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Statistical Theory of Quantization 
Bernard Widrow, Life Fellow, IEEE, Istvhn KollL, Senior Member, IEEE, and Ming-Chang Liu 

Abstract- The effect of uniform quantization can often be 
modeled by an additive noise that is uniformly distributed, 
uncorrelated with the input signal, and has a white spectrum. 
This paper surveys the theory behind this model, and discusses 
the conditions of its validity. The applicationi of the model to 
floating-point quantization is demonstrated. 

I. INTRODUCTION 
IGNALS are represented in digital computers by se- S quences of finite bit-length numbers. Mapping of a 

continuous-time, continuous-amplitude signal to a sequence 
of computer numbers requires discretization both in time and 
amplitude: sampling and quantization must be performed (see 
Fig. 1). 

Sampling theory has been elaborately described in the 
literature [ 11-[3], and is well understood. Sampling is a linear 
operation; therefore linear system theory can be applied to the 
analysis of it. The sampled signal can be obtained from the 
continuous-time signal by multiplying it (modulation) with a 
certain impulse carrier [Fig. 2(a)l 141. 

The spectrum of the original signal is repeated along the 
frequency axis [Fig. 2(c)]. When the repeated spectra do not 
overlap, the original spectrum [Fig. 2(b)] cart be restored, and 
its inverse Fourier transform yields the origin(a1 input signal. In 
other words, the sampled signal contains the iiame information 
as the continuous-time signal, and it can be used for the same 
purposes as the original signal. This statement in a precise 
mathematical form is the sampling theorem. 

11. QUANTIZATION AS SAMPLING OF THE 
PROBABILITY DENSITY FUNCTION (PDF) 

Quantization is generally less well understood than sam- 
pling. The reason is that it is a nonlinear operation; therefore 
most people believe that standard tools of linear system theory 
cannot be applied to it. In fact, we will show how linear 
system theory can be precisely used to analyze the effect of 
quantization on moments and other statistical properties of the 
signals. 

Sampling discretizes time, and quantization discretizes am- 
plitude. One would expect that quantizaticn has a similar 
effect on functions of the amplitude as sampling has on 
functions of time. This recognition led Widrow to the study of 
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Fig. 1. Sampling and quantization 
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Fig. 2. The Fourier transform of a time function, and the Fourier transform 
of its samples: (a) a time function being sampled; (b) symbolic representation 
of Fourier transform of time function; and (c) symbolic representation of 
Fourier transform of samples of time function. 

probability density functions (PDF’ s) and to the dlevelopment 
of a statistical theory of quantization in the late 1950’s [5]-[7]. 

The characteristics of a uniform quantizer are pictured in 
Fig. 3(a), and a symbolic representation of quantization as an 
operator is shown in Fig. 3(b). The quantizer input is x, and 
the quantizer output is XI. Quantization is an operation on 
signals that is represented as a “staircase” function. a nonlinear 
relation between x’ and x. 
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Fig. 3. A basic quantizer: (a) input-output characteristic and (b) 
block-diagram symbol of the quantizer. 

Fig. 4. Formation of the PDF of the quantizer output x': area sampling. 

Fig. 4 is a sketch of a typical PDF of the quantizer input and 
output. The input PDF f z ( x )  is smooth, and the output PDF 
fz, (x) is discrete. The reason for this is that each input value 
is rounded toward the nearest allowable discrete level. The 
probability of each discrete output level equals the probability 
of the input signal occurring within the associated quantum 
band. For example, the probability that the output signal has 
the value zero equals the probability that the input signal falls 
between &y/2, where y is the quantization box size. 

Careful study of quantization reveals that the PDF's of the 
input and output signals are related to each other through a 
special type of sampling. The output PDF is a string of Dirac 
delta functions whose areas correspond to the areas under the 
input PDF within the bounds of each quantum box. Cutting 
up the input PDF into strips as in Fig. 4, the area of each strip 
is compressed into an impulse in the center of the strip when 
forming the output PDF. This is like a sampling process, and 
we call it area sampling. 

Area sampling can be accomplished by first convolving the 
input PDF f z ( z )  with a uniform pulse 

0 elsewhere, 

then following this with conventional sampling. A sketch of 
the input PDF is shown in Fig. S(a). The function fn(x) is 
shown in Fig. S(b). The convolution of fn(x) and f z ( x )  is 
illustrated in Fig. 5(c). To do conventional sampling, a uniform 
impulse train is represented in Fig. 5(d). Multiplying this train 
by the convolution gives the impulse train of Fig. 5(e). This 

(e) 

Fig. 5.  Derivation of PDF of z1 from area sampling of the PDF of z: (a) 
PDF of x; (b) rectangular pulse function; (c) convolution of (a) and (b); (d) 
the impulse train; and (e) PDF of z', the product of (c) and (d). 

final impulse train is the PDF of the quantizer output, f z t  (x). 
Every step of the way in going from f z ( x )  to fz '  (x) involves 
linear operations. 

The Fourier transform of the PDF is known in statistics as 
the characteristic function, the CF. The input CF is 

The CF is as useful in quantization theory as the Fourier 
transform of signals is in sampling theory. The input CF 
is sketched in Fig. 6(a), corresponding to the input PDF of 
Fig. 5(a). The Fourier transform of the rectangular pulse, a 
sinc function, is shown in Fig. 6(b), and this corresponds to 
the pulse of Fig. 5(b). The product of the Fourier transforms 
is shown in Fig. 6(c), corresponding to the convolution of 
Fig. 5(c). The product is repeated in the transform domain 
with a "frequency" of Q given by = 2 x 1 ~ .  The repetition a 
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In terms of the bandlimitedness of the CF, a Quantizing 

Quantizing Theorem I (QT I): If the CF of x is “band- 
Theorem can be formulated, as follows. 

limited,” so that 

7 r Q  
@,(U) = 0 for I u I  > - = - 

4 2  
(4) 

then 
the CF of z can be derived from the CF of x’, and 
the PDF of z can be derived from the PDF of z’. 

The proof is straightforward from (3). The quantizing theo- 
rem provides the condition for the output PDF of thie quantized 
signal to contain all the information about the input PDF. In 
other words, we established a one-to-one connection between 
the statistiical descriptions of the input and output signals of 
the quantizer. 

The above considerations lead to another very important 
consequence. By taking the central replica of the CF, or 
equivalently, by interpolating the output PDF, we obtain not 
the input PDF, but its convolution with a uniform PDF. 
Therefore. the central replica of the CF is the product of the 
CF of z and the CF of a uniform distribution. 

The analogy between sampling and quantization is even - -  

~ . , (U  - Q~ sine p(pr a ~ )  more profiound. When a signal is not band-limited, we usually 
apply an anti-aliasing filter to it before sampling. The anti- 
aliasing filter multiplies the spectrum by the trans Fer function 
of the filter, which is zero outside the desired passband. 
Similarly, in quantization we can find a way to rnultiply the 
CF by a desired function. A product of characteristic functions 

*=(U) sinc f 

-2Q -aI 0 aI 2 4  

I w u  1 

/-U -2Q -aI  0 aI 2Q 

(e) 

Fig. 6.  Formulation of area sampling in the CF domain: (a) CF of n:; (b) 
CF of n, the sinc function; (c) CF of n: + n; (d) the repetition of (c); and 
(e) CF of d .  

is shown in Fig. 6(d), and the sum of the repetitions is shown 
in Fig. 6(e). This is a sketch of the Fourier transform of the 
output PDF of Fig. 5(e). A general expression for the CF of 
the quantizer output is 

where sinc ( U )  = sin (U)/.. 

Equation (3) clearly shows the repetition at integer multiples 
of 9, the quantization frequency. This is analogous to the 
sampling radian frequency, R = 27r/T, where T is the 
sampling period. The sampling period is analogous to the 
quantization box size q.  

corresponds to convolution-in the PDF domain, since CF’s 
and PDF’:; are Fourier transform pairs. Convolution of PDF’s 
corresponds to addition of independent random variables. 
Therefore. we can limit the band of the CF by adding an 
independent random variable with limited CF bandwidth to 
the input signal. This auxiliary signal is called dither, well- 
known in the practice of A/D conversion and digital signal 
processing [8]-[ 1 11. This is a very important topic, but because 
of the limiited space, we have to refer here to the literature for 
more detail. 

111. RECONSTRUCTION OF THE INPUT PDF 

It follows from the model described above that as long as 
QT I is satisfied, the output and input PDF’s are uniquely 
related to leach other. Therefore, a crude histogram can be used 
for reconstruction of the input PDF. This is illustrated on age 
distribution of the 1992 US census data [12], see Fig. 7. The 
left-hand plots show histograms artificially made coarser than 
the usual one-year resolution; the right-hand side plots show 
the interpolated results superimposed on the bar gaph  of the 
original census data. It is striking how good the interpolation 
results are even with ten-year input resolution.’ 

‘The distribution has a significant jump at zero, and this makes the 
CF wide, violating QT I. For the calculation of the reconstruction, we 
continued the histogram and the PDF by their mirror images in order to 
avoid these problems. Sinc function interpolation was performed, followed by 
deconvolution of the rectangular pulse. 
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not correspond. But they do correspond exactly when certain 
quantizing theorems apply. 

Refer now to Fig. 6. When QT I is satisfied, the replications 
of Fig. 6(d) do not overlap. When summing the replications, 
the derivatives at the origin in Fig. 6(e), related to the moments 
of d, will correspond exactly to the derivatives at the origin 
in Fig. 6(c), related to the moments of x + n. Thus, when QT 

- *- 5 .  

4 x 4%. - 
U 

o 
Age (year 

(4 (b) I is satisfied, 
Fig. 7. Reconstruction of US age distribution from histograms based on 
I992 census data: (a) ten-year histogram and (b) interpolation of the ten-year 
histogram, superimposed on the original one-year histogram data. E{(z’)k}  = E { ( x  + n)”. (7) 

This relation will allow the moments of x to be calculated 
from the moments of d. 

Equation (7) will apply even when the replicas of Fig. 6(d) 
overlap, as long as the overlap does not impact on the 
derivatives at the origin. This leads to a second quantizing 
theorem that applies to moments. 

n - q P  q I 2  Quantizing Theorem II (QT II): If the CF of x is band- 
(a) (b) limited so that 

X 1  
f” (n )  xqz-J 

++ 
n 

(8) 
2T 

4 

-en L 
Fig. 8. Comparison of quantization with addition of independent noise: (a) 
quantization and noise addition, and (b) PDF of the noise. @,(U) = 0 for Iul > - - E = Q - E ,  

IV. MOMENTS 

The moments of a random variable 5 ,  such as the mean, 
mean square, mean cube, etc., can be determined by taking 
derivatives of the CF at the origin. The kth moment is 

One can verify this by differentiating (2 ) ,  making use of the 
definition 

00 

E { x k }  2 lm x k f z ( x )  dx. (6) 

with E positive and arbitrarily small, then the moments of IC 

can be calculated from the moments of d. 
QT I and QT I1 were first proved by Widrow [5]. He has 

also shown that if QT I or QT I1 holds, the moments of the 
quantized variable are equal to the moments of the sum of the 
input variable and a uniformly distributed noise. This noise has 
a mean of zero, a mean square of q2/12, a mean cube of zero, 
a mean fourth of q4/80, etc. A rearrangement of these relations 
yields Sheppard’s famous corrections [ 131, [ 141, originally 
developed for grouped data under some smoothness conditions 
on the PDF. The most right-hand terms (in parentheses) are 
the Sheppard corrections 

v. THE PDF OF THE QUANTIZER OUTPUT 

It is well known that when two statistically independent 

the CF of the sum is the product of the CF’s of the two 

E { x }  = Ejx’} - (0) 

E { 2 }  = E{ (x’)2} - (A 4 2 )  

E{x3} = E{(x’)3} - ( $  E{d}q2)  

E { 2 }  =E{(5’)4} - ( t  q2E{(x/)2} - &j 44) 

signals are added together, the sum has a PDF which is the 
convolution of the PDF’s of the two signals. Accordingly, 

signals. These facts are very important in the development 
of the statistical theory of quantization. (9) 

It is useful to compare quantization with the addition of 
uniform independent noise. Referring to Fig. 8(a), quantization 
of x yields x‘, and addition of independent noise n yields x+n. 
The PDF of the noise to be added is shown in Fig. 8(b). The 
PDF of x’ is discrete, and the PDF of (x + n) is smooth. The 
latter is equal to the convolution of x, i.e., fz(x), and the PDF 
of n, i.e., fn(x). By inspection of Fig. 5(e), one can deduce 
that the discrete PDF f,~(x) of the quantizer output is equal 
to the samples of the smooth PDF fz+n(x) of the sum of z 
and n. This is true in general, with or without satisfaction of 
the quantizing theorem. 

Sheppard’s corrections allow one to recover the moments of 
x from the moments of IC’. 

The forms of QT I and also QT I1 resemble the sampling 
theorem. The similarity extends even further. Signals are usu- 
ally not perfectly band-limited. None of the random variables 
which occur in practice have a perfectly band-limited CF, 
either. However, most of them are approximately band-limited, 
and a fine enough quantum size (large enough Q) can assure 
acceptable fulfillment of the conditions (4) or (8), by allowing 
the CF to be wide. 

For Gaussian inputs, with standard deviation U,  a simple 
rule of thumb is that when CJ > q, the conditions are 
fulfilled to good approximation. Let’s consider the case q = 
U,  for example. The residual error of the second moment 
after Sheppard’s correction is only 1.1 x 1 0 - s ~ z .  For other 

OF THE QUANTIZER OUTPUT ’IGNAL 

Referring once again to Fig. 8(a), it is useful to compare 
the moments of z’ with those of x + n. In general, they do 
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distributions the CF usually vanishes much more slowly than 
for the Gaussian CF; therefore q must be much smaller than 
the standard deviation for Sheppard’ s corrections to hold 
approximately. 

The precise expressions for the residual errors in Sheppard’s 
corrections are rather complex. Simple upper bounds for 
these errors can be obtained as follows. For many distribu- 
tions, the envelope of the CF vanishes for large values of 
U as O[l/(Au)P],  where p 2 1 depends oln the probability 
distribution. Using this upper bound, it can be shown that 
the effect of the overlap at the origin in the characteristic 
function domain [see Fig. 6(e)], causing residual errors in 
Sheppard’s corrections, can be approximated by a similar 
negative power function of the amplitude A. and this yields a 
simple expression of a minimum A (or a maximum q when 
A is fixed) [15]. 

VII. STATISTICS OF QUANTIZATION NOISE 

We define the quantization noise U to be the difference 
between the output and the input of the quantiizer. Accordingly, 

(10) U = 2’ - x. 

We would like to know about the statistical properties of the 
quantization noise. We do know that it is lbounded between 

The PDF of the quantization noise fv(x) can be computed in 
the manner illustrated in Fig. 9. A given value of U results from 
quantization of x falling at just the right places within all of the 
quantization boxes. The probability of getting a given value 
of U is the sum of probabilities from all of the quantization 
boxes. The PDF of U may therefore be constructed by cutting 
the PDF of x into strips, and stacking and adding them. It has 
been shown [6], [7] that the PDF of the quantization noise will 
be exactly uniform if either QT I or QT I1 is !satisfied. As such, 
quantization noise has zero mean and a meart square of q2/12. 

The necessary and sufficient condition for the quantization 
noise to be uniform was developed by Siipad and Snyder 
[ 161. The condition is satisfied when the CF is equal to zero at 
27rl/q, I = fl, f 2 ,  . . . . This is a condition milder than QT 11. 

A 

w 2 .  

VIII. CROSS-CORRELATION BETWEEN 
QUANTIZATION NOISE AND THE QUANTIZER INPUT 

Fig. 10 shows how one could measure quantization noise 
I/, defined by (10). It is of great interest to’ know the cross- 
correlation between the quantization noise ,and the quantizer 
input, to learn something about their relationship. It is clear, 
first of all, that the noise and the input are deterministically 
related. For a given input, there is a definite output and a 
definite difference between output and input. Although the 
quantization noise and the quantizer input are deterministically 
related, it is a curious fact that under certain circumstances, the 
input and noise are uncorrelated. It had been shown by Widrow 
[6], [7] that when either QT I or QT I1 is satisfied, quantization 
noise is uncorrelated with the signal being quantized. These 
conditions are met with Gaussian inputs to a very close 
approximation even when the quantization step size is as large 

Box- 1 $ 
Box 1 41 Sum * 

X n - q / 2  q p  - 

Fig. 9. Construction of the PDF of quantization noise. 

v Quantization noise 

Fig. 10. 
its input. 

as q = cr. Similar results are obtained with finer quantization 
for other input PDF’s. 

Quantization noise, the difference between the quantizer output and 

IX. PSEUDO QUANTIZATION NOISE: THE PQN MODEL 

Refer <once again to Fig. 8(a), where quantization is con- 
trasted with the addition of independent uniformly distributed 
noise. The addition of independent noise and quantization 
are not the same, since the quantizer adds noise that is 
deterministically related to the signal being quantized. But 
when the conditions for QT I or QT I1 are met, all moments 
and joint moments correspond exactly for quantization and 
the addition of independent uniformly distributed noise. For 
example, when QT I or QT I1 is satisfied, 

E{(z’)’”} = E { ( x  + @} 

E { z V }  = E{z”i} 

(11) 
E { V k }  = E { d }  (12) 

= E{z”E{nl} (13) 

for all positive integers k and 1. 
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If the quantizer is embedded in a system with feedforward 
or feedback parts or both, the quantizer may be replaced for 
purposes of moment calculation when QT I or QT I1 is satisfied 
by a source of additive independent uniformly distributed 
noise. This noise is called pseudo quantization noise (PQN), 
and the additive noise model replacing quantization is called 
the PQN model. 

X. HIGH-ORDER STATISTICAL 
DESCRIPTION OF QUANTIZATION 

Refer now to Fig. 1. To describe the statistics of the 
multiple-sample quantizer input, a multidimensional joint PDF 
would be required. These are high-order statistical descrip- 
tions. 

High-order forms of QT I and QT I1 exist. They can be 
stated as follows. 

Multidimensional Quantizing Theorem I (QT I): If the CF 
of a sequence of quantizer input samples is “band-limited” 
in N-dimensions, so that 

for any IC E [I, NI (14) 

then 
the CF of xl, . . .  , X N  can be derived from the CF of 

the PDF of 2 1 ,  . . . , X N  can be derived from the PDF of 

Multidimensional Quantizing Theorem II (QT II): If the CF of 
xl, . . . , XN is band-limited in N-dimensions, so that 

xi, . . .  , xL, and 

X i ,  . . . , xh. 

@zl,  ... , ZN (Ul, . . . , U N )  = 0 
271. 

4 
when /ukl > - - E = Q - E  

for any k E [l, NI (15) 

with E positive and arbitrarily small, then the moments 
of 5 1 ,  . . .  , XN can be calculated from the moments of 

When conditions are met for either high-order QT I or QT 11, 
a high-order PQN model applies, and the moments related 
to quantization will correspond exactly to those pertaining 
to the addition of independent noise, noise samples that are 
independent of the input signal and independent of each other 
over time. Thus, when either QT I or QT I1 is satisfied, the 
quantization noise among other things is uniformly distributed 
in multidimensions, white, and uncorrelated with the quantizer 
input. It has a mean of zero and a mean square of q2/12.  

The exact condition of whiteness was given by Sripad and 
Snyder [16] in terms of the joint CF of two input samples as2 

X i ,  . . .  > XIN. 

*The condition in the original paper of Sripad and Snyder contains a typo; 
we give here the correct version. 

0.9 

P.11.2 

Fig. 11. 
correlation coefficient of the quantizer input. The input is Gaussian. 

Correlation coefficient of the quantization noise as a function of the 

for every integer value of 11 and 12, except (11, 1 2 )  = (0, 0). 
This condition is quite difficult to apply in practice; therefore 
alternative formulations are of great importance (see below). 

In practice, input CF’s are not exactly band-limited, and 
the quantizing theorems apply only approximately. High-order 
CF’s have some overlap with their repetitive parts, and this 
impacts their moments. If the quantizer input is Gaussian 
with q as big as 0, correlations among input samples as 
high as 99% will cause correlations among corresponding 
quantization noise samples of only 1%. The quantization 
noise will be essentially white, having a flat spectrum and an 
impulsive autocorrelation function almost without regard to the 
autocorrelation function of the quantizer input. Fig. 11 shows 
theoretical plots of correlation coefficients of quantization 
noise samples versus correlation coefficients of corresponding 
quantizer input samples. Similar curves were derived by 
Widrow in 1956 [6]. 

An approximate condition of whiteness was developed in 
[17] as 

where the constant K may be equal to 1 . . .  2, depending 
on the input PDF; a uniformly applicable value is K = 1. 
Condition (17) is easy to check by measurement. 

XI. APPLICATTON OF UNIFORM QUANTIZATION THEORY TO 
ANALYSIS OF FLOATING-POINT QUANTIZATION 

Scientific calculations are almost exclusively done using 
floating-point number representation, and also more and more 
digital signal processors contain floating-point arithmetic. 
Therefore, it is of high importance to develop models that 
account for floating-point roundoff effects. 

Floating-point quantization was extensively discussed in the 
literature [ 181-[24]. Generally the properties of the relative 
error are investigated: the quantization error of the input x is 
approximated by 



WIDROW et al.: STATISTICAL THEORY OF QUANTIZATION 359 

2 

4- Compressor 
8A t Expande:r 

Y’ 
L Q -  

4A 

2A 

Nonlinear Uniform quantizer Inverse 
function (“Hidden quantizer”) nonlinear 

function 
- 4’ gain = 1 

Fig. 14. A model of a floating-point quantizer. 
- 

Fig. 12. 
3-bit mantissa, i.e., p = 3. 

Input-output staircase function for a floating-point quantizer with a Fig. 15, The input-output characteristic of the compressor, 

YFL 

Fig. 13. 
Gaussian input, 0 = 64A, and with a 2-bit mantissa. 

The PDF of floating-point quantization noise with a zero-mean 

where E is independent of x, has a special (trapezoid-like) 
distribution, and its width is determined by the bit length of 
the mantissa. The results of uniform quantization are usually 
not applied to floating-point quantization, because of the 
nonuniform overall characteristic of the latter. In this section 
we will demonstrate that application of the statistical theory 
of quantization to floating-point quantizers is a very fruitful 
approach. There is not enough space here to go into all details: 
instead, we will highlight the most important ideas. 

A floating-point quantizer characteristic is illustrated in 
Fig. 12. This is clearly a nonuniform quantizer. Its quantization 
noise, L/FL  = 2’ - x, has a strange type of PDF that we call 
a “skyscraper distribution” (Fig. 13). 

However, it is possible to represent the floating-point quan- 
tizer by the combination of a piecewise linear compressor, a 
uniform quantizer (the “hidden quantizer”), and a piecewise 
linear expander (Figs. 14 and 15), like in the compandors for 
speech coding. The expander is the inverse of the compressor. 

If we can determine the properties of the compressed signal, 
uniform iquantization theory can be applied to the uniform 
quantizer, and, after application of the expander, we have a 
working model. 

The PDF of the compressed signal contains huge jumps 
at the breakpoints of the compressor [Fig. 16(a)]. This seems 
to prevent the use of the quantizing theorems. However, it 
turns out that for bit numbers used in practice, especially 
for the IEEE single- and double-precision standards [25], 
the conditions of the quantization theorems are fulfilled very 
closely. This is illustrated for much coarser quantization, with 
p = 4 and p = 8 in Fig. 16(b) and (c), where p is the number of 
bits of the. mantissa. Then, the hidden quantizer can be replaced 
by its PQN model. The expander, which is the exact inverse 
of the compressor (Fig. 15), is approximately an exponential 
function. Therefore, with reasonable approximation, which can 
be analyzed more closely, the floating-point mise can be 
expressed as 

where A is the width of the linear sections of the expander. 
This approximate model supports the idea of representing the 
floating-point quantization noise by means of a relative error 
as in (18). 

Systematic use of the PQN model leads to simple and useful 
results. Some highlights are the following: 

VFL is “skyscraper-distributed” (see Fig. 13) 

for most distributions, E { v i L }  % 0.180 x 2-2pE{x2} 

VFL is white for all practical cases. 

E { V F L }  = 0 

cov (x, VFL} = 0 



360 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 45, NO. 2, APRIL 1996 

o.20i 0.15 In 
0.05 t J -L 

(b) (c) 

Fig. 16. PDF of compressor output and of hidden quantization noise when 
z is zero-mean Gaussian with 0 = lOOA: (a) f g ( y ) ;  (b) fv(v) for p = 4 
( q  = A/8); and (c) f v ( v )  for p = 8 ( q  = A/128). 

These and further results can be applied to scientific com- 
plltations and floating-point signal processing, as floating- 
point digital filters, floating-point FFT, and so on. Deriva- 
tions, proofs, and applications will be given in a forthcoming 
Prentice-Hall book entitled “Quantization Noise,” by Widrow 
and KollBr [26]. Other useful and related references are 
[27]-[35]. 

XII. CONCLUSIONS 
A brief survey of the statistical theory of quantization was 

presented. The most important results were summarized, and 
application of the theory to floating-point quantization was 
presented. This theory is a very powerful tool to analyze 
statistical properties of quantized variables and of estimators 
calculated from them. 
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