and-Project

2 Recursive Sketching

24 / 48



Does this work for general linear systems?

Fact. In time Õ(n2), we can compute

Ã ∈ RO(k)×n such that for i = 1, ..., k:

σ2
i (Ã) = (1± 1

2 )σ2
i (A)± 1

k

∑
j>k

σ2
j (A)︸ ︷︷ ︸

tail noise

n

O(k)A Ã = SA

Bottom line: The sketch picks up noise from the spectral tail
⇒ weak preconditioner (both in theory and in practice)

Can we still produce a fast solver via sketching?

Yes! Just use multiple sketches:

1 Sketch-and-Project

2 Recursive Sketching

24 / 48



Does this work for general linear systems?

Fact. In time Õ(n2), we can compute

Ã ∈ RO(k)×n such that for i = 1, ..., k:

σ2
i (Ã) = (1± 1

2 )σ2
i (A)± 1

k

∑
j>k

σ2
j (A)︸ ︷︷ ︸

tail noise

n

O(k)A Ã = SA

Bottom line: The sketch picks up noise from the spectral tail
⇒ weak preconditioner (both in theory and in practice)

Can we still produce a fast solver via sketching?

Yes! Just use multiple sketches:

1 Sketch-and-Project

2 Recursive Sketching

24 / 48



Outline

1 Introduction

2 Low-Rank Structure

3 Randomized Algorithms

Sketching

Sketch-and-Project

Recursive Sketching

4 Conclusions

25 / 48



Background: The Kaczmarz algorithm

Idea: Iteratively project onto the solutions of individual equations.

Starting at x0, for t = 0, 1, 2, ...

1 Select index It

2 Project current iterate xt onto

the solutions of It-th equation

Randomized Kaczmarz: Select indices via weighted sampling [SV09]

The first Kaczmarz algorithm with provable convergence rate.

[Kac37] Stefan Kaczmarz, “Angenäherte Auflösung von Systemen linearer

Gleichungen”, Bulletin International de l’Académie Polonaise des Sciences et des

Lettres 35:355–357, 1937.

[SV09] Strohmer and Vershynin, “A randomized Kaczmarz algorithm with exponential

convergence”, Journal of Fourier Analysis and Applications, 14.2:262-278, 2009.
26 / 48



Powerful extension: Sketch-and-Project

Starting at x0 ∈ Rn, for t = 0, 1, 2, ...

1 Sample random O(k)×O(n) matrix St.

2 Project xt onto the solutions of StAx = Stb:

xt+1 = argmin
x
‖xt − x‖2 subject to StAx = Stb.

O(n)

A

×

x

=

b

sketch⇒

O(k)

StA

×
x

=
Stb

[GR15] Gower and Richtárik, “Randomized iterative methods for linear systems”,

SIAM Journal on Matrix Analysis and Applications, 36.4:1660-1690, 2015.
27 / 48



Key insight: Sharp analysis of Sketch-and-Project

Theorem ([DR24])

If St is a Gaussian matrix, then Sketch-and-Project satisfies:

E ‖xt − x∗‖2 ≤
(

1− σ2
min(A)

1
k

∑
i>k σ

2
i (A)

)t
‖x0 − x∗‖2.

We again observe the tail noise from sketching.

Key insight:

Each sketch-and-project step runs on a -fraction of the data

This runtime gain should the tail noise ≤ σ2
k+1

Hang on, Gaussian sketching is still too expensive!

[DR24] Dereziński and Rebrova, “Sharp Analysis of Sketch-and-Project Methods via a

Connection to Randomized Singular Value Decomposition”, SIAM Journal on

Mathematics of Data Science, 6.1:127-153, 2024.
28 / 48



Key insight: Sharp analysis of Sketch-and-Project

Theorem ([DR24])

If St is a Gaussian matrix, then Sketch-and-Project satisfies:

E ‖xt − x∗‖2 ≤
(

1− σ2
min(A)

1
k

∑
i>k σ

2
i (A)

)t
‖x0 − x∗‖2.

We again observe the tail noise from sketching.

Key insight:

Each sketch-and-project step runs on a -fraction of the data

This runtime gain should the tail noise ≤ σ2
k+1

Hang on, Gaussian sketching is still too expensive!

[DR24] Dereziński and Rebrova, “Sharp Analysis of Sketch-and-Project Methods via a

Connection to Randomized Singular Value Decomposition”, SIAM Journal on

Mathematics of Data Science, 6.1:127-153, 2024.
28 / 48



Key insight: Sharp analysis of Sketch-and-Project

Theorem ([DR24])

If St is a Gaussian matrix, then Sketch-and-Project satisfies:

E ‖xt − x∗‖2 ≤
(

1− σ2
min(A)

1
k

∑
i>k σ

2
i (A)

)t
‖x0 − x∗‖2.

We again observe the tail noise from sketching.

Key insight:

Each sketch-and-project step runs on a k
n -fraction of the data

This runtime gain should cancel out the tail noise ≤ n
kσ

2
k+1

Hang on, Gaussian sketching is still too expensive!

[DR24] Dereziński and Rebrova, “Sharp Analysis of Sketch-and-Project Methods via a

Connection to Randomized Singular Value Decomposition”, SIAM Journal on

Mathematics of Data Science, 6.1:127-153, 2024.
28 / 48



Key insight: Sharp analysis of Sketch-and-Project

Theorem ([DR24])

If St is a Gaussian matrix, then Sketch-and-Project satisfies:

E ‖xt − x∗‖2 ≤
(

1− σ2
min(A)

1
k

∑
i>k σ

2
i (A)

)t
‖x0 − x∗‖2.

We again observe the tail noise from sketching.

Key insight:

Each sketch-and-project step runs on a ��
k
n -fraction of the data

This runtime gain should cancel out the tail noise ≤ ��
n
kσ

2
k+1

Hang on, Gaussian sketching is still too expensive!

[DR24] Dereziński and Rebrova, “Sharp Analysis of Sketch-and-Project Methods via a

Connection to Randomized Singular Value Decomposition”, SIAM Journal on

Mathematics of Data Science, 6.1:127-153, 2024.
28 / 48



Key insight: Sharp analysis of Sketch-and-Project

Theorem ([DR24])

If St is a Gaussian matrix, then Sketch-and-Project satisfies:

E ‖xt − x∗‖2 ≤
(

1− σ2
min(A)

1
k

∑
i>k σ

2
i (A)

)t
‖x0 − x∗‖2.

We again observe the tail noise from sketching.

Key insight:

Each sketch-and-project step runs on a ��
k
n -fraction of the data

This runtime gain should cancel out the tail noise ≤ ��
n
kσ

2
k+1

Hang on, Gaussian sketching is still too expensive!

[DR24] Dereziński and Rebrova, “Sharp Analysis of Sketch-and-Project Methods via a

Connection to Randomized Singular Value Decomposition”, SIAM Journal on

Mathematics of Data Science, 6.1:127-153, 2024.
28 / 48



Making this efficient

Advances in sketch-and-project for systems with low-rank structure:

1 Sketching: Gaussian guarantees for fast sketches

Randomized Hadamard transform [DY24]

Leverage score sampling [RFY+25]

2 Projecting: Fast computation of the projection step

Fast inner solver using PCG [DY24]

Amortizing projection cost across iterations [DNRY25]

3 Acceleration: Improved convergence using momentum

Convergence analysis with Nesterov’s momentum [DLNR24]

Adaptive tuning of momentum parameters [DNRY25]

29 / 48



Making this efficient: Sketch-and-Project++

Theorem ([DNRY25])

Given any k, we can solve an O(n)× n linear system Ax = b in time:

Õ
(
nk2 + n2κk log 1/ε

)
, where κk = σk+1(A)

σmin(A) .

Overcomes the n2k bottleneck of Krylov subspace methods.

Sketch-and-Project++: New family of randomized linear solvers

Implementations: Kaczmarz++/CD++ [DNRY25], ASkotch [RFY+25]

(Still does not attain the promised k3 + n2 guarantee...)

[DNRY25] Dereziński, Needell, Rebrova, and Yang. “Randomized Kaczmarz methods

with beyond-Krylov convergence.” arXiv:2501.11673, 2025.

[RFY+25] Rathore, Frangella, Yang, Dereziński, and Udell. “Have ASkotch: Fast

cocktails for large-scale kernel ridge regression.” arXiv:2407.10070, 2025.
30 / 48



Case study: Large-scale Kernel Ridge Regression

Task: Fitting non-linear functions f : X → R:

min
f∈H

1

n

n∑
i=1

(
f(φi)− yi

)2

+
λ

2
‖f‖2H

When H is a reproducing kernel Hilbert space defined by
k : X × X → R, this reduces to solving an n× n linear system:

(K + nλI)︸ ︷︷ ︸
low-rank structure

x = y, where K =
[
k(φi, φj)

]
i,j
.

What if we are given 100 million data points (φi, yi)?

31 / 48



Case study: Large-scale Kernel Ridge Regression

Task: Fitting non-linear functions f : X → R:

min
f∈H

1

n

n∑
i=1

(
f(φi)− yi

)2

+
λ

2
‖f‖2H

When H is a reproducing kernel Hilbert space defined by
k : X × X → R, this reduces to solving an n× n linear system:

(K + nλI)︸ ︷︷ ︸
low-rank structure

x = y, where K =
[
k(φi, φj)

]
i,j
.

What if we are given 100 million data points (φi, yi)?

31 / 48



Solving a dense 108 × 108 linear system

Solving KRR for New York City taxi transportation data (n = 108)

1 Storage: 40, 000TB (terabytes) to store K in single precision

2 Compute: State-of-the-art solvers take > 24h for single iteration

Popular workarounds:

Compress the matrix K and solve a smaller problem

SGD-type solvers with heuristically chosen hyper-parameters

We attack the original problem with a provably convergent solver!

32 / 48



Solving a dense 108 × 108 linear system

Solving KRR for New York City taxi transportation data (n = 108)

1 Storage: 40, 000TB (terabytes) to store K in single precision

2 Compute: State-of-the-art solvers take > 24h for single iteration

Popular workarounds:

Compress the matrix K and solve a smaller problem

SGD-type solvers with heuristically chosen hyper-parameters

We attack the original problem with a provably convergent solver!

32 / 48



Solving a dense 108 × 108 linear system

Solving KRR for New York City taxi transportation data (n = 108)

1 Storage: 40, 000TB (terabytes) to store K in single precision

2 Compute: State-of-the-art solvers take > 24h for single iteration

Popular workarounds:

Compress the matrix K and solve a smaller problem

SGD-type solvers with heuristically chosen hyper-parameters

We attack the original problem with a provably convergent solver!

32 / 48



Solving a dense 108 × 108 linear system

Method: ASkotch (“Sketch-and-Project++” developed for GPUs)

Baselines: EigenPro 2.0 [MB19] and Falkon [RCR17]

Test RMSE: Root mean squared error on the test set.

[RFY+25] Rathore, Frangella, Yang, Dereziński, and Udell. “Have ASkotch: Fast

cocktails for large-scale kernel ridge regression.” arXiv:2407.10070, 2025.
33 / 48



Case study: Large-scale Kernel Ridge Regression

Method: ASkotch (“Sketch-and-Project++” developed for GPUs)

Baselines: EigenPro [MB19], Falkon [RCR17], and Nyström PCG [FTU23]

Experiment: 23 tasks, including particle physics (4 datasets) and
computational chemistry (9 datasets), with dimensions at least 105.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of time budget

0.0

0.2

0.4

0.6

0.8

F
ra

ct
io

n
of

p
ro

b
le

m
s

so
lv

ed

Classification

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of time budget

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

p
ro

b
le

m
s

so
lv

ed

Regression

ASkotch

EigenPro 2.0

EigenPro 3.0

PCG

Falkon

The code is available at https://github.com/pratikrathore8/fast_krr.
34 / 48

https://github.com/pratikrathore8/fast_krr


Outline

1 Introduction

2 Low-Rank Structure

3 Randomized Algorithms

Sketching

Sketch-and-Project

Recursive Sketching

4 Conclusions

35 / 48



Roadmap

Complexity of solving linear systems with low-rank structure:

Krylov methods: Õ
(
n2k + n2κk

)

Sketch-and-Project++: Õ
(
nk2 + n2κk

)

Recursive Sketching: Õ
(
k3 + n2κk

)

σ1

σk+1

σmin

ill-conditioned well-conditioned (noise)

κk

κ

36 / 48



Roadmap

Complexity of solving linear systems with low-rank structure:

Krylov methods: Õ
(
n2k + n2κk

)

Sketch-and-Project++: Õ
(
nk2 + n2κk

)

Recursive Sketching: Õ
(
k3 + n2κk

)

σ1

σk+1

σmin

ill-conditioned well-conditioned (noise)

κk

κ

36 / 48



Roadmap

Complexity of solving linear systems with low-rank structure:

Krylov methods: Õ
(
n2k + n2κk

)

Sketch-and-Project++: Õ
(
nk2 + n2κk

)

Recursive Sketching: Õ
(
k3 + n2κk

)
σ1

σk+1

σmin

ill-conditioned well-conditioned (noise)

κk

κ

36 / 48



Key idea: Recursive Sketching

Ã1S1

Ã2S2

Ã3S3

...
...

× →A

1 Precondition A using large sketch Ã1 = S1A,

2 Precondition Ã1 using smaller sketch Ã2 = S2A,

3 Precondition Ã2 using even smaller sketch Ã3 = S3A, etc.

Inspired by domain-specific preconditioning techniques:

Recursive solvers for graph Laplacians in theoretical computer science

Multigrid solvers for differential equations in scientific computing

[DS25] Dereziński and Sidford. “Approaching Optimality for Solving Dense Linear

Systems with Low-Rank Structure.” arXiv:2507.11724, 2025.
37 / 48



Key idea: Recursive Sketching

Ã1S1

Ã2S2

Ã3S3

...
...

× →A

1 Precondition A using large sketch Ã1 = S1A,

2 Precondition Ã1 using smaller sketch Ã2 = S2A,

3 Precondition Ã2 using even smaller sketch Ã3 = S3A, etc.

Inspired by domain-specific preconditioning techniques:

Recursive solvers for graph Laplacians in theoretical computer science

Multigrid solvers for differential equations in scientific computing

[DS25] Dereziński and Sidford. “Approaching Optimality for Solving Dense Linear

Systems with Low-Rank Structure.” arXiv:2507.11724, 2025.
37 / 48



Key idea: Recursive Sketching

Ã1S1

Ã2S2

Ã3S3

...
...

× →A

1 Precondition A using large sketch Ã1 = S1A,

2 Precondition Ã1 using smaller sketch Ã2 = S2A,

3 Precondition Ã2 using even smaller sketch Ã3 = S3A, etc.

Inspired by domain-specific preconditioning techniques:

Recursive solvers for graph Laplacians in theoretical computer science

Multigrid solvers for differential equations in scientific computing

[DS25] Dereziński and Sidford. “Approaching Optimality for Solving Dense Linear

Systems with Low-Rank Structure.” arXiv:2507.11724, 2025.
37 / 48



Key idea: Recursive Sketching

Ã1S1

Ã2S2

Ã3S3

...
...

× →A

1 Precondition A using large sketch Ã1 = S1A,

2 Precondition Ã1 using smaller sketch Ã2 = S2A,

3 Precondition Ã2 using even smaller sketch Ã3 = S3A, etc.

Inspired by domain-specific preconditioning techniques:

Recursive solvers for graph Laplacians in theoretical computer science

Multigrid solvers for differential equations in scientific computing

[DS25] Dereziński and Sidford. “Approaching Optimality for Solving Dense Linear

Systems with Low-Rank Structure.” arXiv:2507.11724, 2025.
37 / 48



Reminder: Single-sketch preconditioner fails

Fact. In time Õ(n2), we can compute

Ã ∈ RO(k)×n such that for i = 1, ..., k:

σ2
i (Ã) = (1± 1

2 )σ2
i (A)± 1

k

∑
j>k

σ2
j (A)︸ ︷︷ ︸

tail noise

n

O(k)A Ã = SA

Bottom line: The sketch picks up noise from the spectral tail

⇒ Ã>Ã 6≈ A>A

but Ã>Ã + λI ≈ A>A + λI︸ ︷︷ ︸
more low-rank

, for λ =
1

k

∑
j>k

σ2
j (A).

Idea: Impose stricter low-rank structure on the system.

Wait! Are we allowed to do that?

38 / 48



Reminder: Single-sketch preconditioner fails

Fact. In time Õ(n2), we can compute

Ã ∈ RO(k)×n such that for i = 1, ..., k:

σ2
i (Ã) = (1± 1

2 )σ2
i (A)± 1

k

∑
j>k

σ2
j (A)︸ ︷︷ ︸

tail noise

n

O(k)A Ã = SA

Bottom line: The sketch picks up noise from the spectral tail

⇒ Ã>Ã 6≈ A>A

but Ã>Ã + λI ≈ A>A + λI︸ ︷︷ ︸
more low-rank

, for λ =
1

k

∑
j>k

σ2
j (A).

Idea: Impose stricter low-rank structure on the system.

Wait! Are we allowed to do that?

38 / 48



Reminder: Single-sketch preconditioner fails

Fact. In time Õ(n2), we can compute

Ã ∈ RO(k)×n such that for i = 1, ..., k:

σ2
i (Ã) = (1± 1

2 )σ2
i (A)± 1

k

∑
j>k

σ2
j (A)︸ ︷︷ ︸

tail noise

n

O(k)A Ã = SA

Bottom line: The sketch picks up noise from the spectral tail

⇒ Ã>Ã 6≈ A>A

but Ã>Ã + λI ≈ A>A + λI︸ ︷︷ ︸
more low-rank

, for λ =
1

k

∑
j>k

σ2
j (A).

Idea: Impose stricter low-rank structure on the system.

Wait! Are we allowed to do that?

38 / 48



Strategy: Gradually impose stricter low-rank structure

Ã1S1

Ã2S2

Ã3S3

...
...

× →A

A>A ≈ A>A + σ2
nI

≈
Ã>

1 Ã1 + λ1I, λ1 > σ2
n

≈

Ã>
2 Ã2 + λ2I, λ2 > λ1

≈

Ã>
3 Ã3 + λ3I, λ3 > λ2

...

39 / 48



Strategy: Gradually impose stricter low-rank structure

Ã1S1

Ã2S2

Ã3S3

...
...

× →A

A>A ≈ A>A + σ2
nI

≈
Ã>

1 Ã1 + λ1I, λ1 > σ2
n

≈

Ã>
2 Ã2 + λ2I, λ2 > λ1

≈

Ã>
3 Ã3 + λ3I, λ3 > λ2

...

39 / 48



Strategy: Gradually impose stricter low-rank structure

Ã1S1

Ã2S2

Ã3S3

...
...

× →A

A>A ≈ A>A + σ2
nI

≈
Ã>

1 Ã1 + λ1I, λ1 > σ2
n

≈

Ã>
2 Ã2 + λ2I, λ2 > λ1

≈

Ã>
3 Ã3 + λ3I, λ3 > λ2

...

39 / 48



Recursive Sketching: Main result

Theorem ([DS25])

Given any k, we can solve an O(n)× n linear system Ax = b in time:

Õ
(
k3 + n2κk log 1/ε

)
, where κk = σk+1(A)

σmin(A) .

Natural complexity limit for systems with low-rank structure

Even better: κk can be replaced by a smoothed condition number,

κ̄k =
1

n− k
∑
i>k

σi
σmin

< κk

Application: The first algorithm for approximating the nuclear norm

‖A‖1 =
∑
i σi of an n× n matrix in nearly linear time Õ(n2).

[DS25] Dereziński and Sidford. “Approaching Optimality for Solving Dense Linear

Systems with Low-Rank Structure.” arXiv:2507.11724, 2025.
40 / 48



Outline

1 Introduction

2 Low-Rank Structure

3 Randomized Algorithms

Sketching

Sketch-and-Project

Recursive Sketching

4 Conclusions

41 / 48



Conclusions

Linear systems with low-rank structure: a natural model for
ill-conditioned matrices, e.g., in ML/Opt/Stats applications.

Randomized algorithms:

Sketch-and-Project++: New family of randomized linear solvers

that scaled to massive problem sizes.

Recursive Sketching : Attains nearly optimal complexity for

solving dense linear systems with low-rank structure.

Next steps:

Extending to sparse matrices and other access models

Extending to other natural singular/eigenvalue profiles

42 / 48



References I

Owe Axelsson and Gunhild Lindskog.

On the rate of convergence of the preconditioned conjugate gradient method.

Numerische Mathematik, 48:499–523, 1986.

Haim Avron, Petar Maymounkov, and Sivan Toledo.

Blendenpik: Supercharging lapack’s least-squares solver.

SIAM Journal on Scientific Computing, 32(3):1217–1236, 2010.

Micha l Dereziński, Feynman T Liang, Zhenyu Liao, and Michael W Mahoney.

Precise expressions for random projections: Low-rank approximation and randomized newton.

Advances in Neural Information Processing Systems, 33, 2020.

Micha l Dereziński, Daniel LeJeune, Deanna Needell, and Elizaveta Rebrova.

Fine-grained analysis and faster algorithms for iteratively solving linear systems.

arXiv preprint arXiv:2405.05818, 2024.

Micha l Dereziński, Deanna Needell, Elizaveta Rebrova, and Jiaming Yang.

Randomized kaczmarz methods with beyond-krylov convergence.

arXiv preprint arXiv:2501.11673, 2025.

Micha l Dereziński and Elizaveta Rebrova.

Sharp analysis of sketch-and-project methods via a connection to randomized singular value

decomposition.

SIAM Journal on Mathematics of Data Science, 6(1):127–153, 2024.

Micha l Dereziński and Aaron Sidford.

Approaching optimality for solving dense linear systems with low-rank structure.

arXiv preprint arXiv:2507.11724, 2025.

43 / 48



References II

Micha l Dereziński and Jiaming Yang.

Solving dense linear systems faster than via preconditioning.

In 56th Annual ACM Symposium on Theory of Computing, 2024.

Zachary Frangella, Joel A Tropp, and Madeleine Udell.

Randomized Nyström preconditioning.

SIAM Journal on Matrix Analysis and Applications, 44(2):718–752, 2023.

Robert M Gower and Peter Richtárik.

Randomized iterative methods for linear systems.

SIAM Journal on Matrix Analysis and Applications, 36(4):1660–1690, 2015.

M. S. Kaczmarz.

Angenaherte auflosung von systemen linearer gleichungen.

Bulletin International de l’Academie Polonaise des Sciences et des Lettres, 35:355–357, 1937.

Siyuan Ma and Mikhail Belkin.

Kernel machines that adapt to gpus for effective large batch training.

Proceedings of Machine Learning and Systems, 1:360–373, 2019.

Alessandro Rudi, Luigi Carratino, and Lorenzo Rosasco.

Falkon: An optimal large scale kernel method.

Advances in neural information processing systems, 30, 2017.

Pratik Rathore, Zachary Frangella, Jiaming Yang, Micha l Dereziński, and Madeleine Udell.

Have askotch: A neat solution for large-scale kernel ridge regression.

arXiv preprint arXiv:2407.10070, 2025.

44 / 48



References III

Thomas Strohmer and Roman Vershynin.

A randomized kaczmarz algorithm with exponential convergence.

Journal of Fourier Analysis and Applications, 15(2):262–278, 2009.

45 / 48



Pseudocode for Kaczmarz++ back to slide

1: Input: A ∈ Rm×n, b ∈ Rm, B, k, x0, tmax, η, ρ, λ
2: D→ diag(random ± 1/

√
m)

3: A← HDA and b← HDb . Randomized Hadamard
4: m0 ← 0;
5: Sample B = {S1, ..., SB} ⊆

(
[m]
k

)
. Random blocks

6: for t = 0, 1, . . . , (tmax − 1) do
7: Draw a random subset S from B . Fast sketching
8: rt ← ASxt − bS
9: wt ≈ argminw

{
‖ASw − rt‖2 + λ‖w‖2

}
. Fast projection

10: mt+1 ← 1−ρ
1+ρ (mt −wt)

11: xt+1 ← xt −wt + ηmt . Momentum acceleration
12: end for
13: return x̃ = xtmax

;

The code is available at https://github.com/EdwinYang7/kaczmarz-plusplus
46 / 48

https://github.com/EdwinYang7/kaczmarz-plusplus

	Introduction
	Low-Rank Structure
	Randomized Algorithms
	Sketching
	Sketch-and-Project
	Recursive Sketching

	Conclusions

