

The Robustness Problem

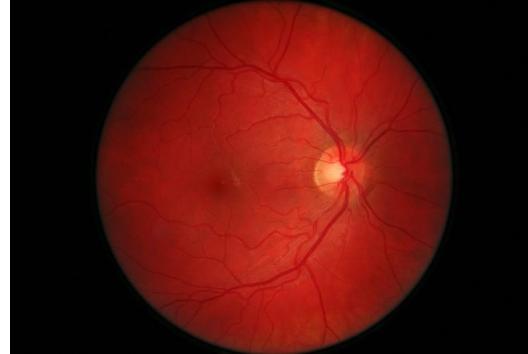
Justin Gilmer

Table of Contents

1. Overly optimistic IID test sets
2. Robustness, security and adversarial examples
3. Why are models so brittle?

The Deep Learning Boom

transportation



Medical diagnosis

recommender systems

Google

Robotics

Hype!

Artificial intelligence rivals radiologists in screening X-rays for certain diseases

Man against machine: AI is better than dermatologists at diagnosing skin cancer

Google's lung cancer detection AI outperforms 6 human radiologists

More Hype!

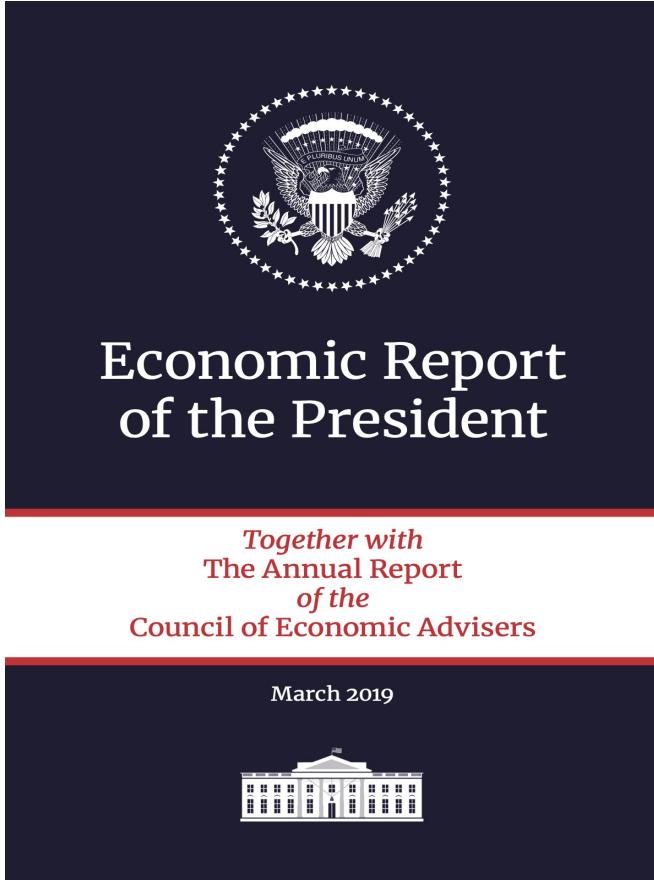


Figure 7-1. Error Rate of Image Classification by Artificial Intelligence and Humans, 2010–17

Error rate (percent)

30

2017

25

20

15

10

5

0

2011 2012 2013 2014 2015 2016 2017

AI

Human

Sources: Russakovsky et al. (2015); CEA calculations.

The Biggest Lie in Machine Learning

$$P(\text{train}) = P(\text{test})$$

Independent Identically Distributed (IID)

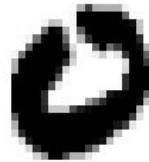
- MNIST
- CIFAR-10
- Imagenet
- SVHN
- Fashion MNIST
- COCO
- ...

Reality Check

- IID test sets grossly overestimate performance in the real world.
- Models are not robust to even slight changes in distribution.

In distribution - 99% Accuracy

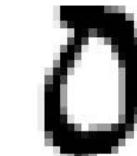
Prediction: 0



Prediction: 7

Prediction: 4

Prediction: 0



Prediction: 1

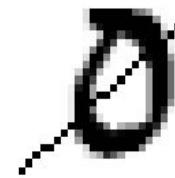
Out of distribution - 63% Accuracy

Prediction: 2

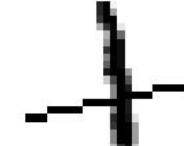
Prediction: 9

Prediction: 9

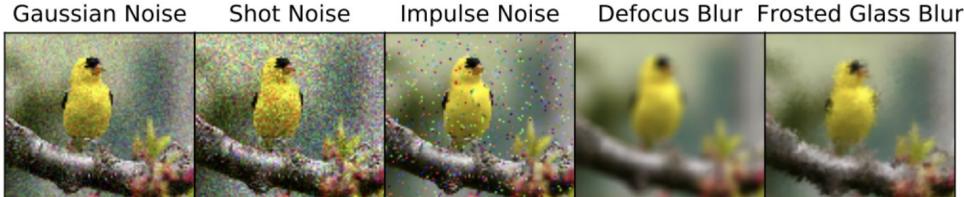
Prediction: 8



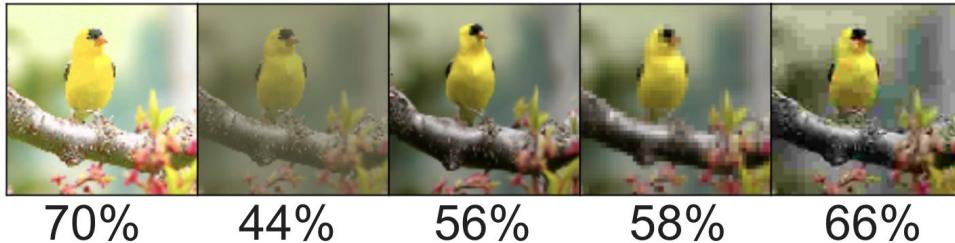
Prediction: 4



The Real World is Not IID



45% 43% 42% 50% 42%
Motion Blur Zoom Blur Snow Frost Fog



Resnet-50
76% Top-1 Accuracy (IID)

Distribution Shift is a Real Problem!

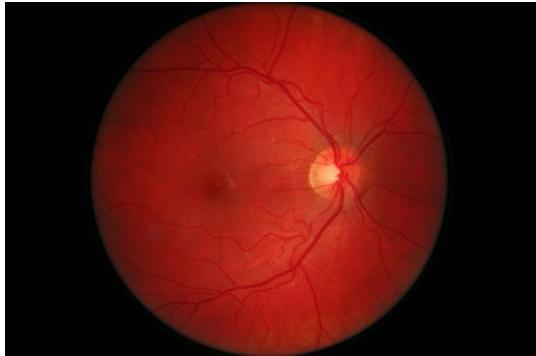
(A) **Cow: 0.99**, Pasture: 0.99, Grass: 0.99, No Person: 0.98, Mammal: 0.98

(B) No Person: 0.99, Water: 0.98, Beach: 0.97, Outdoors: 0.97, Seashore: 0.97

(C) No Person: 0.97, **Mammal: 0.96**, Water: 0.94, Beach: 0.94, Two: 0.94

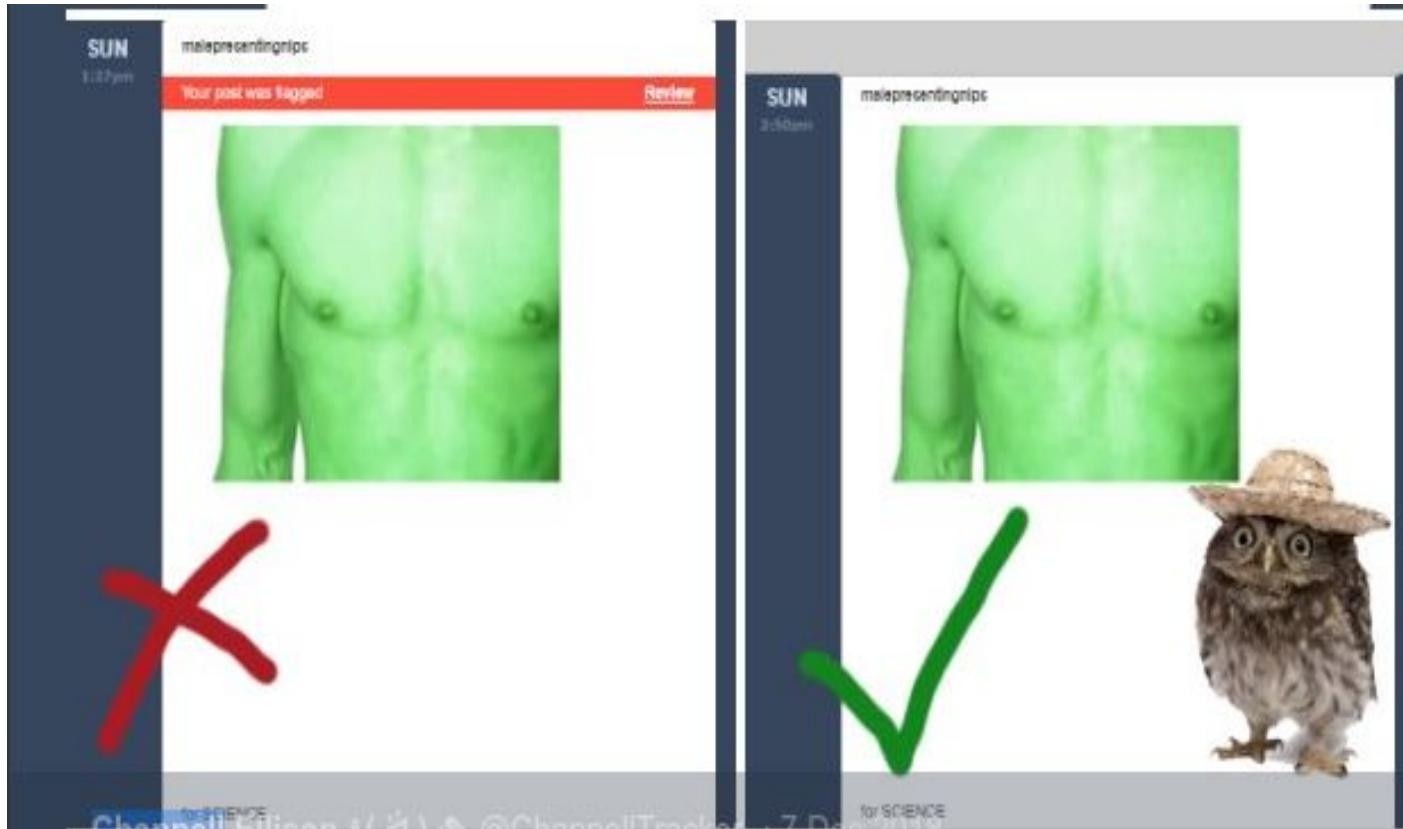
Medical Imaging on a Cell Phone Camera?

Train on high quality images
taken in controlled settings.



Deploy on camera phones

Adversaries Can Exploit this Lack of Robustness



Robustness Benchmarks

- Image corruptions
 - Imagenet-C: [Hendrycks et. al.] <https://arxiv.org/abs/1807.01697>
 - MNIST-C: [Mu, Gilmer] <https://arxiv.org/abs/1906.02337>
- Natural distribution shifts
 - Imagenet-A [Hendrycks et. al.] <https://arxiv.org/abs/1907.07174>
 - ImagenetV2 [Recht et. al.] <https://arxiv.org/abs/1902.10811>
 - Imagenet-Vid-Robust [Shankar et. al] <https://arxiv.org/pdf/1906.02168.pdf>.
 - Video Robustness [Gu et. al.] <https://arxiv.org/pdf/1904.10076.pdf>

For ML to work well, we need to drop the iid assumption.

Table of Contents

1. Overly optimistic IID test sets
2. **Robustness, security and adversarial examples**
3. Why are models so brittle?

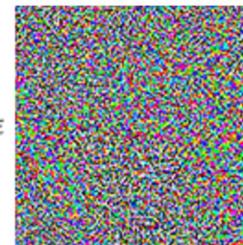
Adversarial Examples

Security

VS

“Surprising” Phenomenon

“panda”
57.7% confidence



$+\epsilon$

“gibbon”
99.3% confidence

Goodfellow et. al. <https://arxiv.org/abs/1412.6572>

Adversarial Examples - Security

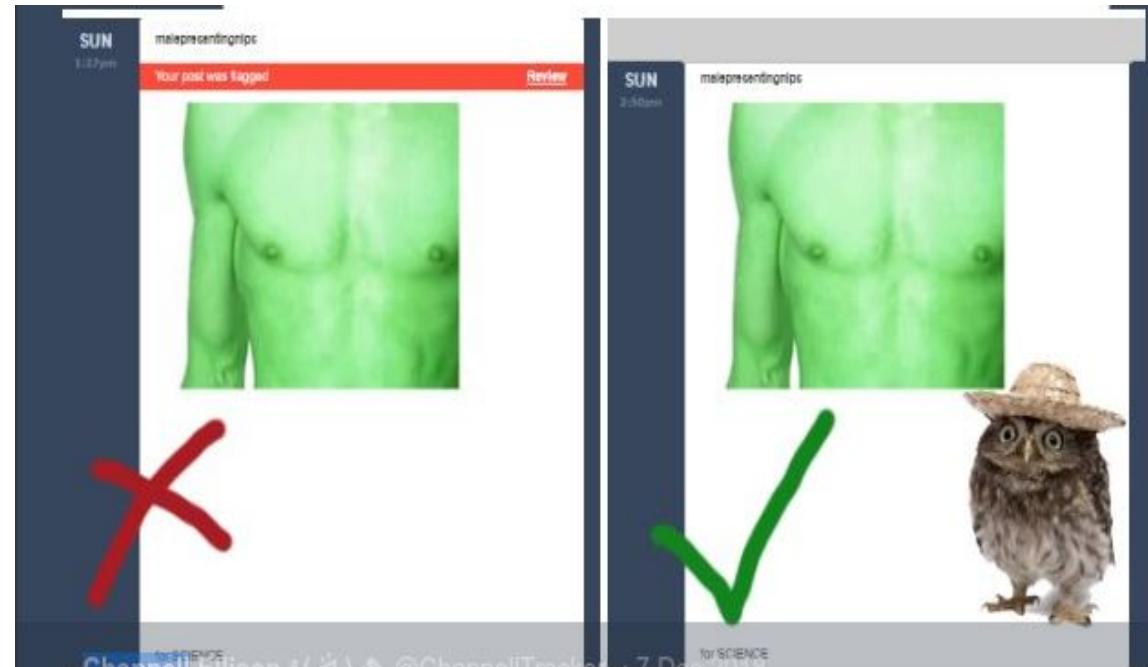
Biggio et. al: <https://arxiv.org/abs/1712.03141>

Adversarial Examples - Security

<https://qz.com/721615/smart-pirates-are-fooling-youtubes-copyright-bots-by-hiding-movies-in-360-degree-videos/>

Adversarial Examples - Security

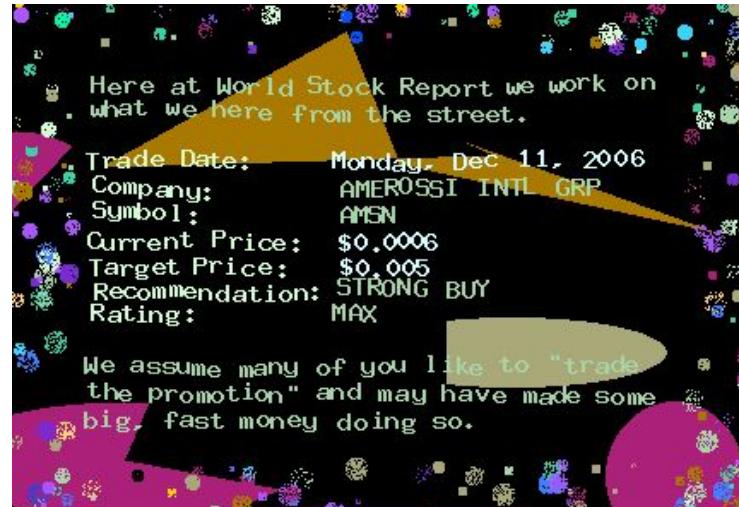
"State of the art", zero knowledge, limited query, black box attack.
[Tumblr Quality Assurance, 2018]



<https://piunikaweb.com/2018/12/08/owl-pics-heres-how-tumblr-censor-bots-are-being-fooled/>

Questions for Designing a Secure ML System

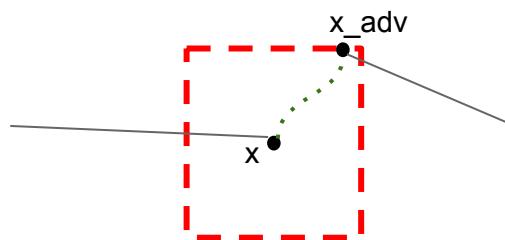
- How do adversaries typically break systems?
- How would you measure test error?
- Are you secure if test error > 0 ?
- How do we deal with out-of-distribution generalization?



Adversarial Examples - The "Surprising" Phenomenon

- In 2013 it was discovered that neural networks have “adversarial examples”.
- 2000+ papers written on this topic.

“panda”
57.7% confidence

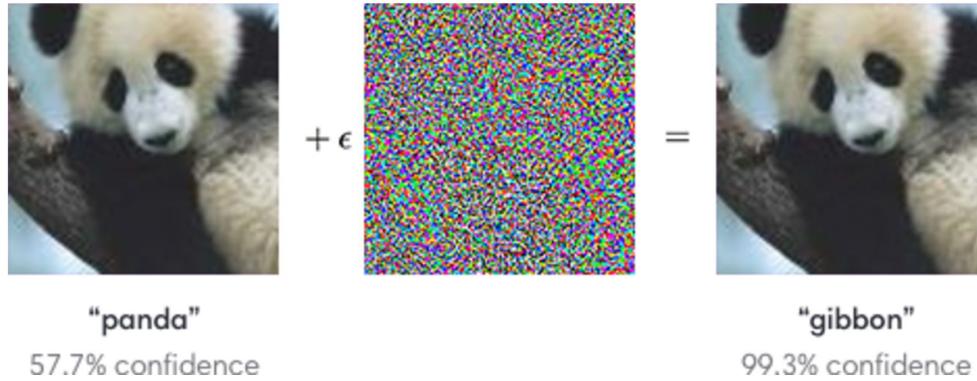


“gibbon”
99.3% confidence

$$x_{adv} = \max_{x': ||x - x'||_\infty < \epsilon} L(\theta, x', \hat{y})$$

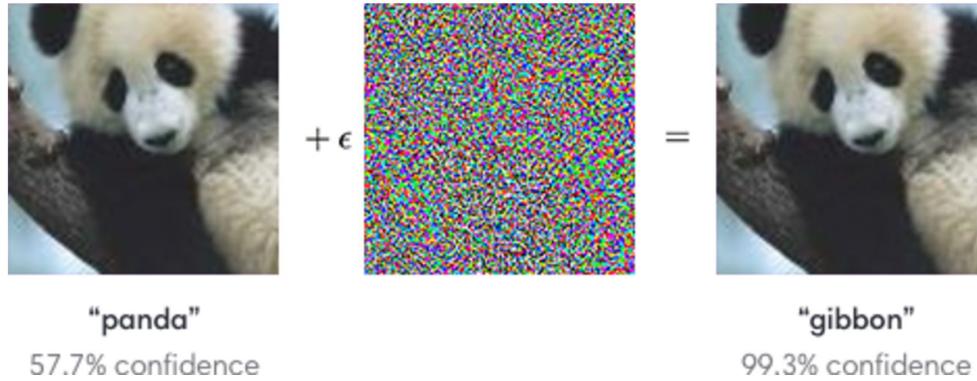
Adversarial Examples - The Phenomenon

Why do our models have adversarial examples?



Adversarial Examples - The Phenomenon

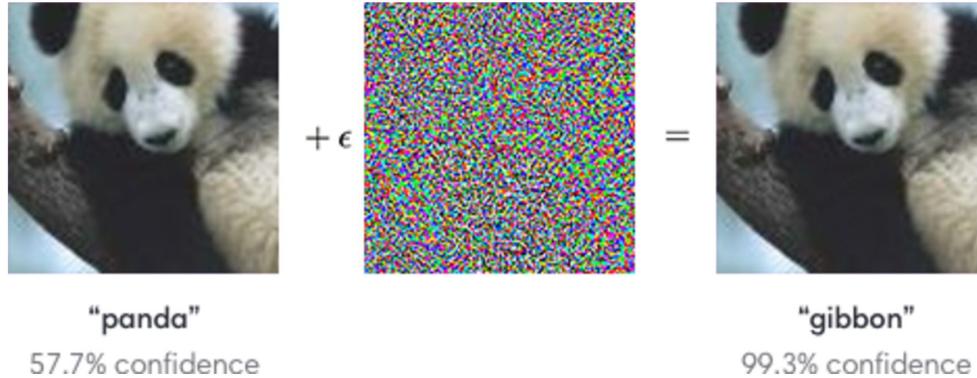
Why do our models have adversarial examples? **A:** ???



Adversarial Examples - The Phenomenon

Why do our models have adversarial examples? **A:** ???

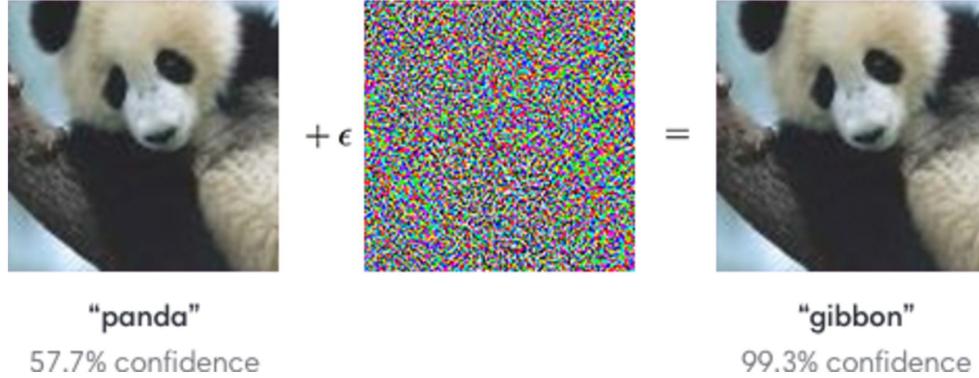
What are adversarial examples?



Adversarial Examples - The Phenomenon

Why do our models have adversarial examples? A: ???

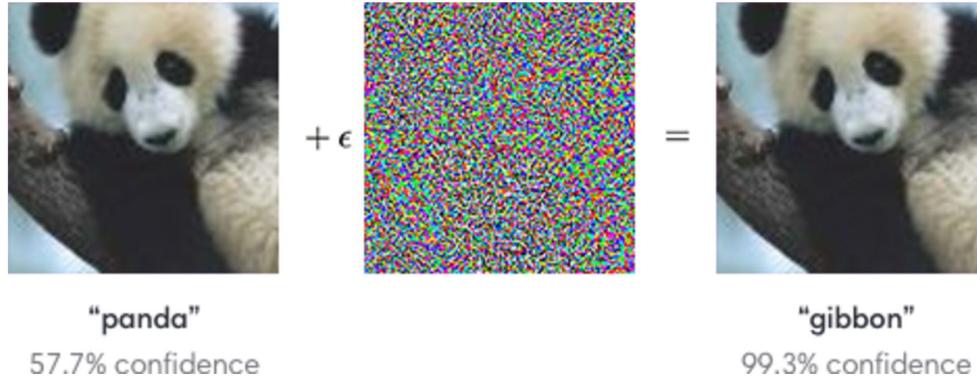
What are adversarial examples? **A:** The nearest error



Adversarial Examples - The Phenomenon

Why do our models have ~~adversarial~~ examples? A: ???

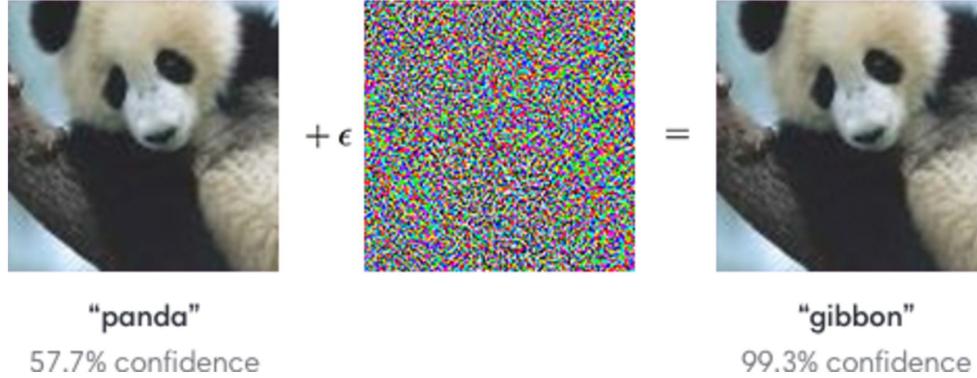
What are adversarial examples? **A:** The nearest error



Adversarial Examples - The Phenomenon

Why do our models have (o.o.d) **test error?** A: ???

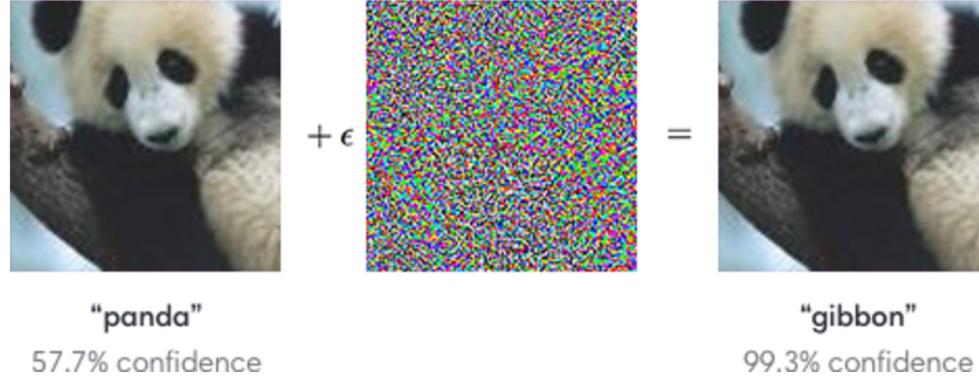
What are adversarial examples? A: The nearest error



Adversarial Examples - The Phenomenon

Why do our models have (o.o.d) **test error?** A: ???

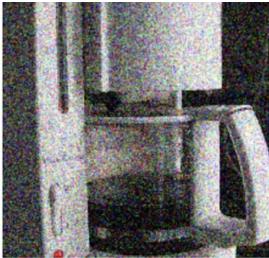
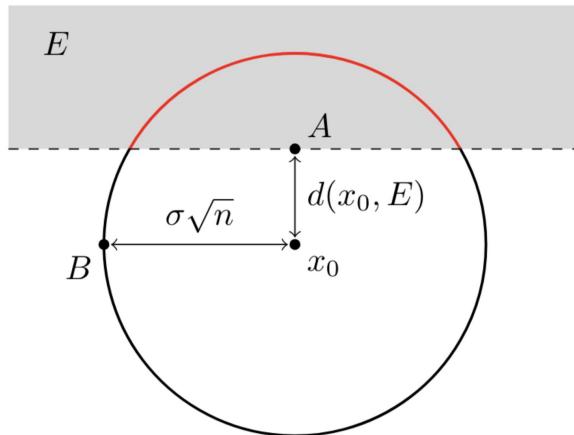
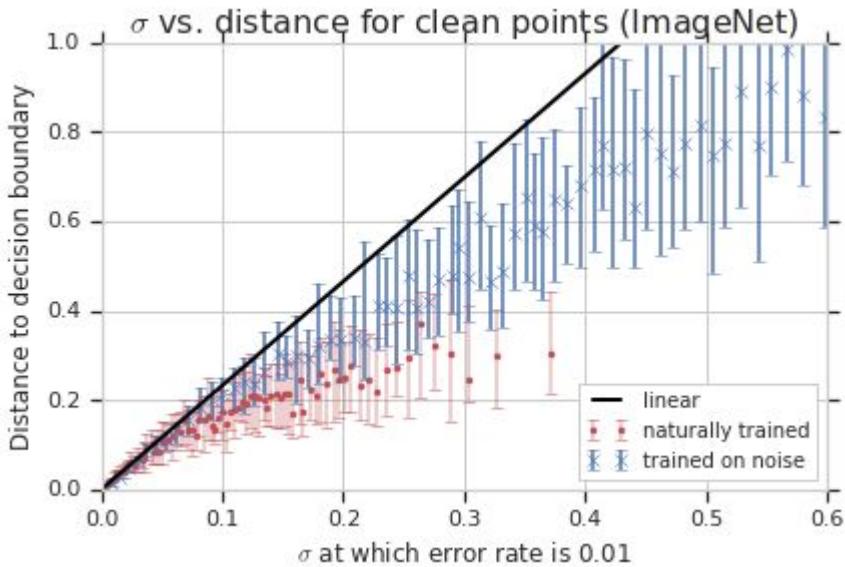
What are adversarial examples? A: The nearest error



Test error > 0 (iid, ood) \rightarrow errors exist \rightarrow there is a nearest error

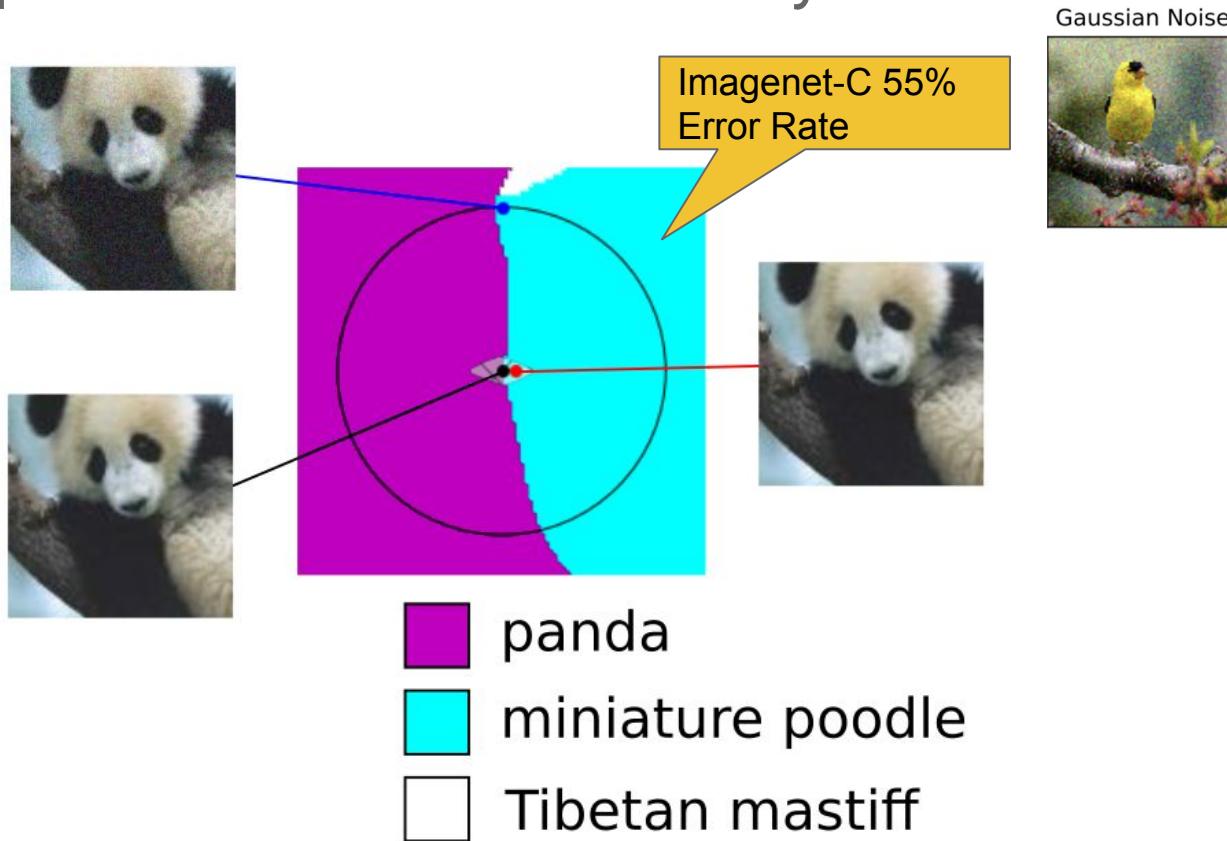
Linear Assumption

1% error rate on random perturbations of norm 79 => adv ex at norm .5



See also Fawzi et. al.

InceptionV3 Decision Boundary



Adversarial Defenses

L_∞ -metric ($\epsilon = 0.3$)			
Transfer Attacks	0.08 / 0%	0.44 / 85%	
FGSM	0.10 / 4%	0.43 / 77%	
FGSM w/ GE	0.10 / 21%	0.42 / 71%	
L_∞ DeepFool	0.08 / 0%	0.38 / 74%	
L_∞ DeepFool w/ GE	0.09 / 0%	0.37 / 67%	
BIM	0.08 / 0%	0.36 / 70%	
BIM w/ GE	0.08 / 37%	∞ / 70%	
MIM	0.08 / 0%	0.37 / 71%	
MIM w/ GE	0.09 / 36%	∞ / 69%	
All L_∞ Attacks	0.08 / 0%	0.34 / 64%	

Adversarial Defenses

Why are we trying to
"defend" against the
nearest error?

L_∞ -metric ($\epsilon = 0.3$)

Transfer Attacks	0.08 / 0%	0.44 / 85%
FGSM	0.10 / 4%	0.43 / 77%
FGSM w/ GE	0.10 / 21%	0.42 / 71%
L_∞ DeepFool	0.08 / 0%	0.38 / 74%
L_∞ DeepFool w/ GE	0.09 / 0%	0.37 / 67%
BIM	0.08 / 0%	0.36 / 70%
BIM w/ GE	0.08 / 37%	∞ / 70%
MIM	0.08 / 0%	0.37 / 71%
MIM w/ GE	0.09 / 36%	∞ / 69%
All L_∞ Attacks	0.08 / 0%	0.34 / 64%

Adversarial Defenses

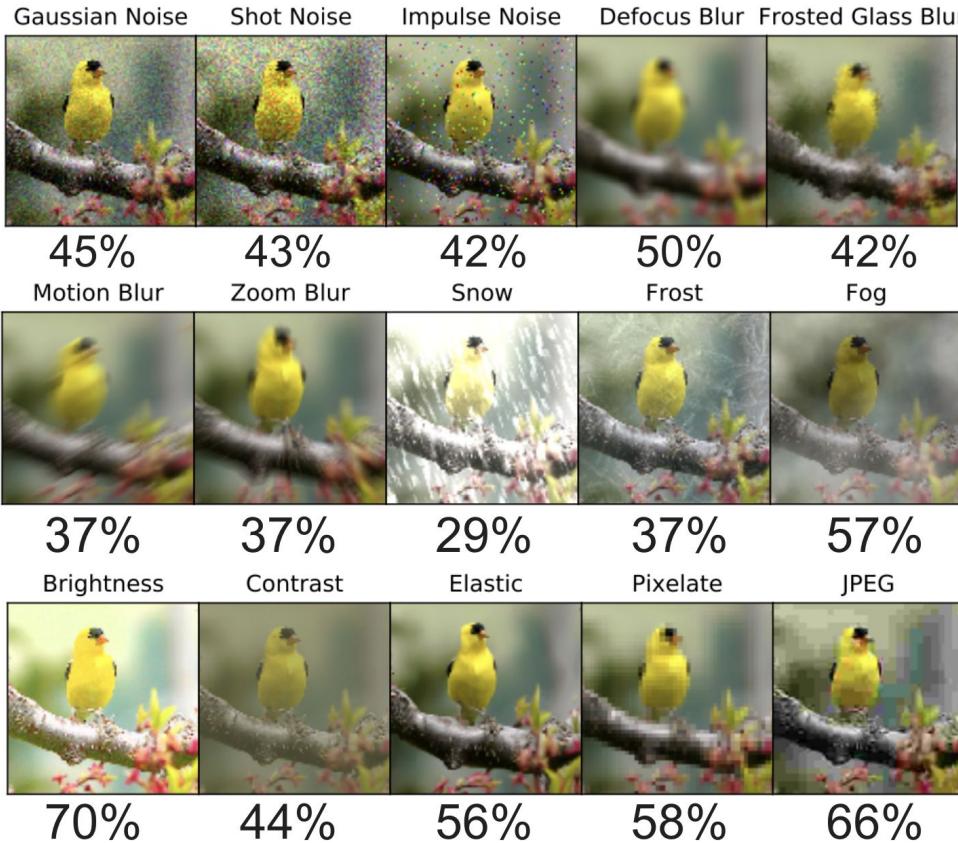
**Why are we trying to
"defend" against the
nearest error?**

**Not a useful measure of
robustness**

L_∞ -metric ($\epsilon = 0.3$)

Transfer Attacks	0.08 / 0%	0.44 / 85%
FGSM	0.10 / 4%	0.43 / 77%
FGSM w/ GE	0.10 / 21%	0.42 / 71%
L_∞ DeepFool	0.08 / 0%	0.38 / 74%
L_∞ DeepFool w/ GE	0.09 / 0%	0.37 / 67%
BIM	0.08 / 0%	0.36 / 70%
BIM w/ GE	0.08 / 37%	∞ / 70%
MIM	0.08 / 0%	0.37 / 71%
MIM w/ GE	0.09 / 36%	∞ / 69%
All L_∞ Attacks	0.08 / 0%	0.34 / 64%

Takeaways



- We should not be surprised that there is a nearest error.
- **The problem to study is robustness to distribution shift.**

Table of Contents

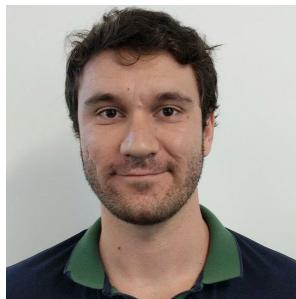
1. Overly optimistic IID test sets
2. Robustness, security and adversarial examples
3. **Why are models so brittle?**

A Fourier Perspective on Model Robustness in Computer Vision

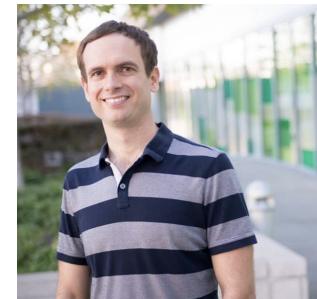
Dong Yin

Raphael Lopez

Jon Shlens



Dogus Cubuk



Justin Gilmer

Common Corruption Benchmark

Gaussian Noise Shot Noise Impulse Noise Defocus Blur Frosted Glass Blur

45%
Motion Blur 43%
Zoom Blur 42%
Snow

50%
Frost 42%
Fog

37%
Brightness 37%
Contrast 29%
Elastic

37%
Pixelate 57%
JPEG

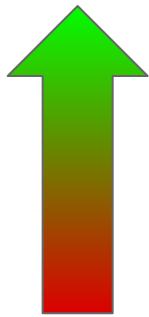
70% 44% 56% 58% 66%

A Motivating Experiment

Adversarial training helps some measures of robustness, but hurts others. Why?

Gaussian Noise

70% Acc



45% Acc

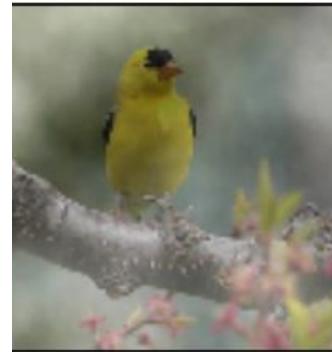
Also helps...

Frosted Glass Blur

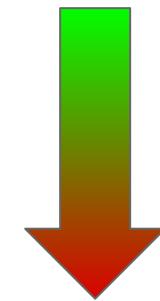
JPEG

Shot Noise

Fog



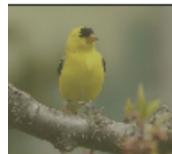
77% Acc



44% Acc

Also hurts...

Contrast



Brightness

Spurious Correlations

Hypothesis:

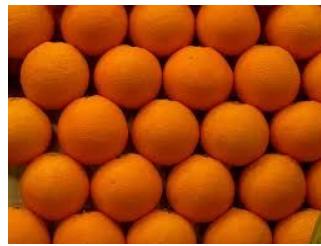
Models lack robustness because they latch onto spurious correlations in the data.

Which correlations they latch onto determines their robustness properties.

Apples

VS

Oranges



Train
ResnetV5000

Eval on IID
Test Set

100% Accuracy

Cheating Models/Spurious Correlations

Apple

Is there more red pixels than orange in the photo?

Totally an Orange!

Yes

No

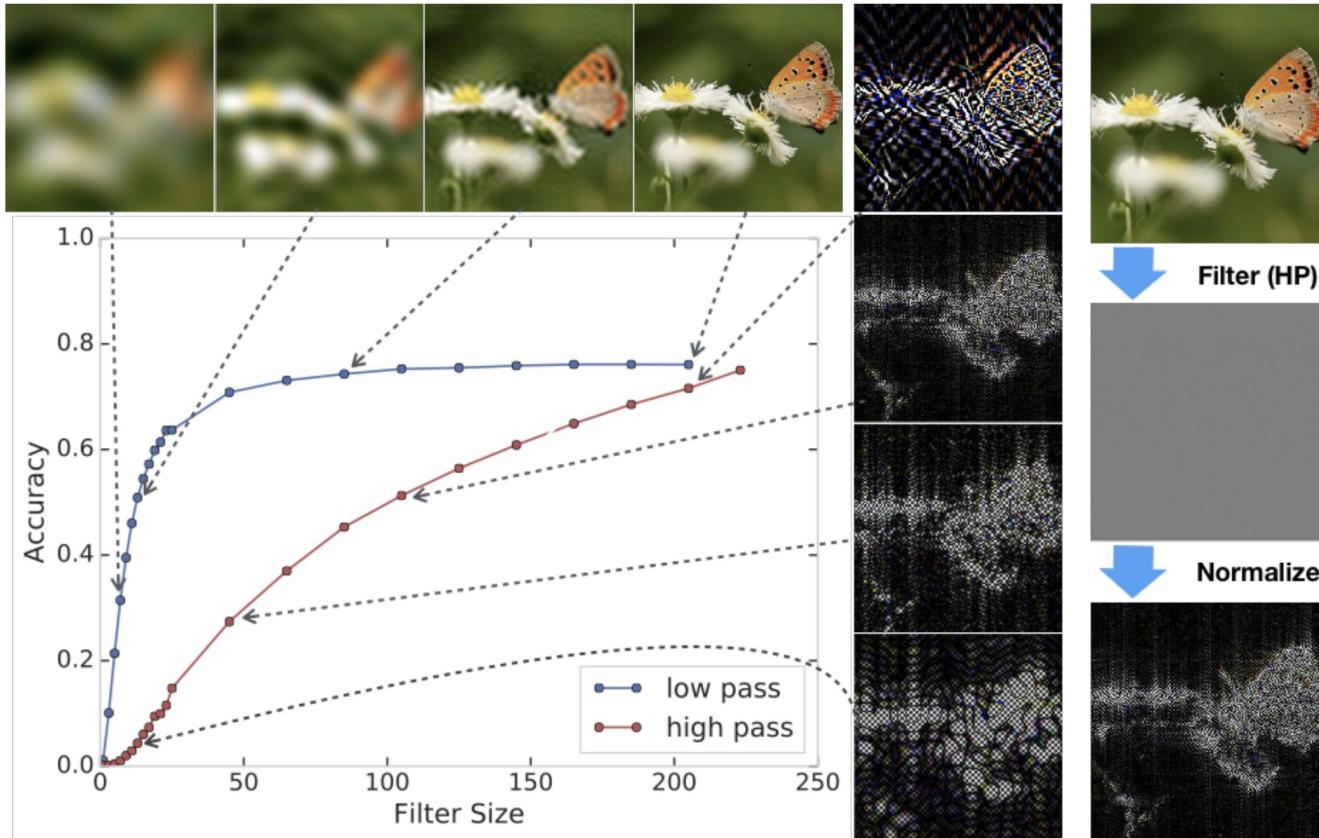
Orange

Spurious Correlations - MNIST

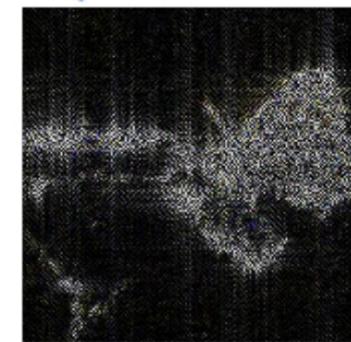
Train

Test

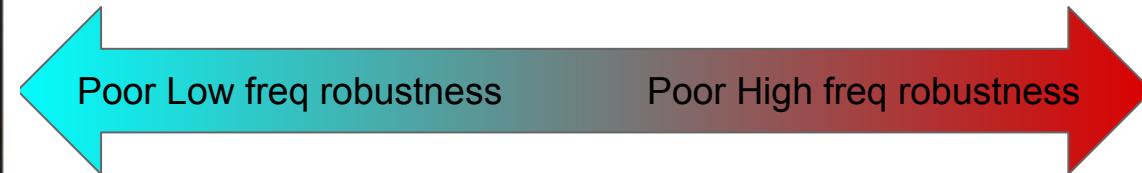
Some spurious correlations may be unintuitive



Main Hypothesis: Model Bias Determines Robustness

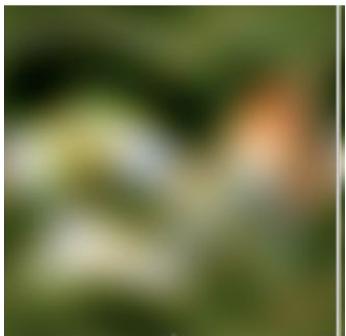


Fog



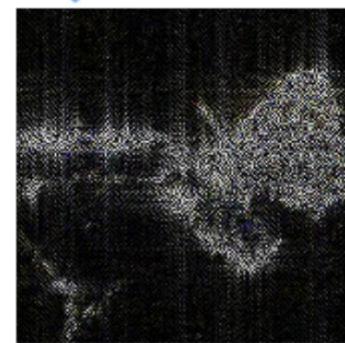
Gaussian Noise

Data Augmentation Shifts Model Bias



Low freq bias

High freq bias



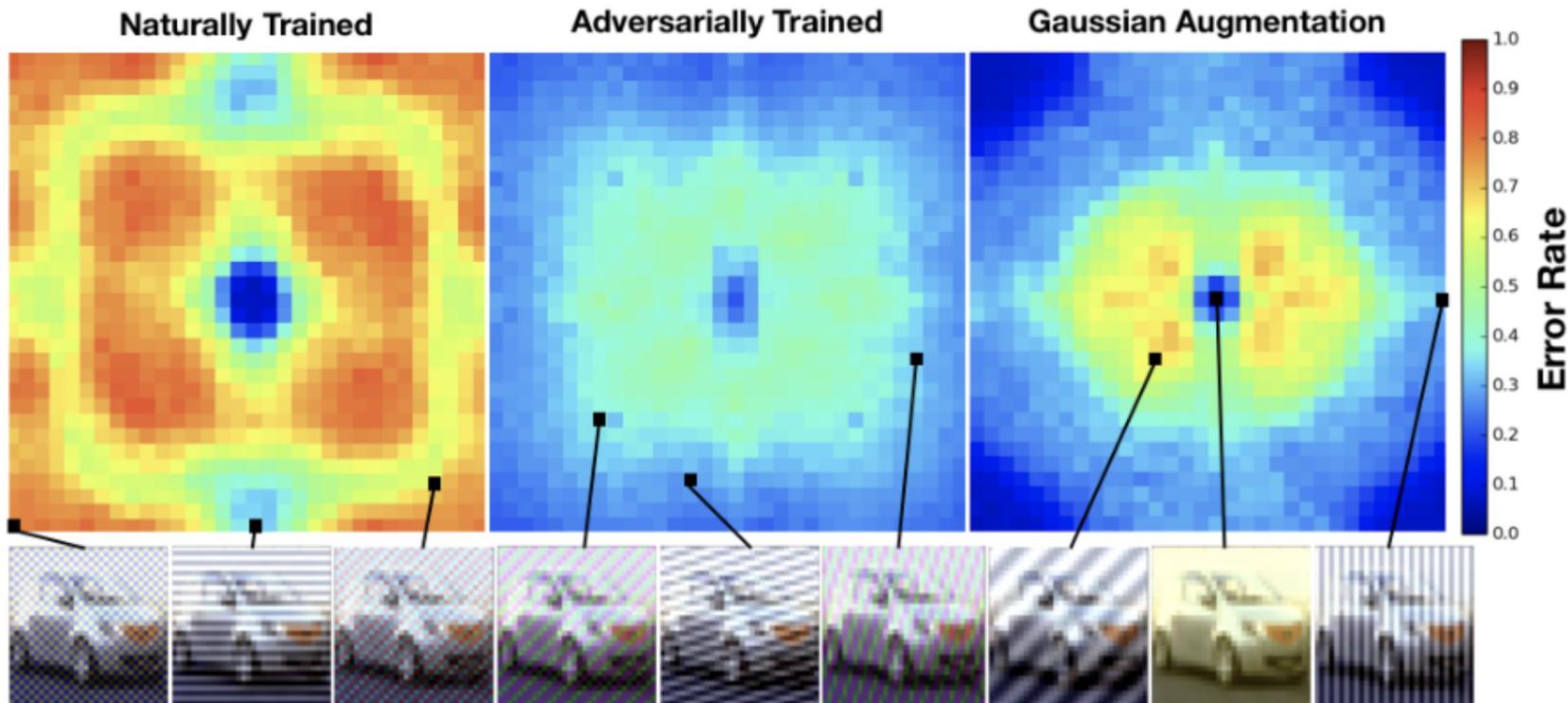
Fog

Poor Low freq robustness

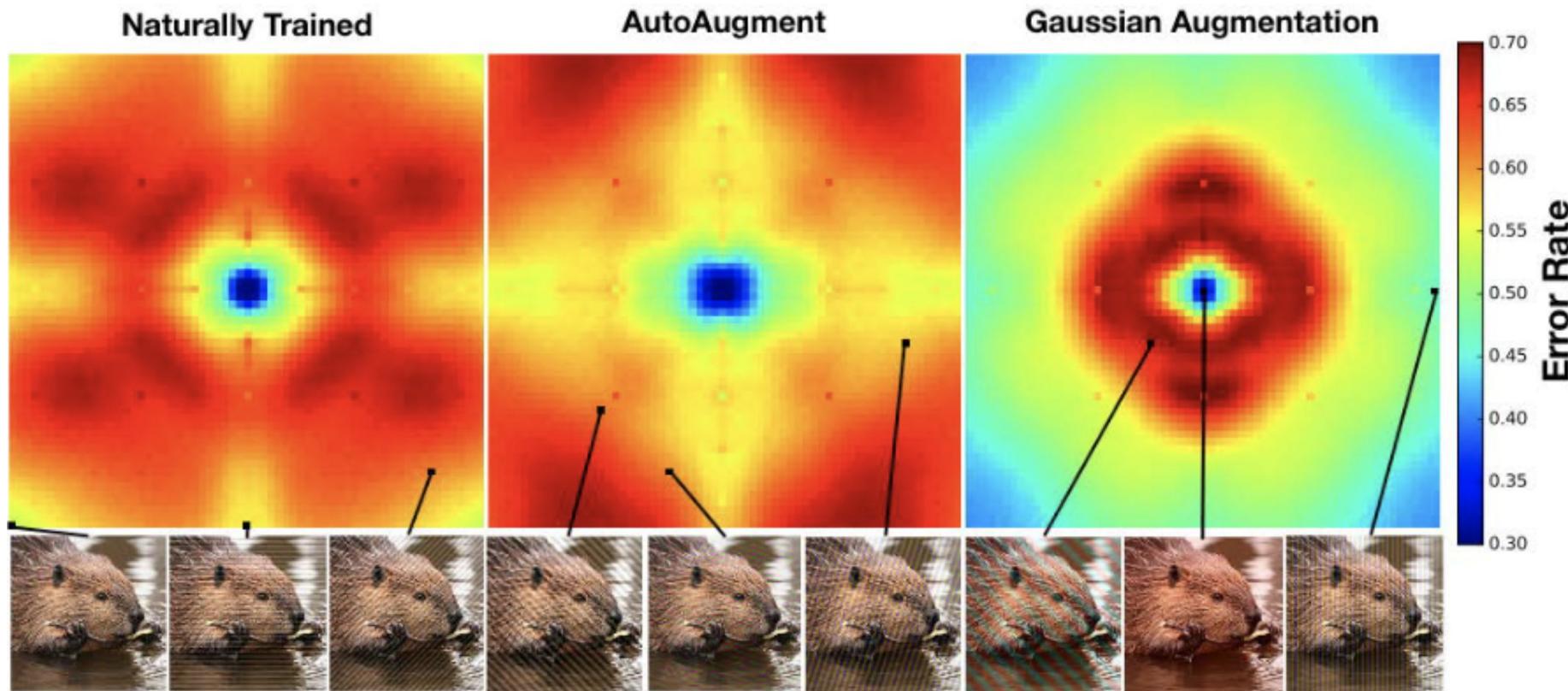
Poor High freq robustness

Gaussian Noise

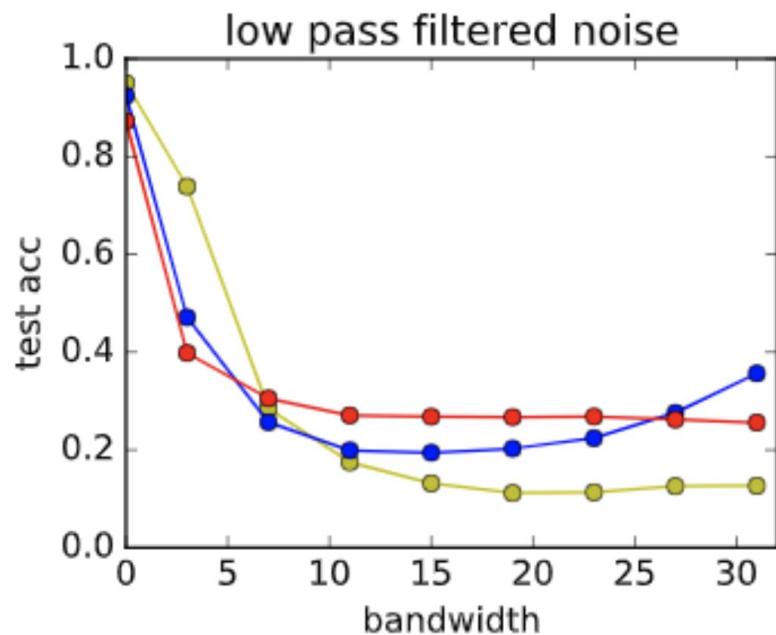
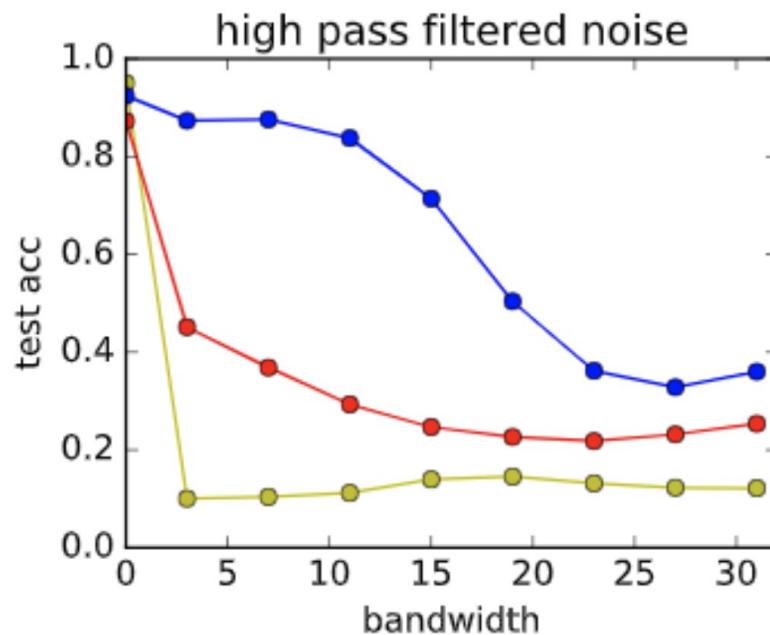
Measuring the Effects of Data Augmentation - CIFAR10



Measuring the Effects of Data Augmentation - Imagenet

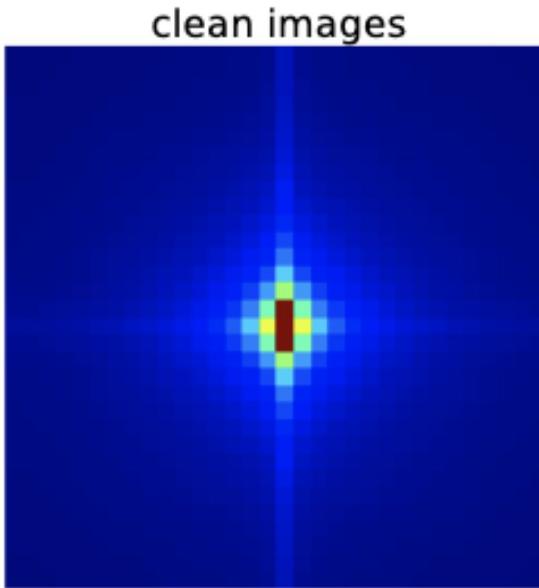
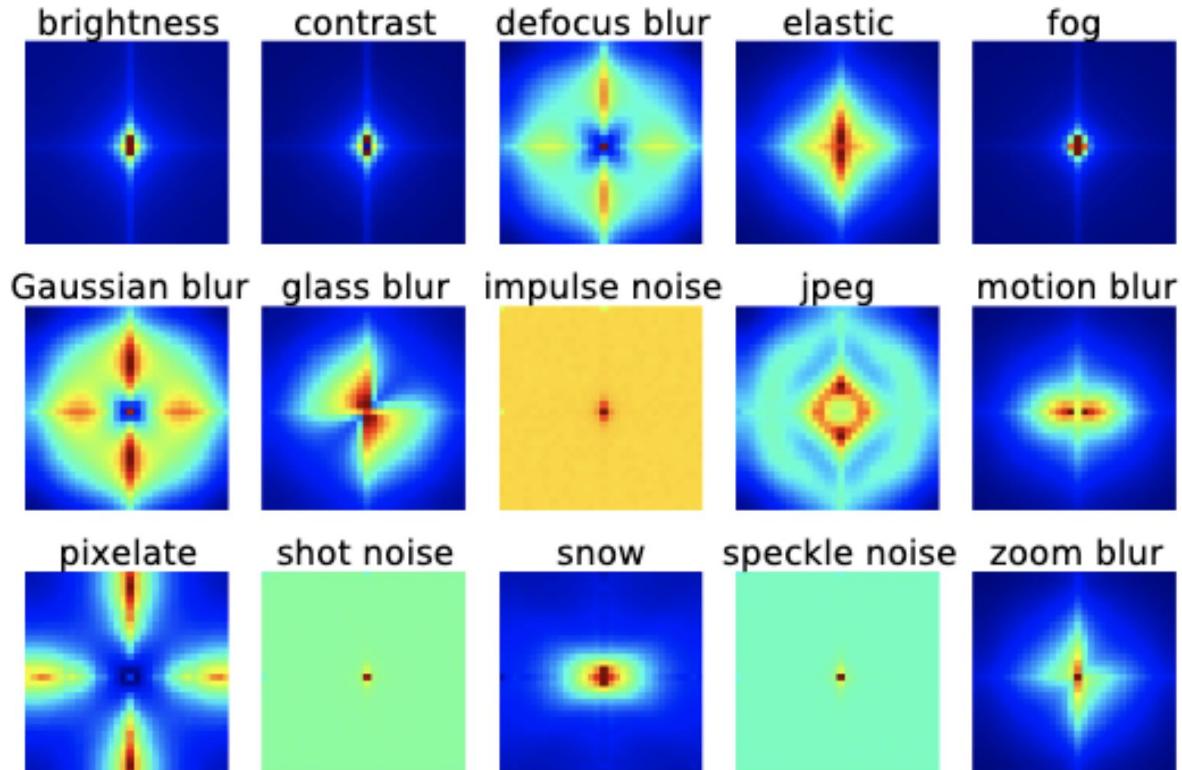


Tradeoffs from Data Aug

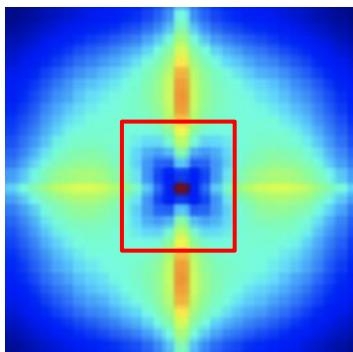
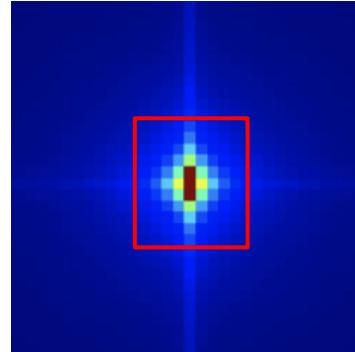
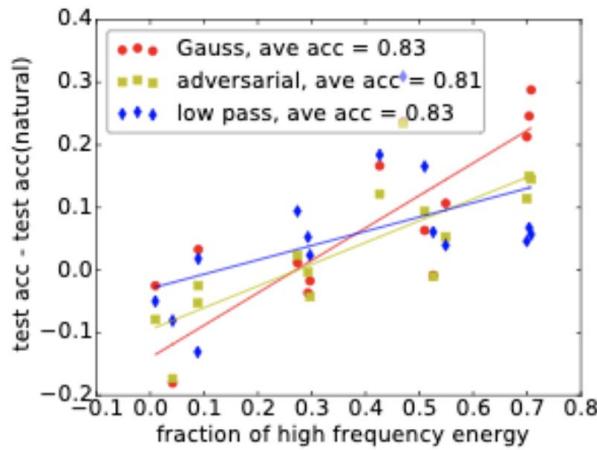
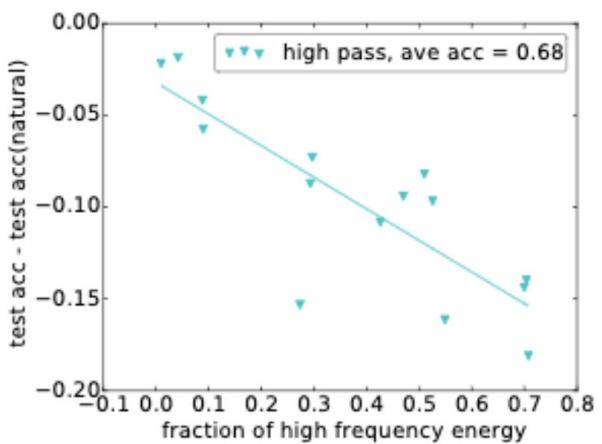
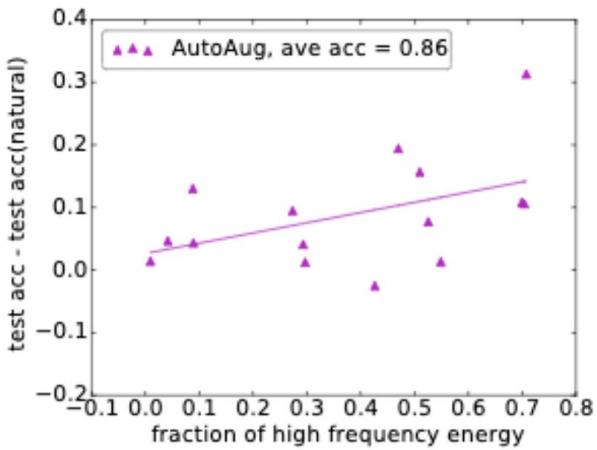


● ● naturally trained ● ● Gaussian augmentation ● ● adversarially trained

A Fourier Perspective on Common Corruptions



Tradeoffs from Data Aug



— k=0.52, r=0.11

— k=0.35, r=0.05

— k=0.23, r=0.18

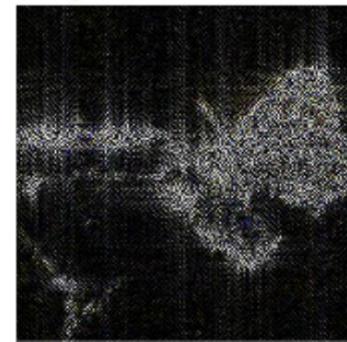
— k=-0.17, r=0.01

— k=0.16, r=0.08

Can we be robust to both high and low frequency?

Low freq bias

High freq bias



Fog

Poor Low freq robustness

??????

Poor High freq robustness

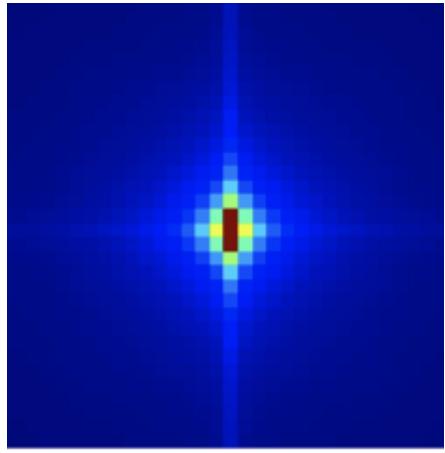
Gaussian Noise

Gaussian Data Augmentation
Adversarial Training
Low pass filtering

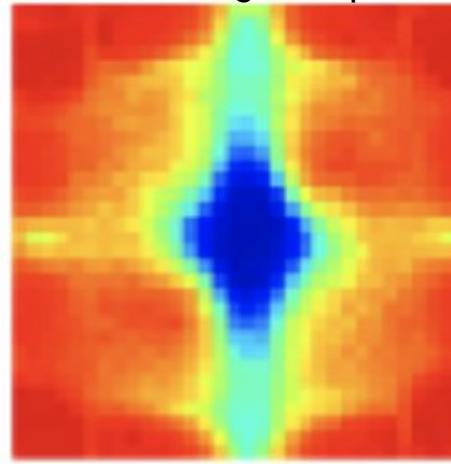
Naturally Trained
High pass filtering

Story is Complicated for Low Frequency Corruptions

Train on "Fog" noise

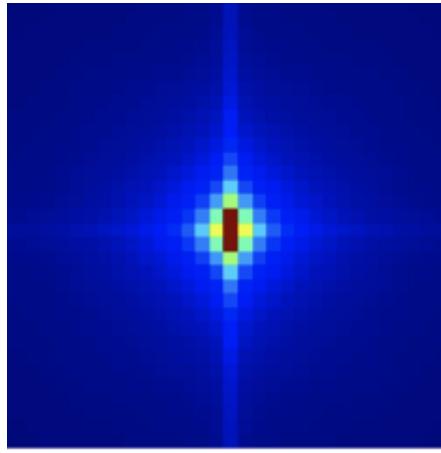


Increase High Freq Bias

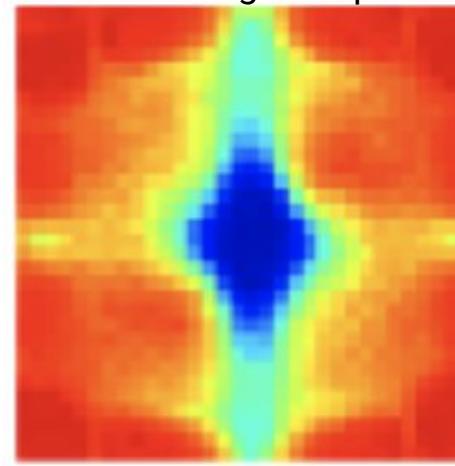


Story is Complicated for Low Frequency Corruptions

Train on "Fog" noise



Increase High Freq Bias



Degraded performance in true fog???

fog severity	1	2	3	4	5
naturally trained	0.9606	0.9484	0.9395	0.9072	0.7429
fog noise augmentation	0.9090	0.8726	0.8120	0.7175	0.4626

Maybe More Diverse Data Augmentation Needed?

	Operation 1	Operation 2
Sub-policy 0	(Posterize,0.4,8)	(Rotate,0.6,9)
Sub-policy 1	(Solarize,0.6,5)	(AutoContrast,0.6,5)
Sub-policy 2	(Equalize,0.8,8)	(Equalize,0.6,3)
Sub-policy 3	(Posterize,0.6,7)	(Posterize,0.6,6)
Sub-policy 4	(Equalize,0.4,7)	(Solarize,0.2,4)
Sub-policy 5	(Equalize,0.4,4)	(Rotate,0.8,8)
Sub-policy 6	(Solarize,0.6,3)	(Equalize,0.6,7)
Sub-policy 7	(Posterize,0.8,5)	(Equalize,1.0,2)
Sub-policy 8	(Rotate,0.2,3)	(Solarize,0.6,8)
Sub-policy 9	(Equalize,0.6,8)	(Posterize,0.4,6)
Sub-policy 10	(Rotate,0.8,8)	(Color,0.4,0)
Sub-policy 11	(Rotate,0.4,9)	(Equalize,0.6,2)
Sub-policy 12	(Equalize,0.0,7)	(Equalize,0.8,8)
Sub-policy 13	(Invert,0.6,4)	(Equalize,1.0,8)
Sub-policy 14	(Color,0.6,4)	(Contrast,1.0,8)
Sub-policy 15	(Rotate,0.8,8)	(Color,1.0,2)
Sub-policy 16	(Color,0.8,8)	(Solarize,0.8,7)
Sub-policy 17	(Sharpness,0.4,7)	(Invert,0.6,8)
Sub-policy 18	(ShearX,0.6,5)	(Equalize,1.0,9)
Sub-policy 19	(Color,0.4,0)	(Equalize,0.6,3)
Sub-policy 20	(Equalize,0.4,7)	(Solarize,0.2,4)
Sub-policy 21	(Solarize,0.6,5)	(AutoContrast,0.6,5)
Sub-policy 22	(Invert,0.6,4)	(Equalize,1.0,8)
Sub-policy 23	(Color,0.6,4)	(Contrast,1.0,8)
Sub-policy 24	(Equalize,0.8,8)	(Equalize,0.6,3)

Table 9. AutoAugment policy found on reduced ImageNet.

AutoAugment Improves robustness on CIFAR-10-C

			noise			blur					weather			digital			
model	acc	mCE	speckle	shot	impulse	defocus	Gauss	glass	motion	zoom	snow	fog	bright	contrast	elastic	pixel	jpeg
natural	77	100	70	68	54	85	73	57	81	80	85	90	95	82	86	73	80
Gauss	83	98	92	92	83	84	79	80	77	82	88	72	92	57	84	90	91
adversarial	81	108	82	83	69	84	82	80	80	83	83	73	87	77	82	85	85
Auto	86	64	81	78	86	92	88	76	85	90	89	95	96	95	87	71	81

- Stylized imagenet training does better on Imagenet-C.
- Current SOTA on Imagenet-C is AugMix, which builds off of AutoAugment.

Takeaways

- Model bias determines robustness.
- Data augmentation can help but there may be tradeoffs.
 - Shift bias towards low frequency -> improve robustness to high frequency.
 - Shift bias towards low frequency -> degrade robustness to low frequency.
- Diversity is needed for more general robustness.
 - See AugMix follow-up <https://openreview.net/forum?id=S1gmrxHFvB>

Thank You!