Randomized Algorithms for Solving

Linear Systems with Low-Rank Structure

Michat Dereziriski

Computer Science and Engineering, University of Michigan

Based on joint works with Zachary Frangella, Daniel LeJeune, Christopher
Musco, Deanna Needell, Pratik Rathore, Elizaveta Rebrova, Aaron Sidford,
Madeleine Udell, and Jiaming Yang

ISL Colloquium, Stanford University

October 2, 2025

o Introduction

Example. Solve this system of linear equations:

3x+2y+2=239
20+ 3y+2=34
4+ 2y+ 32 =26

https://commons.wikimedia.org/w/index.php?curid=10459057

Example. Solve this system of linear equations:

3x+2y+2=239
20 +3y+2=34
4+ 2y+ 32 =26

Solution: Method of elimination (a.k.a. Gaussian elimination)

center

right
First appeared in:

I
The Nine Chapters on the Mathematical Art,

China, 2nd century medium I

battom Il - |
Later formalized by:

Newton, and then Gauss, among others. shi =L =

Image by Gisling, CC BY 3.0, url.

https://commons.wikimedia.org/w/index.php?curid=10459057

Solving linear systems in modern applications

Statistical inference

yi = f(xi) + & ffeF, (xi,y)~D.

Nonlinear optimization

Minimize f(x) = Z log(1 + e*yiajxl')

=1

Partial differential equations

0
a—? = D,V?u —uwv® + F(1 — u)

What is the cost of solving an m x n linear system?

Answer: It depends...

@ ... on the sparsity of the input matrix,
@ ... on its singular value decay profile,

@ ... on whether it has domain-specific structural properties

(e.g., Laplacian, Hankel, Toeplitz, circulant matrices, etc.),

@ ... on whether we need exact, or high/machine precision, or

medium/low precision,

@ ... on whether we can tolerate a small chance of failure.

Two perspectives on solving linear systems

Task: Given A € R™*™ and b € R", solve a linear system Ax = b.
For simplicity, assume that the system is consistent and m = O(n).

n

A

P

Direct methods
@ Method of elimination

e QR, LU, SVD, ...

O(n®) time

for “ill-conditioned systems”

Iterative methods

@ Conjugate gradient (CG)
e MINRES, GMRES, LSQR, ...

O(n?) time x T iterations

for “well-conditioned systems”

Can we unify the two perspectives?

Key ingredient: Randomization

Randomization

Using randomized algorithms to solve deterministic problems.

Early successes in NLA [AMT10]

Tim (sec)

“beats LAPACK s direct dense least-squares

solver ...on essentially any dense tall matriz.”

Moving towards “RandLAPACK”

Murray et al. “Randomized Numerical Linear Algebra: A Perspective on
the Field with an Eye to Software,” arXiv:2302.11474, 2023.

[AMT10] Avron, Maymounkov, and Toledo. “Blendenpik: Supercharging LAPACK’s
least-squares solver”, SIAM Journal on Scientific Computing 32.3: 1217-1236, 2010.

This talk: Randomization for general linear systems

o Low-rank structure in ill-conditioned systems

In “typical” systems, a low-rank component causes ill-conditioning.

o Randomized algorithms for low-rank structure

Randomized sketching-based methods can go beyond traditional

(Krylov-based) methods for solving low-rank structured systems.

o Case study: Solving a dense 108 x 108 linear system

Scaling full Kernel Ridge Regression to massive datasets.

o Unified perspective on the complexity of solving linear systems:

oL)

low-rank well-conditioned

© Low-Rank Structure

Convergence of iterative methods

Task: Given A € RO(*" and b € R”, solve a linear system Ax = b

Iterative methods e

@ Conjugate gradient (CG) s
o MINRES, GMRES, LSQR, ... -

Cost of v— Av x T iterations
_——

O(n?) operations

How does the number of iterations T depend on A ?

Convergence of iterative methods

Task: Given A € RO(*" and b € R”, solve a linear system Ax = b

Iterative methods e

@ Conjugate gradient (CG) s
o MINRES, GMRES, LSQR, ... -

Cost of v— Av x T iterations
_——

O(n?) operations

How does the number of iterations T depend on A ?

OJmax (A)

Naive answer: T' scales with the condition number, kK = —*2 A

= “Iterative methods perform poorly for ill-conditioned systems.”

Typical ill-conditioned system

What does the spectrum of a “typical” ill-conditioned matriz look like?

10°

10710

10°1°

‘ % |ll-conditioned matrix‘

Singular values

Typical ill-conditioned system

What does the spectrum of a “typical” ill-conditioned matriz look like?

0
10 °
® % |ll-conditioned matrix
) o Random perturbation
)
[}
10 ®e
r 0 o o 1
M O 0 0 0 o o o
* o
x
x
®
®
10-10 L . i
x
x
®
®
X
10-15

Singular values

Random perturbation: A=A+G, |G| < 1075||A||

Model: Systems with low-rank structure

Low-rank structure: Implicitly partition the spectrum of A

@ Ill-conditioned top-k: favors direct methods
@ Well-conditioned tail: favors iterative methods

o1

—_——
ill-conditioned well-conditioned (noise)

Systems with low-rank structure are ubiquitous across many areas!
@ “Signal + noise” data, e.g., smoothed analysis, stochastic rounding, ...
@ Deliberate regularization in ML/Stats/Opt, e.g., A = B + AI

@ Key subroutine in matrix norm and eigenvalue estimation methods

Back to convergence of iterative methods

Task: Given A € RO(™*" and b € R”, solve a linear system Ax = b

Iterative methods A S

@ Conjugate gradient (CG) s
o MINRES, GMRES, LSQR, ... &

Cost of v— Av x T iterations
_———

O(n?) operations

How do they perform on systems with low-rank structure?

Back to convergence of iterative methods

Task: Given A € RO(™*" and b € R”, solve a linear system Ax = b

Iterative methods e

@ Conjugate gradient (CG) ‘
o MINRES, GMRES, LSQR,

Cost of v— Av x T iterations
_———

O(n?) operations

How do they perform on systems with low-rank structure?

Answer: Convergence theory of Krylov Subspace Methods

Krylov subspaces and polynomial approximation

Definition: Given square matrix A and vector b, the order-k Krylov
subspace is defined as:

Ki(A,b) = span {b, Ab, A%b, ..., A’Hb}.

Property: Any vector v € (A, b) can be expressed as v = p(A)b,
where p(z) = co + c12... + cx_12%~! is a polynomial of degree k — 1.

Recipe for linear solver: Gradually build a Krylov subspace and
maintain “best” approximation X = p(A)b for A~!b in that subspace.

Dominant cost: Matrix-vector product to compute the next direction,

A*b=A- (A" 'b) in O(n?) arithmetic operations.

Krylov subspaces and eigenvalue clusters

A1

A2

A3

)\min
o o) o o o o o 0

n eigenvalues of real symmetric A

Krylov subspaces and eigenvalue clusters

A1

)\min
o o) o o o o o 0

n eigenvalues of real symmetric A

Krylov subspaces and eigenvalue clusters

A1

3 p of degree k—1, s.t. p(\;) = A\;7' VY,

= p(A)b ~ A 'b
N——
€Kk (A,b)

k clusters

n eigenvalues of real symmetric A

Krylov subspaces and eigenvalue clusters

A1
3 p of degree k—1, s.t. p(\;) = A\;7' VY,
= p(A)b ~A~'b
% ——
2 €KL (A,b)
=
o
=
n eigenvalues of real symmetric A
Conclusion: If the eigenvalues of A form k clusters, then ICr (A, b)

contains an accurate approximation to x* = A~1b.

Krylov subspace methods: Convergence

Theorem ([AL86])

If A has singular values o1 > 09 > ... > Opin With ki = Z”_l , there is

a Krylov subspace method (e.g., LSQR) that finds an e-approzimate
solution ||[Ax — bl| < ¢||b|| in

T = O(k + kg log1/e) iterations.

o1
A
ce
o
B .‘“.
K ,.“.
[
e
Tk+1 v
Ba' >
. Porgee
Hk’{ Omin .
: ' %
6—06—06—06—0—06—06—0—0 .
—_——
ill-conditioned well-conditioned (noise)

(We use singular values instead of eigenvalues to capture the non-symmetric case.)

[AL86] Axelsson and Lindskog. “On the rate of convergence of the preconditioned conjugate gradient
method,” Numerische Mathematik. 48:499-523, 1986.

Krylov subspace methods and low-rank structure

Conclusion: To solve an O(n) x n linear system with at most k large
isolated singular values and a cluster of width k;, we need:

Cost of v — Av x O(k + ki logl/e) = O(n’k + nnylog1/e)
_——

O(n?) operations

Krylov subspace methods and low-rank structure

Conclusion: To solve an O(n) x n linear system with at most k large
isolated singular values and a cluster of width k;, we need:

Cost of v — Av x O(k + ki logl/e) = O(n’k + nnylog1/e)
_——

O(n?) operations

Question: Can we avoid the n?k bottleneck in Krylov methods?

Krylov subspace methods and low-rank structure

Conclusion: To solve an O(n) x n linear system with at most k large
isolated singular values and a cluster of width k;, we need:

Cost of v — Av x O(k + ki logl/e) = O(n’k + nnylog1/e)
_——

O(n?) operations

Question: Can we avoid the n?k bottleneck in Krylov methods?

Yes! and No!

Krylov subspace methods and low-rank structure

Conclusion: To solve an O(n) x n linear system with at most k large
isolated singular values and a cluster of width k;, we need:

Cost of v — Av x O(k + ki logl/e) = O(n’k + nnylog1/e)
_——

O(n?) operations

Question: Can we avoid the n?k bottleneck in Krylov methods?

Yes! and No!

With only v — Av access to A,

Krylov methods are optimal.

Krylov subspace methods and low-rank structure

Conclusion: To solve an O(n) x n linear system with at most k large
isolated singular values and a cluster of width k;, we need:

Cost of v — Av x O(k + ki logl/e) = O(n’k + nnylog1/e)
_——

O(n?) operations

Question: Can we avoid the n?k bottleneck in Krylov methods?

Yes! and No!
With direct access to A, With only v — Av access to A,
randomized methods do better. Krylov methods are optimal.

Our result: O(k* + n%ky log1/e)

© Randomized Algorithms
e Sketching
o Sketch-and-Project

@ Recursive Sketching

© Randomized Algorithms
e Sketching

Main tool: Randomized sketching

Sketching operator: Random dimension reducing linear map (matrix S)

E.g.: Gaussian/sparse matrices, randomized Hadamard transforms, ...

Crucially: Can be much faster than dense matrix multiplication

Main tool: Randomized sketching

Sketching operator: Random dimension reducing linear map (matrix S)

E.g.: Gaussian/sparse matrices, randomized Hadamard transforms, ...

1%

F(A) F(A)

T T

Sketching matrix S X Input A | — | Sketch A

Crucially: Can be much faster than dense matrix multiplication

Main tool: Randomized sketching

Sketching operator: Random dimension reducing linear map (matrix S)

E.g.: Gaussian/sparse matrices, randomized Hadamard transforms, ...

F(A) ~ F(A)
Example: row sampling T T
[T
TT
TT H ~
L1 - X — | Sketch A
O
TT
T

Crucially: Can be much faster than dense matrix multiplication

Example: Least squares

Over-determined linear system: Many more equations than unknowns,
also known as least squares.

A

Compute x* = argmin |Ax — b3
X
n

for AeR"™ beR"

Example: Least squares

Over-determined linear system: Many more equations than unknowns,
also known as least squares.

d
A b
Compute x* = argmin |Ax — b3
x n
for AeR"™ beR"
Sketching leverages this redundancy: d
~ e 12 A BE— B
Compute X = argmin ||Ax — b||5
~ * ~ S
for - A=SA, b=Sb
—_— N——
sketch of A sketch of b

Why does sketching work for least squares?

Fact. In O(nd) time, we can compute
A € RO@Wxd guch that for i =1, ..., d:

B>

Input A O(d) =SA

o} (A) = (1% 5)07(A)

Why does sketching work for least squares?

Fact. In O(nd) time, we can compute —_—
A € RO@Wxd guch that for i =1, ..., d:

B>

Input A O(d) =SA

o} (A) = (1% 5)07(A)

Even better. This preserves the whole
covariance structure of the matrix:

ATA=(1+1)ATA.

Why does sketching work for least squares?

Fact. In O(nd) time, we can compute —_—

A € RODxd guch that for i = 1, ..., d:
. N Input A |O(d)
oi(A)=(1£3)0;(A)

B>

=SA

Even better. This preserves the whole
covariance structure of the matrix:

ATA=(1+1)ATA.

Fast least squares solver: Runs in O(d® + nd) time

@ Rewrite least squares via normal equations, ATAx = A"b

@ Precondition your favorite iterative method with ATA

Fast least squares solver

Compute preconditioner: (ATA)"! ~ (ATA)™! Cost: O(d?)

Orlgmal problem (large k) 5 Preconditioned problem (small x)

ATAx=A"b ATA(ATA) lz=b
k(ATA) is large K(ATA(ATA)™Y) is small

Does this work for general linear systems?

Does this work for general linear systems?

n
Fact. In time O(n?), we can compute -
A € ROK)IXn guch that for i = 1,..., k: A O(k¥| A =SA
ol(A)=(1+1 Z o
7>l
—_——

tail noise

Does this work for general linear systems?

Fact. In time O(n?), we can compute

A e RO®xn guch that for i = 1,..., k:

ol(A)=(1+1 Za
7>l

tail noise

B>

=SA

Bottom line: The sketch picks up noise from the spectral tail
= weak preconditioner (both in theory and in practice)

Does this work for general linear systems?

Fact. In time O(n?), we can compute
A € ROF)*n guch that for i = 1, ..., k: A O(k)

B>

=SA

- . 1 (
o} (A) = (1£3)07(A) £ o ;#w
J=R

tail noise

Bottom line: The sketch picks up noise from the spectral tail
= weak preconditioner (both in theory and in practice)

Can we still produce a fast solver via sketching?

Does this work for general linear systems?

Fact. In time O(n?), we can compute
A € ROF)*n guch that for i = 1, ..., k: A O(k)

B>

=SA

- . 1 (
o} (A) = (1£3)07(A) £ o ;#w
J=R

tail noise

Bottom line: The sketch picks up noise from the spectral tail
= weak preconditioner (both in theory and in practice)

Can we still produce a fast solver via sketching?

Yes! Just use multiple sketches:
@ Sketch-and-Project

@ Recursive Sketching

© Randomized Algorithms

o Sketch-and-Project

Background: The Kaczmarz algorithm

Idea: Iteratively project onto the solutions of individual equations.

Starting at xq, for t =0,1,2, ...
@ Select index Iy

@ Project current iterate x; onto

the solutions of I;-th equation

Randomized Kaczmarz: Select indices via weighted sampling [SV09]

The first Kaczmarz algorithm with provable convergence rate.

[Kac37] Stefan Kaczmarz, “Angeniaherte Auflésung von Systemen linearer
Gleichungen”, Bulletin International de I’Académie Polonaise des Sciences et des
Lettres 35:355-357, 1937.

[SV09] Strohmer and Vershynin, “A randomized Kaczmarz algorithm with exponential
convergence”, Journal of Fourier Analysis and Applications, 14.2:262-278, 2009.

Powerful extension: Sketch-and-Project

Starting at xg € R™, for t =0, 1,2, ...

@ Sample random O(k) x O(n) matrix S;. \ pd
@ Project x; onto the solutions of StAx = S;b: ':}x,’.’,
N
X1 = argmin ||x; — x||° subject to S;Ax = S;b. o
A X b S:A X S:b
o] | -
O(n) % _ skgch

[GR15] Gower and Richtéarik, “Randomized iterative methods for linear systems”,
SIAM Journal on Matriz Analysis and Applications, 36.4:1660-1690, 2015.

Key insight: Sharp analysis of Sketch-and-Project

Theorem ([DR24])

If S; is a Gaussian matriz, then Sketch-and-Project satisfies:

o2

min(A)

t
Elx - x*|]? < (1) o — x* |2
%ZDkU?(A)

[DR24] Dereziniski and Rebrova, “Sharp Analysis of Sketch-and-Project Methods via a
Connection to Randomized Singular Value Decomposition”, SIAM Journal on
Mathematics of Data Science, 6.1:127-153, 2024.

Key insight: Sharp analysis of Sketch-and-Project

Theorem ([DR24])

If S; is a Gaussian matriz, then Sketch-and-Project satisfies:

2(A) !
Elx - x*|]? < (1““) o — x* |2
iZDkU?(A)

We again observe the tail noise from sketching.

[DR24] Dereziniski and Rebrova, “Sharp Analysis of Sketch-and-Project Methods via a
Connection to Randomized Singular Value Decomposition”, SIAM Journal on
Mathematics of Data Science, 6.1:127-153, 2024.

Key insight: Sharp analysis of Sketch-and-Project

Theorem ([DR24])

If S; is a Gaussian matriz, then Sketch-and-Project satisfies:

2(A) !
Elx - x*|]? < (1““) o — x* |2
iZDkU?(A)

We again observe the tail noise from sketching.

Key insight:
o Each sketch-and-project step runs on a f{-fraction of the data

e This runtime gain should cancel out the tail noise < %0§+1

[DR24] Dereziniski and Rebrova, “Sharp Analysis of Sketch-and-Project Methods via a
Connection to Randomized Singular Value Decomposition”, SIAM Journal on
Mathematics of Data Science, 6.1:127-153, 2024.

Key insight: Sharp analysis of Sketch-and-Project

Theorem ([DR24])

If S; is a Gaussian matriz, then Sketch-and-Project satisfies:

2(A) !
Elx - x*|]? < (1““) o — x* |2
iZDkU?(A)

We again observe the tail noise from sketching.

Key insight:
o Each sketch-and-project step runs on a %-fraction of the data

e This runtime gain should cancel out the tail noise < %0§+1

[DR24] Dereziniski and Rebrova, “Sharp Analysis of Sketch-and-Project Methods via a
Connection to Randomized Singular Value Decomposition”, SIAM Journal on
Mathematics of Data Science, 6.1:127-153, 2024.

Key insight: Sharp analysis of Sketch-and-Project

Theorem ([DR24])

If S; is a Gaussian matriz, then Sketch-and-Project satisfies:

2(A) !
Elx - x*|]? < (1““) o — x* |2
iZDkU?(A)

We again observe the tail noise from sketching.

Key insight:
o Each sketch-and-project step runs on a %-fraction of the data

e This runtime gain should cancel out the tail noise < %0§+1

Hang on, Gaussian sketching is still too expensive!

[DR24] Dereziniski and Rebrova, “Sharp Analysis of Sketch-and-Project Methods via a
Connection to Randomized Singular Value Decomposition”, SIAM Journal on
Mathematics of Data Science, 6.1:127-153, 2024.

Making this efficient

Advances in sketch-and-project for systems with low-rank structure:

@ Sketching: Gaussian guarantees for fast sketches

o Randomized Hadamard transform [DY24]
o Leverage score sampling [RFY25]

@ Projecting: Fast computation of the projection step
o Fast inner solver using PCG [DY24]

e Amortizing projection cost across iterations [DNRY25]

@ Acceleration: Improved convergence using momentum

o Convergence analysis with Nesterov’s momentum [DLNR24]

o Adaptive tuning of momentum parameters [DNRY25]

Making this efficient: Sketch-and-Project++4

Theorem ([DNRY25])

Given any k, we can solve an O(n) X n linear system Ax = b in time:

O(u/.-2 + n%ky, log 1/€), where Ky = %((AA)).

e Overcomes the n?k bottleneck of Krylov subspace methods.

o Sketch-and-Project++: New family of randomized linear solvers
Implementations: Kaczmarz++,/CD++ [DNRY25], ASkotch [RFY™T25]

Still does not attain the promised k® 4+ n? guarantee...
g

[DNRY25] Dereziriski, Needell, Rebrova, and Yang. “Randomized Kaczmarz methods
with beyond-Krylov convergence.” arXiv:2501.11673, 2025.

[RFY+25] Rathore, Frangella, Yang, Derezinski, and Udell. “Have ASkotch: Fast
cocktails for large-scale kernel ridge regression.” arXiv:2407.10070, 2025.

Case study: Large-scale Kernel Ridge Regression

Task: Fitting non-linear functions f: X — R:

min > (700)+ 3151
' 1

1=

When H is a reproducing kernel Hilbert space defined by
k: X x X — R, this reduces to solving an n X n linear system:

(K+nAI)x = vy, where K = I:k((bi’(bj)]ij‘
—_———— s

low-rank structure

Case study: Large-scale Kernel Ridge Regression

Task: Fitting non-linear functions f: X — R:

min > (700)+ 3151
' 1

1=

When H is a reproducing kernel Hilbert space defined by
k: X x X — R, this reduces to solving an n X n linear system:

(K+nAI)x = vy, where K = I:k((bi’(bj)]ij‘
—_———— s

low-rank structure

What if we are given 100 million data points (¢, y;)?

Solving a dense 10% x 10® linear system

Solving KRR for New York City taxi transportation data (n = 108)
@ Storage: 40,000TB (terabytes) to store K in single precision

@ Compute: State-of-the-art solvers take > 24h for single iteration

Solving a dense 10% x 10® linear system

Solving KRR for New York City taxi transportation data (n = 108)
@ Storage: 40,000TB (terabytes) to store K in single precision

@ Compute: State-of-the-art solvers take > 24h for single iteration

Popular workarounds:

o Compress the matrix K and solve a smaller problem

o SGD-type solvers with heuristically chosen hyper-parameters

Solving a dense 10% x 10® linear system

Solving KRR for New York City taxi transportation data (n = 108)
@ Storage: 40,000TB (terabytes) to store K in single precision

@ Compute: State-of-the-art solvers take > 24h for single iteration

Popular workarounds:

o Compress the matrix K and solve a smaller problem

o SGD-type solvers with heuristically chosen hyper-parameters

We attack the original problem with a provably convergent solver!

Solving a dense 10% x 10® linear system

Method: ASkotch (“Sketch-and-Project++" developed for GPUs)
Baselines: EigenPro 2.0 [MB19] and Falkon [RCR17]
Test RMSE: Root mean squared error on the test set.

. 08
20 taxi (n = 1.00 - 10%)
320

300

Test RMSE
ot
8

260
240
—
0 20000 40000 60000 80000
Time (s)
ASkotch, Nystrom, p = damped, r = 50, uniform ~ —e— ASkotch, Nystrom, p = damped, r = 200, uniform EigenPro 2.0

—e— ASkotch, Nystrém, p = damped, r = 100, uniform —e— ASkotch, Nystrém, p = damped, r = 500, uniform —+— Falkon, m = 20000

[RFY+25] Rathore, Frangella, Yang, Derezinski, and Udell. “Have ASkotch: Fast
cocktails for large-scale kernel ridge regression.” arXiv:2407.10070, 2025.

Case study: Large-scale Kernel Ridge Regression

Method: ASkotch (“Sketch-and-Project++" developed for GPUs)
Baselines: EigenPro [MB19], Falkon [RCR17], and Nystrom PCG [FTU23]

Experiment: 23 tasks, including particle physics (4 datasets) and
computational chemistry (9 datasets), with dimensions at least 10°.

Classification Regression

0.8 1.0
g £o08
Z06 £
z %
S 206
204 {—17 2
kS 504
g g
£0.2 k5 L
E 2oz | /
= =

0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Fraction of time budget Fraction of time budget
——— ASkotch —— EigenPro 3.0 —— Falkon
EigenPro 2.0 — PCG

The code is available at https://github.com/pratikrathore8/fast_krr.

https://github.com/pratikrathore8/fast_krr

© Randomized Algorithms

@ Recursive Sketching

Complexity of solving linear systems with low-rank structure:

Krylov methods: O(n’k + n’ky)

g1
A
ce
o0
i
(0
K .‘g‘:-&
D
="
) >
Kk { Omin .
————— '\

ill-conditioned well-conditioned (noise)

Complexity of solving linear systems with low-rank structure:

Krylov methods: O(n’k + n’ky)

Sketch-and-Project++: O(nk? + n%ky)

g1
A
ce
o0
i
(N
K .‘g‘:-&
D
v
) >
Kk { Omin .
—————— '\

ill-conditioned well-conditioned (noise)

Complexity of solving linear systems with low-rank structure:

Krylov methods: O(n’k + n’ky)
Sketch-and-Project++: O(nk? + n%ky)
Recursive Sketching: O(k> 4+ n2ky)
o1
A
K ...'::;:
643?..“‘.. L) R
K . s,
k{ Omin XY

ill-conditioned well-conditioned (noise)

Key idea: Recursive Sketching

Sl Al

@ Precondition A using large sketch A= S1A,

[DS25] Dereziriski and Sidford. “Approaching Optimality for Solving Dense Linear
Systems with Low-Rank Structure.” arXiv:2507.11724, 2025.

Key idea: Recursive Sketching

S2 A2
Sl Al

@ Precondition A using large sketch A= S1A,
© Precondition Al using smaller sketch AQ = S,A,

[DS25] Dereziriski and Sidford. “Approaching Optimality for Solving Dense Linear
Systems with Low-Rank Structure.” arXiv:2507.11724, 2025.

Key idea: Recursive Sketching

S, X A - A,
S2 AQ
Sl Al

@ Precondition A using large sketch A= S1A,
© Precondition Al using smaller sketch AQ = S,A,

@ Precondition A.Q using even smaller sketch Ag = S3A, etc.

[DS25] Dereziriski and Sidford. “Approaching Optimality for Solving Dense Linear
Systems with Low-Rank Structure.” arXiv:2507.11724, 2025.

Key idea: Recursive Sketching

S5 X A - A,
S2 AQ
Sl Al

@ Precondition A using large sketch A= S1A,
© Precondition Al using smaller sketch AQ = S,A,

@ Precondition A.Q using even smaller sketch Ag = S3A, etc

Inspired by domain-specific preconditioning techniques:

@ Recursive solvers for graph Laplacians in theoretical computer science

@ Multigrid solvers for differential equations in scientific computing

[DS25] Dereziriski and Sidford. “Approaching Optimality for Solving Dense Linear
Systems with Low-Rank Structure.” arXiv:2507.11724, 2025.

Reminder: Single-sketch preconditioner fails

Fact. In time O(n?), we can compute

A € ROF)xn guch that for i = 1, ..., k: A O(k)| A =SA
2
o} A)=(1+3 o Za
i>k

tail noise

Bottom line: The sketch picks up noise from the spectral tail

= ATA % ATA

Reminder: Single-sketch preconditioner fails

Fact. In time O(n?), we can compute

A € ROF)xn guch that for i = 1, ..., k: A O(k)| A =SA
2
o} A)=(1+3 o Za
i>k

tail noise

Bottom line: The sketch picks up noise from the spectral tail

= ATA % ATA
-~ 1 .
but ATA+) ~ ATA+), for A:7§ o?(A
—_— k J

more low-rank Ji>k

Idea: Impose stricter low-rank structure on the system.

Reminder: Single-sketch preconditioner fails

Fact. In time O(n?), we can compute

A € ROF)xn guch that for i = 1, ..., k: A O(k)| A =SA
2
o} A)=(1+3 o Za
i>k

tail noise

Bottom line: The sketch picks up noise from the spectral tail

= ATA % ATA
L 1)
but ATA+M ~ ATA+ A, for)\:%Zaj(A).

more low-rank Ji>k

Idea: Impose stricter low-rank structure on the system.

Wait! Are we allowed to do that?

Strategy: Gradually impose stricter low-rank structure

Sl Al

ATA ~ ATA +021
2
AIAl + M1, A1 > 02

Strategy: Gradually impose stricter low-rank structure

SQ A2
Sl Al

ATA ~ ATA +0°1
2
ATA + NI, M\ >o02
2
AJAy + 00, N>\

Strategy: Gradually impose stricter low-rank structure

Ss X A - A3
SQ A2
Sl Al

ATA ~ ATA +0°1
2
ATA + NI, M\ >o02
2
AJAy + 00, N>\
2
AJA3 + 031, 3> N

Recursive Sketching: Main result

Theorem ([DS25])

4

Given any k, we can solve an O(n) X n linear system Ax =b in time:

O~(]<'3 + n%ky, log 1/€), where Ky = Z’:“nl((:))

o Natural complexity limit for systems with low-rank structure

o Even better: ki can be replaced by a smoothed condition number,

_ 1 g

< Kk
Omi
Z>k min

Application: The first algorithm for approximating the nuclear norm
|All1 =3, 0; of an n x n matrix in nearly linear time O(n?).

[DS25] Dereziriski and Sidford. “Approaching Optimality for Solving Dense Linear
Systems with Low-Rank Structure.” arXiv:2507.11724, 2025.

© Conclusions

Conclusions

Linear systems with low-rank structure: a natural model for
ill-conditioned matrices, e.g., in ML/Opt/Stats applications.

Randomized algorithms:

o Sketch-and-Project++: New family of randomized linear solvers

that scaled to massive problem sizes.

o Recursive Sketching: Attains nearly optimal complexity for

solving dense linear systems with low-rank structure.

Next steps:
@ KEzxtending to sparse matrices and other access models

o [Extending to other natural singular/eigenvalue profiles

References 1

@ Owe Axelsson and Gunhild Lindskog.
On the rate of convergence of the preconditioned conjugate gradient method.

Numerische Mathematik, 48:499-523, 1986

Haim Avron, Petar Maymounkov, and Sivan Toledo.
Blendenpik: Supercharging lapack’s least-squares solver.

SIAM Journal on Scientific Computing, 32(3):1217-1236, 2010

Michal Derezinski, Feynman T Liang, Zhenyu Liao, and Michael W Mahoney.

Precise expressions for random projections: Low-rank approximation and randomized newton.

Advances in Neural Information Processing Systems, 33, 2020

Fine-grained analysis and faster algorithms for iteratively solving linear systems.

arXiv preprint arXiv:2405.05818, 2024

Michal Derezinski, Deanna Needell, Elizaveta Rebrova, and Jiaming Yang.
Randomized kaczmarz methods with beyond-krylov convergence.
arXiv preprint arXiv:2501.11673, 2025

@ Michat Derezifiski, Daniel LeJeune, Deanna Needell, and Elizaveta Rebrova.
@ Michat Derezifiski and Elizaveta Rebrova.

Sharp analysis of sketch-and-project methods via a connection to randomized singular value
decomposition.

SIAM Journal on Mathematics of Data

ience, 6(1):127-153, 2024

@ Michal Derezinski and Aaron Sidford.
Approaching optimality for solving dense linear systems with low-rank structure.

arXiv preprint arXiv:2507.11724, 2025.

References 11

B
[
[
[
[
[
B

Michal Derezinski and Jiaming Yang.
Solving dense linear systems faster than via preconditioning.

In 56th Annual ACM Symposium on Theory of Computing, 2024.

Zachary Frangella, Joel A Tropp, and Madeleine Udell.
Randomized Nystrém preconditioning.

SIAM Journal on Matrix Analysis and Applications, 44(2

Robert M Gower and Peter Richtarik.
Randomized iterative methods for linear systems.

SIAM Journal on Matrix Analysis and Applications, 36(4):1660-1690, 2015

M. S. Kaczmarz.
Angenaherte auflosung von systemen linearer gleichungen.

Bulletin International de I’Academie Polonaise des Sciences et des Lettres, 35:355-357, 1937

Siyuan Ma and Mikhail Belkin.
Kernel machines that adapt to gpus for effective large batch training.

Proceedings of Machine Learning and Systems, 1:360-373, 2019

Alessandro Rudi, Luigi Carratino, and Lorenzo Rosasco.

Falkon: An optimal large scale kernel method.

Advances in neural information processing tems, 30, 2017

Pratik Rathore, Zachary Frangella, Jiaming Yang, Michal Derezinski, and Madeleine Udell.
Have askotch: A neat solution for large-scale kernel ridge regression.

arXiv preprint arXiv:2407.10070, 2025.

References 111

@ Thomas Strohmer and Roman Vershynin.
A randomized kaczmarz algorithm with exponential convergence.

Journal of Fourier Analysis and Applications, 15(2):262-278, 2009.

Pseudocode for Kaczmarz-+-+

1: Input: A € R™*" b e R™, B, k, Xg, tmax, 7, Ps A

2: D — diag(random =+ 1/y/m)

3: A+ HDA and b < HDb > Randomized Hadamard
4: mg < 0;

5. Sample B = {S1,...,Sp} C ([ZL]) > Random blocks
6: for t =0,1,...,(tmax — 1) do

7 Draw a random subset S from B > Fast sketching
8: r; < Agx; — bg

9: wy ~ argming, {[|Asw —1y]|2 + Allw||?} > Fast projection
10: mg,q 1+p(mt — W)
11: X1 ¢ X¢ — Wy + my > Momentum acceleration
12: end for
13: return X = x¢__ ;

The code is available at https://github.com/EdwinYang7/kaczmarz-plusplus

https://github.com/EdwinYang7/kaczmarz-plusplus

	Introduction
	Low-Rank Structure
	Randomized Algorithms
	Sketching
	Sketch-and-Project
	Recursive Sketching

	Conclusions

