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he fields of adaptive signal 
processing and adaptive neural 
networks have been developing 

independently but have the adaptive linear 
combiner (ALC) in common. With its 
inputs connected to a tapped delay line, the 
ALC becomes a key component of an 
adaptive filter. With its output connected 
to a quantizer, the ALC becomes an adap- 
tive threshold element or adaptive neuron. 

Adaptive filters have enjoyed great 
commercial success in the signal process- 
ing field. All high-speed modems now use 
adaptive equalization filters. Long- 
distance telephone and satellite communi- 
cations links are being equipped with 
adaptive echo cancelers to filter out echo, 
allowing simultaneous two-way commu- 
nications. Other applications include noise 
canceling and signal prediction. 

Adaptive threshold elements, on the 
other hand, are the building blocks of neu- 
ral networks. Today neural nets are the 
focus of widespread research interest. 
Areas of investigation include pattern 
recognition and trainable logic. Neural 
network systems have not yet had the com- 
mercial impact of adaptive filtering. 

The commonality of the ALC to adap- 
tive signal processing and adaptive neural 
networks suggests the two fields have 
much to share with each other. This arti- 
cle describes practical applications of the 
ALC in signal processing and pattern 
recognition. 

A new multilayer 
adaptation algorithm 

that descrambles 
output and reproduces 

original patterns is 
advancing the 

practicality of neural- 
network pattern- 

recognition systems. 

The adaptive linear 
combiner 

The ALC shown in Figure 1 is the basic 
building block for most adaptive systems. 
The output is a linear combination of the 
many input signals. The weighting coeffi- 
cients comprise a weight vector. The input 
signals comprise an input signal vector. 
The output signal is the inner product or 
dot product of the input signal vector with 

the weight vector. The output signal is 
compared with a special input signal called 
the desired response, and the difference is 
the error signal. To optimize performance, 
the ALC's weighting coefficients or 
weights are generally adjusted to minimize 
the mean square of the error signal. Of the 
many adaptive algorithms to  adjust the 
weights automatically, the most popular is 
the Widrow-Hoff LMS (least mean 
square) algorithm devised in 1959.' 

Adaptive filters. Digital signals gener- 
ally originate from sampling continuous 
input signals by analog-to-digital conver- 
sion. Digital signals are often filtered by 
means of a tapped delay line or transver- 
sal filter, as shown in Figure 2a. The sam- 
pled input signal is applied to a string of 
delay boxes, each delaying the signal by 
one sampling period. An ALC is seen con- 
nected to the taps between the delay boxes. 
The filtered output is a linear combination 
of the current and past input signal sam- 
ples. By varying the weights, the impulse 
response from input to output is directly 
controllable. Since the frequency response 
is the Fourier transform of the impulse 
response, controlling the impulse response 
controls the frequency response. The 
weights are usually adjusted so that the 
output signal will provide the best least- 
squares match over time to the desired- 
response input signal. 

The literature reports many other forms 
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Figure 1. Adaptive linear combiner (ALC). 

W L  

output h- signal 
adaptive 

filter 
input 
signal 

+ signal 

Figure 2. Adaptive digital filter: (a) details of a tapped-delay-line digital filter; (b) 
symbolic representation of an adaptive filter. 

of adaptive filters.’ Some use feedback to 
obtain both poles and zeros. The filter of 
Figure 2a realizes only zeros. Adaptive 
filters based on lattice structures achieve 
more rapid convergence under certain con- 
ditions. However, the simplest, most 
robust, and most widely used filter is that 
of Figure 2a adapted by the LMS algo- 
rithm. Figure 2b shows a symbolic repre- 
sentation of an adaptive filter. 

Adaptive threshold element. Figure 3 
shows an adaptive threshold element, a 
key component in adaptive pattern recog- 
nition systems. It consists of an adaptive 
linear combiner cascaded with a quantizer. 
The output of the ALC is quantized to pro- 
duce a binary “decision.” Most often, the 
inputs are binary and the desired response 
is binary. As such, the adaptive threshold 
element is trainable and capable of imple- 
menting binary logic functions. The LMS 
algorithm was originally developed to 
train the adaptive threshold element of 
Figure 3. This element was called an adap- 
tive linear neuron or Adaline.’ 

The adaptive threshold element was an 
early neuronal model. The adaptive 
weights were analogous to synapses. The 
input vector components related to the 
dendritic inputs. The quantized output 
was analogous to  the axonal output. The 
output decision was determined by a 
weighted sum of the inputs, in much the 
same way real neurons were believed to 
behave. 

Adaptive signal 
processing 

The adaptive filter of Figure 2b has an 
input signal and produces an output sig- 
nal. The desired response is supplied dur- 
ing training. A question naturally arises: 
If the desired response were known and 
available, why would one need the adap- 
tive filter? Put another way, how would 
one obtain the desired response in a prac- 
tical application? There is no general 
answer to these questions, but studying 
successful examples provides some insight. 

Example 1-system modeling. In many 
engineering and scientific applications, a 
system of unknown structure has observ- 
able input and output signals. One way of 
obtaining knowledge about the unknown 
system’s dynamic response is to apply its 
input to an adaptive filter and to  use its 
output as the adaptive filter’s desired 
response. (See Figure 4.) The adaptive fil- 
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Figure 3. Adaptive threshold element (Adaline). 

ter develops an impulse response to match 
that of the unknown system since the fil- 
ter and the system develop similar outputs 
when driven by the same input. 

Example 2-statistical prediction. One 
can estimate future values of time- 
correlated digital signals from present and 
past input samples. Wiener3 has devel- 
oped optimal linear least-squares filtering 
techniques for signal prediction. When the 
signal’s autocorrelation function is 
known, Wiener’s theory yields the impulse 
response of the optimal filter. More often 
than not, however, the autocorrelation 
function is unknown and may be time- 
variable. One could use a correlator to 
measure the autocorrelation function and 
plug this into Wiener theory to get the 
optimal impulse response, or one could get 
the optimal prediction filter directly by 
adaptive filtering. Figure 5 illustrates the 
latter approach. 

In this figure, the input signal delayed 
by A time units is fed to an adaptive filter. 
The undelayed input serves as the desired 
response for this adaptive filter. The filter 
weights adapt and converge to produce a 
best least-squares estimate of the present 
input signal, given an input that is this very 
signal delayed by A. The optimal weights 
are copied into a “slave filter” whose input 
is undelayed and whose output therefore 
is a best least-squares prediction of the 
input A time units into the future. 

Example 3-noise canceling. Separating 
a signal from additive noise is a common 

Figure 4. System modeling. 
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Figure 5. An adaptive statistical predictor. 
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problem in signal processing. Figure 6a 
shows a classical approach to this problem 
using optimal Wiener or Kalman filter- 
ing.3 The purpose of the optimal filter is 
to pass the signals without distortion while 
stopping the noise no. In general, this can- 
not be done perfectly. Even with the best 

filter, the signal is distorted, and some 
noise goes through to the output. 

Figure 6b shows another approach to 
the problem using adaptive filtering. This 
approach is viable only when an additional 
“reference input” is available containing 
noise n l ,  which is correlated with the 

original corrupting noise no. In Figure 6b. 
the adaptive filter receives the reference 
noise, filters it, and subtracts the result 
from the noisy “primary input,” s+ no. 
For this adaptive filter, the noisy input 
s + no acts as the desired response. The 
“system output” acts as the error for the 
adaptive filter. Adaptive noise canceling 
generally performs much better than the 
classical approach since the noise is sub- 
tracted out rather than filtered out. 

One might think that some prior knowl- 
edge of the signal s or of the noises no and 
nl would be necessary before the filter 
could adapt to produce the noise-canceling 
signal y .  A simple argument will show, 
however, that little or no prior knowledge 
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Figure 6. Separation of signal and noise: (a) classical approach; (b) adaptive noise- 
canceling approach. 

Molher’a 
CIdiK 
VOCtOT 

F C t d  
urdirc 
MclQ 

Chnt 
/ Ioda 

~ 

Figure 7. Canceling maternal heartbeat in fetal electrocardiography: (a) cardiac 
electric field vectors of mother and fetus; (b) placement of leads. 

of s, no, or nl or of their interrelationships 
is required. 

Assume that s, no, nl and y are statisti- 
cally stationary and have zero means. 
Assume that s is uncorrelated with no and 
nl and suppose that nl is correlated with 
no. The output is 

Squaring, one obtains 

f 2  = d + (no-y)Z + &(no-y) (2) 

Taking expectations of both sides of Equa- 
tion 2, and realizing that s i s  uncorrelated 
with no and withy, yields 

E[L21 = E[?] + E[(no-y)2] 
+ = W n o  -Y)l 

= E[.+] + E[(no-Y)21 (3) 

Adapting the filter to minimize E[.c2] will 
not affect the signal power E[?]. Accord- 
ingly, the minimum output power is 

Ernin[f2l = + ~ r n i n [ ( n o - ~ ) ~ ~  (4) 

When the filter is adjusted so that E[c2] 
is minimized, E [ ( n ~ - y ) ~ ]  is therefore also 
minimized. The filter output y is then a 
best least-squares estimate of the primary 
noise no. Moreover, when E[(no-y)’] is 
minimized, E[(f  -s)’] is also minimized, 
since, from Equation 1, 

Adjusting or adapting the filter to  mini- 
mize the total output power is tantamount 
to  causing the output to  be a best least- 
squares estimate of the signal s for the 
given structure and adjustability of the 
adaptive filter and for the given reference 
input. 
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There are many practical applications 
for adaptive noise canceling techniques. 
One involves canceling interference from 
the mother’s heart when attempting to rec- 
ord clear fetal electrocardiograms. Figure 
7 shows the location of the fetal and mater- 
nal hearts and the placement of the input 
leads. The abdominal leads provide the 
primary input (containing fetal ECG and 
interfering maternal ECG signals), and the 
chest leads provide the reference input 
(containing pure interference, the mater- 
nal ECG). Figure 8 shows the results. The 
maternal ECG from the chest leads was 
adaptively filtered and subtracted from the 
abdominal signal, leaving the fetal ECG. 
This was an interesting problem since the 
fetal and maternal ECG signals had spec- 
tral overlap. The two hearts were electri- 
cally isolated and worked independently, 
but the second harmonic frequency of the 
maternal ECG was close to the fundamen- 
tal of the fetal ECG. Ordinary filtering 
techniques would have great difficulty 
with this problem. 

Example 4-adaptive echo canceling. 
Echo is a natural phenomenon in long- 
distance telephone circuits because of 
amplification in both directions and series 
coupling of telephone transmitters and 
receivers at each end of the circuit. Echo 
suppressors, used to break the feedback, 
give one-way communication to the party 
speaking first. To avoid switching effects 
and to permit simultaneous two-way 
transmission of voice and data, adaptive 
echo cancelers are replacing echo suppres- 
sors worldwide (see Figure 9). 

In Figure 9, the delay boxes represent 
transmission delays in the long line. Note 
that separate circuits are normally used in 
each direction because the repeater ampli- 
fiers used to overcome transmission loss 
are one-way devices. Hybrid transformers 

prevent incoming signals from coupling 
through the telephone set and passing as 
outgoing signals. Hybrids are balanced to 
do this by designing them for the average, 
local telephone circuit. Since each local cir- 
cuit has its own length and electrical 
characteristics, the hybrid cannot do its 
job perfectly. Using an adaptive filter to 
cancel any incoming signal that might leak 
through the hybrid eliminates the possibil- 
ity of echo. The circuit of Figure 9 works 

well, allowing simultaneous two-way com- 
munication without echo. 

Example 5-inverse modeling. Figure 4 
showed use of an adaptive filter for direct 
modeling of an unknown system to obtain 
a close approximation to its impulse and 
frequency responses. By changing the con- 
figuration, it is possible to use the adaptive 
filter for inverse modeling to obtain the 
reciprocal of the unknown system’s trans- 

,Mother 

(C) 

Figure 8. Result of fetal ECG experiment (bandwidth, 3-35 Hz; sampling rate, 256 
Hz): (a) reference input (chest lead); (b) primary input (abdominal lead); (c) noise 
canceler output. 
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Figure 9. Long-distance system with adaptive echo cancellation. 
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fer function. The idea is illustrated in Fig- that A is set to zero delay. To make the 
ure 10. The output of the unknown system error small, the cascade of the unknown 
is the input to the adaptive filter. The system and the adaptive filter needs a unity 
unknown system's input delayed transfer function. Therefore, using an 
by A time units is the desired response of adaptive algorithm to make the error small 
the adaptive filter. For simplicity, assume causes the adaptive filter to  develop a 
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Figure 10. Inverse modeling. 

transfer function that is the inverse of that 
of the unknown system. 

If the response of the unknown system 
contains a delay or is nonminimum phase, 
allowing a nonzero delay A will be highly 
advantageous. Including A delays the 
inverse impulse response but yields a much 
lower mean-square error. In some appli- 
cations, one would like to make this delay 
as small as possible. In other applications, 
this delay is of no concern except that it 
should be chosen to minimize the mean- 
square error. Applications for inverse 
modeling exist in the field of adaptive con- 
trol, in geophysical signal processing, 
where it is called "deconvolution," and in 
telecommunications for channel equali- 
zation. 

Example 6-channel equalization. Tel- 
ephone channels, radio channels, and even 
fiber optic channels can have non-flat fre- 
quency responses and nonlinear phase 
responses in the signal passband. Sending 
digital data at  high speed through these 
channels often results in a phenomenon 
called "intersymbol interference," caused 
by signal pulse smearing in the dispersive 

adaptive 
/equalizer 
1 

I 
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I 

Figure 11. Adaptive channel equalizer with decision-directed learning. 
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medium. Equalization in data modems 
combats this phenomenon by filtering 
incoming signals. A modem’s adaptive fil- 
ter, by adapting itself to become a channel 
inverse, can compensate for the irregular- 
ities in channel magnitude and phase 
response. 

The adaptive equalizer in Figure 11 con- 
sists of a tapped delay line with an adap- 
tive linear combiner connected to the taps. 
Deconvolved signal pulses appear at the 
weighted sum, which is quantized to pro- 
vide a binary output corresponding to the 
original binary data transmitted through 
the channel. The ALC and its quantizer 
comprise a single Adaline. Any least- 
squares algorithm can adapt the weights, 
but the telecommunications industry uses 
the LMS algorithm almost exclusively. 

In operation, the weight at a central tap 
is generally fixed at unit value. Initially, all 
other weights are set to zero so that the 
equalizer has a flat frequency response and 
a linear phase response. Without equaliza- 
tion, telephone channels can provide 
quantized binary outputs that reproduce 
the transmitted data stream with error 
rates of IO- ’  or less. As such, the quan- 
tized binary output can be used as the 
desired response to train the neuron. It is 
a noisy desired response initially. Sporadic 
errors cause adaptation in the wrong direc- 
tion, but on average, adaptation proceeds 
correctly. As the neuron learns, noise in 
the desired response diminishes. Once the 
adaptive equalizer converges, the error 

rate will typically be or less. The 
method, called “decision-directed” learn- 
ing, was invented by Robert W. Lucky of 
AT&T Bell Labs.4 

Figure 12a shows the analog response of 
a telephone channel carrying high-speed 
binary pulse data. Figure 12b shows an 
“eye” pattern, which is the same signal 
after going through a converged adaptive 
equalizer. Equalization opens the eye and 
allows clear separation of + 1 and - 1 
pulses. Using a modem with an adaptive 
equalizer enables transmitting about four 
times as much data through the same chan- 
nel with the same reliability as without 
equalization. 

Integrated services digital network 
(ISDN), a new concept now in develop- 
ment and deployment, makes high-speed 
digital communication possible through 
ordinary local copper telephone circuits. 
ISDN requires both adaptive equalization 
and adaptive echo canceling at each line 
termination. The number of adaptive 
filters to be used in the world’s telecommu- 
nications plant will be massive. 

Adaptive pattern 
recognition 

The adaptive threshold element of Fig- 
ure 3 can be used for pattern recognition 
and as a trainable logic device. It can 
be trained to classify input patterns into 

two categories. For these applications, 
the zeroth weight, WO, has a constant 
input x0 = + 1 which does not change 
from input pattern to pattern. Varying 
the zeroth weight varies the threshold 
level of the quantizer. 

Linear separability. With n binary 
inputs and one binary output, a single neu- 
ron of the type shown in Figure 3 is capa- 
ble of implementing certain logic 
functions. There are 2” possible input pat- 
terns. A general logic implementation 
would be capable of classifying each pat- 
tern as either + 1 or - 1, in accord with the 
desired response. Thus, there are 2’” pos- 
sible logic functions connecting n inputs to 
a single output. A single neuron is capable 
of realizing only a small subset of these 
functions, known as the linearly separable 
logic functions.’ These are the set of logic 
functions that can be obtained with all pos- 
sible settings of the weight values. 

Figure 13 shows a two-input neuron, 
and Figure 14 shows all of its possible 
binary inputs in pattern vector space. In 
this space, the coordinate axes are the com- 
ponents of the input pattern vector. The 
neuron separates the input patterns into 
two categories, depending on the values of 
the input-signal weights and the bias 
weight. A critical thresholding condition 
occurs when the analog responsey equals 
zero: 

(6) y = X l W ,  + X2W’ + WO = 0 

3.50 . 
I I 

175 

0 3 
P 
8 0  

- 

f 
C w 

- 1  75 

-3.50 ! . I I 
0 0.2 0.4 0.6 0.8 1 .o 

Relative bit time 

(a) 

0 0) - - 
P 

5.50 

2.75 

- g o  
m 

5 

5.50 

2.75 

0 0) - - 
P 
- g o  
m 

5 

-2.75 

-5.50 

-2.75 

-5.50 
0 0.2 0.4 0.6 0.8 l:o 

Relative bit time 

(b) 

Figure 12. Eye patterns produced by overlaying cycles of the received waveform: (a) before equalization; (b) after equalization. 
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Figure 13. A two-input neuron. 
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Figure 15. A two-neuron form of Madaline (many Addines). 

Figure 14 graphs this linear .relation, 
which comprises a separating line having 
slope and intercept of 

(8) slope = - (wI/wz) 
intercept = - (wo/w2) 

The three weights determine slope, inter- 
cept, and the side of the separating line 
that corresponds to a positive output. The 
opposite side of the separating line cor- 
responds to a negative output. 

The input/output mapping obtained in 
Figure 14 illustrates an example of a 
linearly separable function. An example of 
a nonlinearly separable function with two 
inputs is the following: 

(+l, +1)- +1 
(+l, -1)- - 1  
(-1, -1)- + 1  
(-1. + l ) +  - 1  

(9) 

No single line exists that can achieve this 
separation of the input patterns. 

With two inputs, a single neuron can 
realize almost all possible logic functions. 
With many inputs, however, only a small 
fraction of all possible logic functions are 
linearly separable. The single neuron can 
realize only linearly separable functions 
and generally cannot realize most func- 
tions. However, combinations of neurons 
or networks of neurons can be used to real- 
ize nonlinearly separable functions. 

Nonlinear separability-Madaline net- 
works. In the early 1960s at Stanford, 
Ridgway6 initiated an approach to the 
implementation of nonlinearly separable 
logic functions. He connected retinal 
inputs to adaptive neurons in a single layer 
and, in turn, connected their outputs to a 
fixed logic device providing the system 
output. Methods for adapting such nets 
were developed at that time. In the exam- 
ple network shown in Figure 15, two Ada- 
lines are connected to an AND logic device 
to provide an output. Systems of this type 
were called Madalines (many Adalines). 
Today such systems would be called small 
neural nets. 

With weights suitably chosen, the 
separating boundary in pattern space for 
the system of Figure 15 would be as shown 
in Figure 16. This separating boundary 
implements the nonlinearly separable logic 
function of Equation 9. 

Madalines were constructed with many 
more inputs, with many more neurons in 
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the first layer, and with fixed logic devices 
such as AND, OR, and MAJority vote- 
taker in the second layer. Those three func- 
tions, as illustrated in Figure 17, are in 
themselves threshold logic functions. The 
weights given will implement these func- 
tions, but the weight choices are not 
unique. 

Layered neural nets. The Madalines of 
the 1960s had adaptive first layers and 
fixed threshold functions for the second 
(output) layers.6” The feed-forward neu- 
ral nets of the 1980s have many layers, and 
all layers are adaptive. The back- 
propagation method of Rumelhart et aL8 
is perhaps the best-known example of a 
multilayer network. A three-layer feed- 
forward adaptive network is illustrated in 
Figure 18. 

Adapting the neurons in the output 
layer is simple, since the desired responses 
for the entire network (given with each 
input training pattern) are the desired 
responses for the corresponding output 
neurons. Given the desired responses, 
adaptation of the output layer can be a 
straightforward exercise of the LMS algo- 
rithm. The fundamental difficulty 
associated with adapting a layered net- 
work lies in obtaining desired responses 
for the neurons in the layers other than the 
output layer. The back-propagation algo- 
rithm (first reported by Werbos’ and later 
rediscovered by Parker” and by Rumel- 
hart et al.’) is one method for establishing 
desired responses for the neurons in the 
“hidden layers,” those layers whose neu- 
ronal outputs do not appear directly at the 
system output (see Figure 18). There is 
nothing unique about the choice of desired 
outputs for the hidden layers. 

Generalization in layered networks is a 
key issue. The question is, how well do 
multilayered networks perform with 
inputs for which they were not specifically 
trained? The question of generalization is 
important, and theorists are developing 
some good examples where useful gener- 
alizations take place. Many different 
algorithms may be needed for the adapta- 
tion of multilayered networks to produce 
required generalizations. Without gener- 
alization, neural nets will be of little 
engineering significance. Merely learning 
the training patterns can be accomplished 
by storing these patterns and their 
associated desired responses in a look-up 
table. 

The layered networks of Rumelhart et 
al.’ use neuronal elements like the Ada- 
line of Figure 3, except that the quantizer 

X 

ting 

Figure 16. Separating boundaries for the Madaline of Figure 15. 
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Figure 17. Neuronal implementation of AND, OR, and MAJ logic functions. 

March 1988 33 



ADALINE ADALINE 
Neurons Neurons + L 

Input 

pattern 

t 
Hidden 
IO\,-* 

t 
Hidden 
l iwar  

Figure 18. A three-layer adaptive neural network. 

or threshold device is a soft-limiting “sig- 
moid” function rather than the hard- 
limiting “signum” function of the Ada- 
line. The various back-propagation 
algorithms for adapting layered networks 
of neurons require differentiability along 
the network’s signal paths and cannot 
work with the Adaline element’s hard 
limiter. The sigmoid function has the 
necessary differentiability. However, it 
presents implementational difficulties if 
the neural net is ultimately constructed 
digitally. For this reason, we developed a 
new algorithm for adapting layered 
networks of Adaline neurons with hard- 
limiting quantizers. The new algorithm is 
an extension of the original Madaline 
adaptation rule6*’ and is called Madaline 
rule I1 or MRII. The idea is to adapt the 
network to properly respond to the newest 
input pattern while minimally disturbing 
the responses already trained-in for the 
previous input patterns. Unless this prin- 
ciple is practiced, it is difficult for the net- 
work to simultaneously store all of the 
required pattern responses. 

LMS or Widrow-Hoff delta rule for the 
single neuron. The LMS algorithm applied 
to the adaptation of the weights of a sin- 
gle neuron embodies a minimal distur- 

bance principle. This algorithm can be 
written as 

The time index or adaption cycle number 
is k.  W,  + is the next value of the weight 
vector, Wk is the present value of the 
weight vector, &is the present input pat- 
tern vector, and Ek is the present error 
(that is, the difference between the desired 
response dk and the analog output before 
adaptation). Applying the above recursion 
formula to each adaption cycle reduces the 
error by the fraction a .  That is, at  the kth 
cycle, the error is 

Changing the weights changes (reduces) 
the error: 

In accordance with the LMS rule (Equa- 
tion lo),  the weight change is as follows: 

Combining Equations 12 and 13, we 
obtain 

A&k = - XIaEkXk / I xk I ’ 
= -aEkxlxk/ (Xk(’ (14) 
= -aEk 

Therefore, the error is reduced by a factor 
of a as the weights are changed while hold- 
ing the input pattern fixed. Putting in a 
new input pattern starts the next adapta- 
tion cycle. The next error is then reduced 
by a factor of a,  and the process continues. 

The choice of a controls stability and 
speed of convergence.’ Stability requires 
that 

2 > a > 0  (15) 

Making a greater than 1 generally does not 
make sense, since the error would be over- 
corrected. Total error correction comes 
with a = 1 .  A practical range for a is 

1.0 > a > 0.1 (16) 

The weights change proportionately 
with their inputs in accordance with the 
LMS algorithm (see Equation 10). With 
the usual binary inputs 1 and 0, no adap- 
tation occurs for weights with 0 inputs. 
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Thus, the symmetric inputs + 1 and - 1 
are generally preferred. 

To verify that the LMS rule embodies 
the minimal disturbance principle, refer to 
Equation 13. The weight-change vector 
A wk is chosen to be parallel to the input 
pattern vector xk. From Equation 12, the 
change in the error is equal to the negative 
dot product of Xk with AWk, thus achiev- 
ing the needed error correction with the 
smallest magnitude of weight vector 
change. When adapting to  respond 
properly to a new input pattern, the 
responses to previous training patterns are 
therefore minimally disturbed, on the 
average. The algorithm also minimizes 
mean square error,’the property for 
which it is best known. 

Adaptation of layered neural nets by the 
MRII rule. The minimal disturbance prin- 
ciple can be applied to the adaptation of 
Figure 18’s layered neural network. 
Presenting an input pattern and its 
associated desired responses to the net- 
work, the training objective is to reduce 
the number of errors to as low a level as 
possible. Accordingly, when the first train- 
ing pattern is presented, the first layer will 
adapt as required to reduce the number of 
response errors at the final output layer. 
In accordance with the minimal distur- 
bance principle, the first-layer neuron 
whose analog response is closest to zero is 
given a trial adaptation in the direction to 
reverse its binary output. When the rever- 
sal takes place, the second-layer inputs 
change, the second-layer outputs change, 
and consequently the network outputs 
change. A check is made to see if this 
reduces the number of output errors for 
the current input pattern. If so, the trial 
change is accepted. If not, the weights are 
restored to their previous values, and the 
first-layer neuron whose analog response 
is next closest to zero is trial adapted, 
reversing its response. I f  this reduces the 
number of output errors, the change is 
accepted. If not, the weights are restored, 
and one goes on to adaptively switch the 
neuron with an analog response next 
closest to zero, and so on, disturbing the 
neurons as little as possible. After adapt- 
ing all neurons whose output reversals 
reduced the number of output errors, neu- 
rons are then chosen in pair combinations 
and trial adaptations are made which can 
be accepted if output errors are reduced. 
After adapting the first-layer neurons in 
singles, pairs, triples, etc., up to a predeter- 
mined limit in combination size (simula- 
tion results indicate pairwise trials are 
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Figure 19. One slab of a left-right, up-down translation invariant network. 

sufficient in layers having up to 25 Ada- 
lines), the second layer is adapted to fur- 
ther reduce the number of network output 
errors. The method of choosing the neu- 
rons to be adapted in the second layer is the 
same as that for the first layer. If further 
error reduction is needed, the output layer 
is then adapted. This is straightforward, 
since the output-layer desired responses 
are the given desired responses for the 
entire network. After adapting the output 
layer, the responses will be correct. The 
next input pattern vector and its associated 
desired responses are then applied to the 
neural network, and the adaptive process 
resumes. 

When training the network to respond 
correctly to the various input patterns, the 
“golden rule” is give the responsibility to 
the neuron or neurons that can most eas- 
ily assume it. In other words, don’t rock 
the boat any more than necessary to 
achieve the desired training objective. 
(Simulation results using this minimal- 
disturbance MRII algorithm are presented 
later.) 

Application of layered networks to pat- 
tern recognition. It would be useful to 
devise a neural net configuration that 
could be trained to classify an important 

set of training patterns as required, but 
have these network responses be invariant 
to translation, rotation, and scale change 
of the input pattern within the field of 
view. It should not be necessary to train the 
system with the specific training patterns 
of interest in all combinations of transla- 
tion, rotation, and scale. 

The first step is to show that a neural 
network having these properties exists. 
(The invariance methods that follow are 
extensions of results reported earlier by 
Widrow.’) The next step is to obtain 
training algorithms to achieve the desired 
objectives. 

Invariance to up-down, left-right pat- 
tern translation. Figure 19 shows a planar 
network configuration (a “slab” of neu- 
rons) that could be used to map a retinal 
image into a single-bit output so that, with 
proper weights in the network’s neurons, 
the response will be insensitive to left-right 
and/or up-down translation. The same 
slab structure can be replicated, with 
different weights, to allow the retinal pat- 
tern to be independently mapped into 
additional single-bit outputs, all insensitive 
to left-right, up-down translation. 

Figure 20 illustrates the general idea. A 
retinal image having a given number of 
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Figure 20. A translation-invariant preprocessor network and an adaptive two-layer descrambler network. 

pixels can be mapped through an array of 
slabs into a different image having the 
same, more, or fewer pixels, depending on 
the number of slabs used. In any event, the 
mapped image is insensitive to up-down, 
left-right translation of the original image. 
The mapped image in Figure 20 is fed to a 
set of Adaline neurons that can be easily 
trained to provide output responses to the 
original image as required. This amounts 
to a “descrambling” of the preprocessor’s 
outputs. The descrambler’s output 
responses classify the original input images 
and, at the same time, are insensitive to 
their left-right, up-down translations. 

In the systems of Figures 19 and 20, the 
elements labeled “AD” are Adalines. 

Those labeled “MAJ” are majority vote- 
takers. (If the number of input lines to 
MAJ is even and there is a tie vote, these 
elements are biased to give a positive 
response.) The AD elements are adaptive 
neurons and the MAJ elements are fixed 
neurons, as in Figure 17. 

In the system shown in Figure 19, the 
structuring of the weights so that the out- 
put is insensitive to left-right and up-down 
translation needs further explanation. Let 
the weights of each Adaline be arranged in 
a square array and the corresponding reti- 
nal pixels arrayed in a square pattern. Let 
the square matrix (W,) designate the 
array of weights of the upper-left Adaline, 

and let TDI( Wl) be the array of weights of 
the next lower Adaline. The operator To1 
represents “translate down one,” so the 
second set of weights is the same as the top- 
most set, but translated down en masse by 
one pixel. The bottom row wraps around 
to comprise the top row. The patterns on 
the retina itself wrap around on a cylinder 
when they undergo translation. The 
weights of the next lower Adaline are 
Tm(W1), and those of the next lower 
Adaline are TD3(W,). Returning to the 
upper-left Adaline, let its neighbor to  the 
right be designated by TRI( “1). with TRI 
being a “translate right one” operator. 
The pattern of weights for the entire array 
of Adalines in Figure 19 is 

36 COMPUTER 



“0 500 lo00 1500 2000 2500 

Pattern Presentations 

Figure 21. Learning curve for a two-layer, 25 x 25 adaptive descrambler. 
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(17) 

As the input pattern moves up, down, 
left, or right on the retina, the roles of the 
various Adalines interchange. Since all 
Adaline outputs are equally weighted by 
the MAJ element, translating the input 
pattern up-down and/or left-right on the 
retina has no effect on the MAJ element 
output. 

The set of “key” weights ( W , )  can be 
randomly chosen. Once chosen, they can 
be translated according to Equation 17 to 
fill out the array of weights for the system 
of Figure 19. This array of weights can be 
incorporated as the weights for the first 
slab of Adalines shown in Figure 20. The 
weights for the second slab would require 
the same translational symmetries, but be 
based on a different randomly chosen set 
of key weights (Wz).  The mapping func- 

tion of the second slab would therefore be 
distinct from that of the first slab. 

The translational symmetries in the 
weights called for in Figure 19 could be 
fixed and manufactured in, or they could 
be arrived at through training. If, when 
designing an application-specific pattern 
recognition system, one knew that trans- 
lational invariance would be required, it 
would make sense to manufacture the 
appropriate symmetry into a fixed weight 
system, leaving only the final-output Ada- 
line layers plastic and trainable (see Figure 
20). Such a preprocessor would definitely 
work, would provide very high speed 
response without scanning and searching 
for pattern location and alignment, and 
would be an excellent application of neu- 
ral nets. 

Invariance to rotation. Figure 20 
represents a system for preprocessing reti- 
nal patterns with a translation-invariant 
fixed neural net followed by a two-layer 
adaptive descrambler net. The system can 

be expanded to incorporate rotational 
invariance. Suppose that all input patterns 
can be presented in “normal” vertical 
orientation, approximately centered 
within the field of view of the retina. Sup- 
pose further that all input patterns can be 
presented when rotated from normal by 
90, 180, and 270 degrees. Thus, each pat- 
tern can be presented in all four rotations 
and in all possible left-right, up-down 
translations. The number of combinations 
would be large. The problem is to design 
a neural net preprocessor that is invariant 
to translation and to rotation by 90 
degrees. 

Begin with a single slab of Adaline ele- 
ments, as shown in Figure 19, producing 
a majority output that is insensitive to 
translation of the input pattern on the ret- 
ina. Next, replicate this slab four-fold, and 
let the majority outputs feed into a single 
majority output element. In the first slab, 
( W , )  designates the upper-left Adaline’s 
matrix of weights. (See Equation 17 for the 
weight matrices of all first-slab Adalines.) 
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In the second slab, the upper-left Adaline’s 
weight matrix corresponds to the first-slab 
weight matrix rotated 90 degrees clock- 
wise. This can be designated by Rcl( Wl), 
and the corresponding third- and fourth- 
slab weight matrices can be designated by 
Ra( W , )  and Ra( Wl). Thus, the weight 
matrices of the upper-left Adalines begin 
with (W,)  in the first slab, and are rotated 
clockwise by 90 degrees in the second slab, 
by 180 degrees in the third slab, and by 270 
degrees in the fourth slab. The weight 
matrices of all slabs are translated right 
and down, in the fashion of Equation 17, 
starting with the Adalines in the upper left- 

hand corner. For example, the array of 
weight matrices for the second slab is 

(18) 

Clearly, translating the pattern on the 
retina does not change the majority output 
response. Rotating the pattern 90 degrees 
causes an interchange of the roles of the 
slabs in making their responses, but, since 
the output majority element weights them 

equally, the output response is unchanged. 
Insensitivity to 45-degree rotation can be 
accomplished by using more slabs; thus, a 
complete neural network providing invar- 
iance to rotation and translation could be 
constructed. Each translation-invariant 
slab of Figure U) would need to be replaced 
by the rotation-invariant multiple slab and 
majority-element system described above. 

Invariance to scale. The same principles 
can be used to design invariance nets that 
are insensitive to  scale or pattern size. By 
establishing a “point of expansion” on the 
retina so that input patterns can be 
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expanded or contracted with respect to this 
point, two Adalines can be trained to give 
similar responses to patterns of two differ- 
ent sizes if the weight matrix of one 
expands (or contracts) about the point of 
expansion like the patterns themselves. 
The amplitude of the weights must be 
scaled in inverse proportion to the square 
of the linear dimension of the retinal pat- 
tern. By adding many more slabs, the 
invariance net can be built around this idea 
to be insensitive to pattern size as well as 
to translation and rotation. (Implementa- 
tion would, of course, require the abun- 
dance and low cost of VLSI electronics.) 

Simulation results. The system of Fig- 
ure 20 was computer simulated. The train- 
ing set consisted of 36 patterns, each 
arranged on a 5 x 5 pixel retina in “stan- 
dard” position. Twenty-five slabs, each 
with 25 Adalines having weights fixed 
according to Equation 17, were used in the 
translation-invariant preprocessor. The 
preprocessor output represented a scram- 
bled version of the input pattern. The 
nature of this scrambling was determined 
by the choice of the key weight matrices 
( W,),  . . . , ( These key weights were 
chosen randomly, the only requirement 
was that the input pattern to preprocessor 
output map be one-to-one. (This choice of 
weights produced a very noise-intolerant 
mapping. We are investigating methods of 
training in the key weights, using MRII to 
customize them to the training set.) 

We used MRII to train the descrambler, 
a two-layer system with 25 Adalines in 
each layer. The initial descrambler weights 
were chosen randomly and independently, 
distributed uniformly on the interval ( - 1, 
+ 1). Patterns were presented in random 
order, each pattern being equally likely of 
being the next presented. The desired 
response used was the training pattern in 
standard position. The system as a whole 
would then recognize any trained-in pat- 
tern in any translated position on the input 
retina and reproduce it in standard posi- 
tion at the output. Figure 21, a typical 
descrambler learning curve, graphs the 
number of incorrect pixels at the output, 
averaged over the training set, every 50 

The concept of using an invariance 
preprocessor followed by a descrambler is 
a potentially powerful one. We plan to 
apply the concept to a speech recognition 
problem. When a word is spoken by differ- 
ent people or even by the same person at 
different times, the sounds produced dif- 
fer greatly but remain recognizable as the 
same word-at least to a human. There- 
fore, those sounds must have properties 
that are invariant from utterance to utter- 
ance. We believe a system similar to the 
one in Figure 20 would be useful in 
developing a multiuser speech recognition 
system. 

T he general pattern-recognition 
concept we’ve described involves 
use of an invariance net followed 

by a trainable classifier. Figure 22 illus- 
trates the key ideas. The invariance net can 
be trained or designed to produce a set of 
outputs that are insensitive to translation, 
rotation, scale change, etc., of the retinal 
pattern. These outputs are scrambled, but 
the adaptive layers can be trained to 
descramble them and reproduce the origi- 
nal patterns in “standard” position, orien- 
tation, and scale. Multilayer adaptation 
algorithms are essential to making such a 
scheme work, and we’ve devised a new 
Madaline adaptation rule-MRII-for 
that purpose. Our preliminary experimen- 
tal results indicate that it works and is 
effective. U 
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