
Neural Nets for Adaptive
Filtering and Adaptive

Pattern Recognition
Bernard Widrow, Stanford University

Rodney Winter, United States Air Force

he fields of adaptive signal
processing and adaptive neural
networks have been developing

independently but have the adaptive linear
combiner (ALC) in common. With its
inputs connected to a tapped delay line, the
ALC becomes a key component of an
adaptive filter. With its output connected
to a quantizer, the ALC becomes an adap-
tive threshold element or adaptive neuron.

Adaptive filters have enjoyed great
commercial success in the signal process-
ing field. All high-speed modems now use
adaptive equalization filters. Long-
distance telephone and satellite communi-
cations links are being equipped with
adaptive echo cancelers to filter out echo,
allowing simultaneous two-way commu-
nications. Other applications include noise
canceling and signal prediction.

Adaptive threshold elements, on the
other hand, are the building blocks of neu-
ral networks. Today neural nets are the
focus of widespread research interest.
Areas of investigation include pattern
recognition and trainable logic. Neural
network systems have not yet had the com-
mercial impact of adaptive filtering.

The commonality of the ALC to adap-
tive signal processing and adaptive neural
networks suggests the two fields have
much to share with each other. This arti-
cle describes practical applications of the
ALC in signal processing and pattern
recognition.

A new multilayer
adaptation algorithm

that descrambles
output and reproduces

original patterns is
advancing the

practicality of neural-
network pattern-

recognition systems.

The adaptive linear
combiner

The ALC shown in Figure 1 is the basic
building block for most adaptive systems.
The output is a linear combination of the
many input signals. The weighting coeffi-
cients comprise a weight vector. The input
signals comprise an input signal vector.
The output signal is the inner product or
dot product of the input signal vector with

the weight vector. The output signal is
compared with a special input signal called
the desired response, and the difference is
the error signal. To optimize performance,
the ALC's weighting coefficients or
weights are generally adjusted to minimize
the mean square of the error signal. Of the
many adaptive algorithms to adjust the
weights automatically, the most popular is
the Widrow-Hoff LMS (least mean
square) algorithm devised in 1959.'

Adaptive filters. Digital signals gener-
ally originate from sampling continuous
input signals by analog-to-digital conver-
sion. Digital signals are often filtered by
means of a tapped delay line or transver-
sal filter, as shown in Figure 2a. The sam-
pled input signal is applied to a string of
delay boxes, each delaying the signal by
one sampling period. An ALC is seen con-
nected to the taps between the delay boxes.
The filtered output is a linear combination
of the current and past input signal sam-
ples. By varying the weights, the impulse
response from input to output is directly
controllable. Since the frequency response
is the Fourier transform of the impulse
response, controlling the impulse response
controls the frequency response. The
weights are usually adjusted so that the
output signal will provide the best least-
squares match over time to the desired-
response input signal.

The literature reports many other forms

March 1988 00l8-9162/88/0300-0025$01.00 0 1988 IEEE 25

Input
Signal
Vector

0

0 Y
b

0 output
0 signal
0

Response Signal

Figure 1. Adaptive linear combiner (ALC).

W L

output h- signal
adaptive

filter
input
signal

+ signal

Figure 2. Adaptive digital filter: (a) details of a tapped-delay-line digital filter; (b)
symbolic representation of an adaptive filter.

of adaptive filters.’ Some use feedback to
obtain both poles and zeros. The filter of
Figure 2a realizes only zeros. Adaptive
filters based on lattice structures achieve
more rapid convergence under certain con-
ditions. However, the simplest, most
robust, and most widely used filter is that
of Figure 2a adapted by the LMS algo-
rithm. Figure 2b shows a symbolic repre-
sentation of an adaptive filter.

Adaptive threshold element. Figure 3
shows an adaptive threshold element, a
key component in adaptive pattern recog-
nition systems. It consists of an adaptive
linear combiner cascaded with a quantizer.
The output of the ALC is quantized to pro-
duce a binary “decision.” Most often, the
inputs are binary and the desired response
is binary. As such, the adaptive threshold
element is trainable and capable of imple-
menting binary logic functions. The LMS
algorithm was originally developed to
train the adaptive threshold element of
Figure 3. This element was called an adap-
tive linear neuron or Adaline.’

The adaptive threshold element was an
early neuronal model. The adaptive
weights were analogous to synapses. The
input vector components related to the
dendritic inputs. The quantized output
was analogous to the axonal output. The
output decision was determined by a
weighted sum of the inputs, in much the
same way real neurons were believed to
behave.

Adaptive signal
processing

The adaptive filter of Figure 2b has an
input signal and produces an output sig-
nal. The desired response is supplied dur-
ing training. A question naturally arises:
If the desired response were known and
available, why would one need the adap-
tive filter? Put another way, how would
one obtain the desired response in a prac-
tical application? There is no general
answer to these questions, but studying
successful examples provides some insight.

Example 1-system modeling. In many
engineering and scientific applications, a
system of unknown structure has observ-
able input and output signals. One way of
obtaining knowledge about the unknown
system’s dynamic response is to apply its
input to an adaptive filter and to use its
output as the adaptive filter’s desired
response. (See Figure 4.) The adaptive fil-

26 COMPUTER

1

system
input -

Input
Signal
vector

unknown
system

I:
Figure 3. Adaptive threshold element (Adaline).

ter develops an impulse response to match
that of the unknown system since the fil-
ter and the system develop similar outputs
when driven by the same input.

Example 2-statistical prediction. One
can estimate future values of time-
correlated digital signals from present and
past input samples. Wiener3 has devel-
oped optimal linear least-squares filtering
techniques for signal prediction. When the
signal’s autocorrelation function is
known, Wiener’s theory yields the impulse
response of the optimal filter. More often
than not, however, the autocorrelation
function is unknown and may be time-
variable. One could use a correlator to
measure the autocorrelation function and
plug this into Wiener theory to get the
optimal impulse response, or one could get
the optimal prediction filter directly by
adaptive filtering. Figure 5 illustrates the
latter approach.

In this figure, the input signal delayed
by A time units is fed to an adaptive filter.
The undelayed input serves as the desired
response for this adaptive filter. The filter
weights adapt and converge to produce a
best least-squares estimate of the present
input signal, given an input that is this very
signal delayed by A. The optimal weights
are copied into a “slave filter” whose input
is undelayed and whose output therefore
is a best least-squares prediction of the
input A time units into the future.

Example 3-noise canceling. Separating
a signal from additive noise is a common

Figure 4. System modeling.

input
signal

f output
signal

(prediction of
input signal)

slave
f i l ter

we ig h t s-f
I -

adaptive
f i l ter

delay

error
signal

I I

Figure 5. An adaptive statistical predictor.

March 1988 21

problem in signal processing. Figure 6a
shows a classical approach to this problem
using optimal Wiener or Kalman filter-
ing.3 The purpose of the optimal filter is
to pass the signals without distortion while
stopping the noise no. In general, this can-
not be done perfectly. Even with the best

filter, the signal is distorted, and some
noise goes through to the output.

Figure 6b shows another approach to
the problem using adaptive filtering. This
approach is viable only when an additional
“reference input” is available containing
noise n l , which is correlated with the

original corrupting noise no. In Figure 6b.
the adaptive filter receives the reference
noise, filters it, and subtracts the result
from the noisy “primary input,” s+ no.
For this adaptive filter, the noisy input
s + no acts as the desired response. The
“system output” acts as the error for the
adaptive filter. Adaptive noise canceling
generally performs much better than the
classical approach since the noise is sub-
tracted out rather than filtered out.

One might think that some prior knowl-
edge of the signal s or of the noises no and
nl would be necessary before the filter
could adapt to produce the noise-canceling
signal y . A simple argument will show,
however, that little or no prior knowledge

output

?
I
I
I

. I
noise

source

l & A * - I
I error I
L,-,,,-,,-l

adaptive noise canceler

Figure 6. Separation of signal and noise: (a) classical approach; (b) adaptive noise-
canceling approach.

Molher’a
CIdiK
VOCtOT

F C t d
urdirc
MclQ

Chnt
/ Ioda

~

Figure 7. Canceling maternal heartbeat in fetal electrocardiography: (a) cardiac
electric field vectors of mother and fetus; (b) placement of leads.

of s, no, or nl or of their interrelationships
is required.

Assume that s, no, nl and y are statisti-
cally stationary and have zero means.
Assume that s is uncorrelated with no and
nl and suppose that nl is correlated with
no. The output is

Squaring, one obtains

f 2 = d + (no-y)Z + &(no-y) (2)

Taking expectations of both sides of Equa-
tion 2, and realizing that s i s uncorrelated
with no and withy, yields

E[L21 = E[?] + E[(no-y)2]
+ = W n o -Y)l

= E[.+] + E[(no-Y)21 (3)

Adapting the filter to minimize E[.c2] will
not affect the signal power E[?]. Accord-
ingly, the minimum output power is

Ernin[f2l = + ~ r n i n [(n o - ~) ~ ~ (4)

When the filter is adjusted so that E[c2]
is minimized, E [(n ~ - y) ~] is therefore also
minimized. The filter output y is then a
best least-squares estimate of the primary
noise no. Moreover, when E[(no-y)’] is
minimized, E[(f -s)’] is also minimized,
since, from Equation 1,

Adjusting or adapting the filter to mini-
mize the total output power is tantamount
to causing the output to be a best least-
squares estimate of the signal s for the
given structure and adjustability of the
adaptive filter and for the given reference
input.

28 COMPUTER

There are many practical applications
for adaptive noise canceling techniques.
One involves canceling interference from
the mother’s heart when attempting to rec-
ord clear fetal electrocardiograms. Figure
7 shows the location of the fetal and mater-
nal hearts and the placement of the input
leads. The abdominal leads provide the
primary input (containing fetal ECG and
interfering maternal ECG signals), and the
chest leads provide the reference input
(containing pure interference, the mater-
nal ECG). Figure 8 shows the results. The
maternal ECG from the chest leads was
adaptively filtered and subtracted from the
abdominal signal, leaving the fetal ECG.
This was an interesting problem since the
fetal and maternal ECG signals had spec-
tral overlap. The two hearts were electri-
cally isolated and worked independently,
but the second harmonic frequency of the
maternal ECG was close to the fundamen-
tal of the fetal ECG. Ordinary filtering
techniques would have great difficulty
with this problem.

Example 4-adaptive echo canceling.
Echo is a natural phenomenon in long-
distance telephone circuits because of
amplification in both directions and series
coupling of telephone transmitters and
receivers at each end of the circuit. Echo
suppressors, used to break the feedback,
give one-way communication to the party
speaking first. To avoid switching effects
and to permit simultaneous two-way
transmission of voice and data, adaptive
echo cancelers are replacing echo suppres-
sors worldwide (see Figure 9).

In Figure 9, the delay boxes represent
transmission delays in the long line. Note
that separate circuits are normally used in
each direction because the repeater ampli-
fiers used to overcome transmission loss
are one-way devices. Hybrid transformers

prevent incoming signals from coupling
through the telephone set and passing as
outgoing signals. Hybrids are balanced to
do this by designing them for the average,
local telephone circuit. Since each local cir-
cuit has its own length and electrical
characteristics, the hybrid cannot do its
job perfectly. Using an adaptive filter to
cancel any incoming signal that might leak
through the hybrid eliminates the possibil-
ity of echo. The circuit of Figure 9 works

well, allowing simultaneous two-way com-
munication without echo.

Example 5-inverse modeling. Figure 4
showed use of an adaptive filter for direct
modeling of an unknown system to obtain
a close approximation to its impulse and
frequency responses. By changing the con-
figuration, it is possible to use the adaptive
filter for inverse modeling to obtain the
reciprocal of the unknown system’s trans-

,Mother

(C)

Figure 8. Result of fetal ECG experiment (bandwidth, 3-35 Hz; sampling rate, 256
Hz): (a) reference input (chest lead); (b) primary input (abdominal lead); (c) noise
canceler output.

I I

T

\
E

error
Adaptive Adaptive

fi lter fi lter
Hybrid

4 .
error

~

Figure 9. Long-distance system with adaptive echo cancellation.

March 1988 29

fer function. The idea is illustrated in Fig- that A is set to zero delay. To make the
ure 10. The output of the unknown system error small, the cascade of the unknown
is the input to the adaptive filter. The system and the adaptive filter needs a unity
unknown system's input delayed transfer function. Therefore, using an
by A time units is the desired response of adaptive algorithm to make the error small
the adaptive filter. For simplicity, assume causes the adaptive filter to develop a

Transmitter

input unknown adaptive
signal system f i l ter

pulses Communications- P:lSes
Channel

r

I /

I - +
b A

delay

Figure 10. Inverse modeling.

transfer function that is the inverse of that
of the unknown system.

If the response of the unknown system
contains a delay or is nonminimum phase,
allowing a nonzero delay A will be highly
advantageous. Including A delays the
inverse impulse response but yields a much
lower mean-square error. In some appli-
cations, one would like to make this delay
as small as possible. In other applications,
this delay is of no concern except that it
should be chosen to minimize the mean-
square error. Applications for inverse
modeling exist in the field of adaptive con-
trol, in geophysical signal processing,
where it is called "deconvolution," and in
telecommunications for channel equali-
zation.

Example 6-channel equalization. Tel-
ephone channels, radio channels, and even
fiber optic channels can have non-flat fre-
quency responses and nonlinear phase
responses in the signal passband. Sending
digital data at high speed through these
channels often results in a phenomenon
called "intersymbol interference," caused
by signal pulse smearing in the dispersive

adaptive
/equalizer
1

I
I
I

Figure 11. Adaptive channel equalizer with decision-directed learning.

30 COMPUTER

medium. Equalization in data modems
combats this phenomenon by filtering
incoming signals. A modem’s adaptive fil-
ter, by adapting itself to become a channel
inverse, can compensate for the irregular-
ities in channel magnitude and phase
response.

The adaptive equalizer in Figure 11 con-
sists of a tapped delay line with an adap-
tive linear combiner connected to the taps.
Deconvolved signal pulses appear at the
weighted sum, which is quantized to pro-
vide a binary output corresponding to the
original binary data transmitted through
the channel. The ALC and its quantizer
comprise a single Adaline. Any least-
squares algorithm can adapt the weights,
but the telecommunications industry uses
the LMS algorithm almost exclusively.

In operation, the weight at a central tap
is generally fixed at unit value. Initially, all
other weights are set to zero so that the
equalizer has a flat frequency response and
a linear phase response. Without equaliza-
tion, telephone channels can provide
quantized binary outputs that reproduce
the transmitted data stream with error
rates of IO- ’ or less. As such, the quan-
tized binary output can be used as the
desired response to train the neuron. It is
a noisy desired response initially. Sporadic
errors cause adaptation in the wrong direc-
tion, but on average, adaptation proceeds
correctly. As the neuron learns, noise in
the desired response diminishes. Once the
adaptive equalizer converges, the error

rate will typically be or less. The
method, called “decision-directed” learn-
ing, was invented by Robert W. Lucky of
AT&T Bell Labs.4

Figure 12a shows the analog response of
a telephone channel carrying high-speed
binary pulse data. Figure 12b shows an
“eye” pattern, which is the same signal
after going through a converged adaptive
equalizer. Equalization opens the eye and
allows clear separation of + 1 and - 1
pulses. Using a modem with an adaptive
equalizer enables transmitting about four
times as much data through the same chan-
nel with the same reliability as without
equalization.

Integrated services digital network
(ISDN), a new concept now in develop-
ment and deployment, makes high-speed
digital communication possible through
ordinary local copper telephone circuits.
ISDN requires both adaptive equalization
and adaptive echo canceling at each line
termination. The number of adaptive
filters to be used in the world’s telecommu-
nications plant will be massive.

Adaptive pattern
recognition

The adaptive threshold element of Fig-
ure 3 can be used for pattern recognition
and as a trainable logic device. It can
be trained to classify input patterns into

two categories. For these applications,
the zeroth weight, WO, has a constant
input x0 = + 1 which does not change
from input pattern to pattern. Varying
the zeroth weight varies the threshold
level of the quantizer.

Linear separability. With n binary
inputs and one binary output, a single neu-
ron of the type shown in Figure 3 is capa-
ble of implementing certain logic
functions. There are 2” possible input pat-
terns. A general logic implementation
would be capable of classifying each pat-
tern as either + 1 or - 1, in accord with the
desired response. Thus, there are 2’” pos-
sible logic functions connecting n inputs to
a single output. A single neuron is capable
of realizing only a small subset of these
functions, known as the linearly separable
logic functions.’ These are the set of logic
functions that can be obtained with all pos-
sible settings of the weight values.

Figure 13 shows a two-input neuron,
and Figure 14 shows all of its possible
binary inputs in pattern vector space. In
this space, the coordinate axes are the com-
ponents of the input pattern vector. The
neuron separates the input patterns into
two categories, depending on the values of
the input-signal weights and the bias
weight. A critical thresholding condition
occurs when the analog responsey equals
zero:

(6) y = X l W , + X2W’ + WO = 0

3.50 .
I I

175

0 3
P
8 0

-

f
C w

- 1 75

-3.50 ! . I I
0 0.2 0.4 0.6 0.8 1 .o

Relative bit time

(a)

0 0) - -
P

5.50

2.75

- g o
m

5

5.50

2.75

0 0) - -
P
- g o
m

5

-2.75

-5.50

-2.75

-5.50
0 0.2 0.4 0.6 0.8 l:o

Relative bit time

(b)

Figure 12. Eye patterns produced by overlaying cycles of the received waveform: (a) before equalization; (b) after equalization.

March 1988 31

x = + 1
0

x 1

q
e

binary
x 2 output

x = + 1
0
t

W 8
x 1

x 2 output

W

output

Figure 13. A two-input neuron.

Separating
Line J
I

X
1

(+l , - l)

Figure 14. Separating line in pattern space.

I

X
1

ADALINE 1

x2

/y .ADALINE 2 F

Figure 15. A two-neuron form of Madaline (many Addines).

Figure 14 graphs this linear .relation,
which comprises a separating line having
slope and intercept of

(8) slope = - (wI/wz)
intercept = - (wo/w2)

The three weights determine slope, inter-
cept, and the side of the separating line
that corresponds to a positive output. The
opposite side of the separating line cor-
responds to a negative output.

The input/output mapping obtained in
Figure 14 illustrates an example of a
linearly separable function. An example of
a nonlinearly separable function with two
inputs is the following:

(+l, +1)- +1
(+l, -1)- - 1
(-1, -1)- + 1
(-1. + l) + - 1

(9)

No single line exists that can achieve this
separation of the input patterns.

With two inputs, a single neuron can
realize almost all possible logic functions.
With many inputs, however, only a small
fraction of all possible logic functions are
linearly separable. The single neuron can
realize only linearly separable functions
and generally cannot realize most func-
tions. However, combinations of neurons
or networks of neurons can be used to real-
ize nonlinearly separable functions.

Nonlinear separability-Madaline net-
works. In the early 1960s at Stanford,
Ridgway6 initiated an approach to the
implementation of nonlinearly separable
logic functions. He connected retinal
inputs to adaptive neurons in a single layer
and, in turn, connected their outputs to a
fixed logic device providing the system
output. Methods for adapting such nets
were developed at that time. In the exam-
ple network shown in Figure 15, two Ada-
lines are connected to an AND logic device
to provide an output. Systems of this type
were called Madalines (many Adalines).
Today such systems would be called small
neural nets.

With weights suitably chosen, the
separating boundary in pattern space for
the system of Figure 15 would be as shown
in Figure 16. This separating boundary
implements the nonlinearly separable logic
function of Equation 9.

Madalines were constructed with many
more inputs, with many more neurons in

COMPUTER 32

the first layer, and with fixed logic devices
such as AND, OR, and MAJority vote-
taker in the second layer. Those three func-
tions, as illustrated in Figure 17, are in
themselves threshold logic functions. The
weights given will implement these func-
tions, but the weight choices are not
unique.

Layered neural nets. The Madalines of
the 1960s had adaptive first layers and
fixed threshold functions for the second
(output) layers.6” The feed-forward neu-
ral nets of the 1980s have many layers, and
all layers are adaptive. The back-
propagation method of Rumelhart et aL8
is perhaps the best-known example of a
multilayer network. A three-layer feed-
forward adaptive network is illustrated in
Figure 18.

Adapting the neurons in the output
layer is simple, since the desired responses
for the entire network (given with each
input training pattern) are the desired
responses for the corresponding output
neurons. Given the desired responses,
adaptation of the output layer can be a
straightforward exercise of the LMS algo-
rithm. The fundamental difficulty
associated with adapting a layered net-
work lies in obtaining desired responses
for the neurons in the layers other than the
output layer. The back-propagation algo-
rithm (first reported by Werbos’ and later
rediscovered by Parker” and by Rumel-
hart et al.’) is one method for establishing
desired responses for the neurons in the
“hidden layers,” those layers whose neu-
ronal outputs do not appear directly at the
system output (see Figure 18). There is
nothing unique about the choice of desired
outputs for the hidden layers.

Generalization in layered networks is a
key issue. The question is, how well do
multilayered networks perform with
inputs for which they were not specifically
trained? The question of generalization is
important, and theorists are developing
some good examples where useful gener-
alizations take place. Many different
algorithms may be needed for the adapta-
tion of multilayered networks to produce
required generalizations. Without gener-
alization, neural nets will be of little
engineering significance. Merely learning
the training patterns can be accomplished
by storing these patterns and their
associated desired responses in a look-up
table.

The layered networks of Rumelhart et
al.’ use neuronal elements like the Ada-
line of Figure 3, except that the quantizer

X

ting

Figure 16. Separating boundaries for the Madaline of Figure 15.

X
1

x2

w 1 =+1

e n

w 2=+1

n

* +’ w 1 =+1

w 2 =+1
X , n

. w 3 5 1 /
3

AND

OR

MAJ

Figure 17. Neuronal implementation of AND, OR, and MAJ logic functions.

March 1988 33

ADALINE ADALINE
Neurons Neurons + L

Input

pattern

t
Hidden
IO\,-*

t
Hidden
l iwar

Figure 18. A three-layer adaptive neural network.

or threshold device is a soft-limiting “sig-
moid” function rather than the hard-
limiting “signum” function of the Ada-
line. The various back-propagation
algorithms for adapting layered networks
of neurons require differentiability along
the network’s signal paths and cannot
work with the Adaline element’s hard
limiter. The sigmoid function has the
necessary differentiability. However, it
presents implementational difficulties if
the neural net is ultimately constructed
digitally. For this reason, we developed a
new algorithm for adapting layered
networks of Adaline neurons with hard-
limiting quantizers. The new algorithm is
an extension of the original Madaline
adaptation rule6*’ and is called Madaline
rule I1 or MRII. The idea is to adapt the
network to properly respond to the newest
input pattern while minimally disturbing
the responses already trained-in for the
previous input patterns. Unless this prin-
ciple is practiced, it is difficult for the net-
work to simultaneously store all of the
required pattern responses.

LMS or Widrow-Hoff delta rule for the
single neuron. The LMS algorithm applied
to the adaptation of the weights of a sin-
gle neuron embodies a minimal distur-

bance principle. This algorithm can be
written as

The time index or adaption cycle number
is k. W, + is the next value of the weight
vector, Wk is the present value of the
weight vector, &is the present input pat-
tern vector, and Ek is the present error
(that is, the difference between the desired
response dk and the analog output before
adaptation). Applying the above recursion
formula to each adaption cycle reduces the
error by the fraction a . That is, at the kth
cycle, the error is

Changing the weights changes (reduces)
the error:

In accordance with the LMS rule (Equa-
tion lo), the weight change is as follows:

Combining Equations 12 and 13, we
obtain

A&k = - XIaEkXk / I xk I ’
= -aEkxlxk/ (Xk(’ (14)
= -aEk

Therefore, the error is reduced by a factor
of a as the weights are changed while hold-
ing the input pattern fixed. Putting in a
new input pattern starts the next adapta-
tion cycle. The next error is then reduced
by a factor of a, and the process continues.

The choice of a controls stability and
speed of convergence.’ Stability requires
that

2 > a > 0 (15)

Making a greater than 1 generally does not
make sense, since the error would be over-
corrected. Total error correction comes
with a = 1 . A practical range for a is

1.0 > a > 0.1 (16)

The weights change proportionately
with their inputs in accordance with the
LMS algorithm (see Equation 10). With
the usual binary inputs 1 and 0, no adap-
tation occurs for weights with 0 inputs.

34 COMPUTER

Thus, the symmetric inputs + 1 and - 1
are generally preferred.

To verify that the LMS rule embodies
the minimal disturbance principle, refer to
Equation 13. The weight-change vector
A wk is chosen to be parallel to the input
pattern vector xk. From Equation 12, the
change in the error is equal to the negative
dot product of Xk with AWk, thus achiev-
ing the needed error correction with the
smallest magnitude of weight vector
change. When adapting to respond
properly to a new input pattern, the
responses to previous training patterns are
therefore minimally disturbed, on the
average. The algorithm also minimizes
mean square error,’the property for
which it is best known.

Adaptation of layered neural nets by the
MRII rule. The minimal disturbance prin-
ciple can be applied to the adaptation of
Figure 18’s layered neural network.
Presenting an input pattern and its
associated desired responses to the net-
work, the training objective is to reduce
the number of errors to as low a level as
possible. Accordingly, when the first train-
ing pattern is presented, the first layer will
adapt as required to reduce the number of
response errors at the final output layer.
In accordance with the minimal distur-
bance principle, the first-layer neuron
whose analog response is closest to zero is
given a trial adaptation in the direction to
reverse its binary output. When the rever-
sal takes place, the second-layer inputs
change, the second-layer outputs change,
and consequently the network outputs
change. A check is made to see if this
reduces the number of output errors for
the current input pattern. If so, the trial
change is accepted. If not, the weights are
restored to their previous values, and the
first-layer neuron whose analog response
is next closest to zero is trial adapted,
reversing its response. I f this reduces the
number of output errors, the change is
accepted. If not, the weights are restored,
and one goes on to adaptively switch the
neuron with an analog response next
closest to zero, and so on, disturbing the
neurons as little as possible. After adapt-
ing all neurons whose output reversals
reduced the number of output errors, neu-
rons are then chosen in pair combinations
and trial adaptations are made which can
be accepted if output errors are reduced.
After adapting the first-layer neurons in
singles, pairs, triples, etc., up to a predeter-
mined limit in combination size (simula-
tion results indicate pairwise trials are

+
e
e +

All retinal
signals
go to all
ADALINES

1
Slab output

Figure 19. One slab of a left-right, up-down translation invariant network.

sufficient in layers having up to 25 Ada-
lines), the second layer is adapted to fur-
ther reduce the number of network output
errors. The method of choosing the neu-
rons to be adapted in the second layer is the
same as that for the first layer. If further
error reduction is needed, the output layer
is then adapted. This is straightforward,
since the output-layer desired responses
are the given desired responses for the
entire network. After adapting the output
layer, the responses will be correct. The
next input pattern vector and its associated
desired responses are then applied to the
neural network, and the adaptive process
resumes.

When training the network to respond
correctly to the various input patterns, the
“golden rule” is give the responsibility to
the neuron or neurons that can most eas-
ily assume it. In other words, don’t rock
the boat any more than necessary to
achieve the desired training objective.
(Simulation results using this minimal-
disturbance MRII algorithm are presented
later.)

Application of layered networks to pat-
tern recognition. It would be useful to
devise a neural net configuration that
could be trained to classify an important

set of training patterns as required, but
have these network responses be invariant
to translation, rotation, and scale change
of the input pattern within the field of
view. It should not be necessary to train the
system with the specific training patterns
of interest in all combinations of transla-
tion, rotation, and scale.

The first step is to show that a neural
network having these properties exists.
(The invariance methods that follow are
extensions of results reported earlier by
Widrow.’) The next step is to obtain
training algorithms to achieve the desired
objectives.

Invariance to up-down, left-right pat-
tern translation. Figure 19 shows a planar
network configuration (a “slab” of neu-
rons) that could be used to map a retinal
image into a single-bit output so that, with
proper weights in the network’s neurons,
the response will be insensitive to left-right
and/or up-down translation. The same
slab structure can be replicated, with
different weights, to allow the retinal pat-
tern to be independently mapped into
additional single-bit outputs, all insensitive
to left-right, up-down translation.

Figure 20 illustrates the general idea. A
retinal image having a given number of

March 1988 35

1
Box of Slabs

I Fixed, translation-invariant preprocessor network

Retina

First
I

Descrambler

J Second adaptive 4
layer

Figure 20. A translation-invariant preprocessor network and an adaptive two-layer descrambler network.

pixels can be mapped through an array of
slabs into a different image having the
same, more, or fewer pixels, depending on
the number of slabs used. In any event, the
mapped image is insensitive to up-down,
left-right translation of the original image.
The mapped image in Figure 20 is fed to a
set of Adaline neurons that can be easily
trained to provide output responses to the
original image as required. This amounts
to a “descrambling” of the preprocessor’s
outputs. The descrambler’s output
responses classify the original input images
and, at the same time, are insensitive to
their left-right, up-down translations.

In the systems of Figures 19 and 20, the
elements labeled “AD” are Adalines.

Those labeled “MAJ” are majority vote-
takers. (If the number of input lines to
MAJ is even and there is a tie vote, these
elements are biased to give a positive
response.) The AD elements are adaptive
neurons and the MAJ elements are fixed
neurons, as in Figure 17.

In the system shown in Figure 19, the
structuring of the weights so that the out-
put is insensitive to left-right and up-down
translation needs further explanation. Let
the weights of each Adaline be arranged in
a square array and the corresponding reti-
nal pixels arrayed in a square pattern. Let
the square matrix (W,) designate the
array of weights of the upper-left Adaline,

and let TDI(Wl) be the array of weights of
the next lower Adaline. The operator To1
represents “translate down one,” so the
second set of weights is the same as the top-
most set, but translated down en masse by
one pixel. The bottom row wraps around
to comprise the top row. The patterns on
the retina itself wrap around on a cylinder
when they undergo translation. The
weights of the next lower Adaline are
Tm(W1), and those of the next lower
Adaline are TD3(W,). Returning to the
upper-left Adaline, let its neighbor to the
right be designated by TRI(“1). with TRI
being a “translate right one” operator.
The pattern of weights for the entire array
of Adalines in Figure 19 is

36 COMPUTER

“0 500 lo00 1500 2000 2500

Pattern Presentations

Figure 21. Learning curve for a two-layer, 25 x 25 adaptive descrambler.

(wl) TRI(wl) TRZ(wl) TRI(W1)

TDI(wl) 7kl TDI (wl) TRZTDl (wl) TRI TDl(Wl)

TD2(wl) TRI TU2(w l) TR2TD2(w l) T R I TD2(wI)

T D 3 (w l) TRITDI(wI) TRZTDl(wl) TRITDI(wl)

(17)

As the input pattern moves up, down,
left, or right on the retina, the roles of the
various Adalines interchange. Since all
Adaline outputs are equally weighted by
the MAJ element, translating the input
pattern up-down and/or left-right on the
retina has no effect on the MAJ element
output.

The set of “key” weights (W ,) can be
randomly chosen. Once chosen, they can
be translated according to Equation 17 to
fill out the array of weights for the system
of Figure 19. This array of weights can be
incorporated as the weights for the first
slab of Adalines shown in Figure 20. The
weights for the second slab would require
the same translational symmetries, but be
based on a different randomly chosen set
of key weights (Wz). The mapping func-

tion of the second slab would therefore be
distinct from that of the first slab.

The translational symmetries in the
weights called for in Figure 19 could be
fixed and manufactured in, or they could
be arrived at through training. If, when
designing an application-specific pattern
recognition system, one knew that trans-
lational invariance would be required, it
would make sense to manufacture the
appropriate symmetry into a fixed weight
system, leaving only the final-output Ada-
line layers plastic and trainable (see Figure
20). Such a preprocessor would definitely
work, would provide very high speed
response without scanning and searching
for pattern location and alignment, and
would be an excellent application of neu-
ral nets.

Invariance to rotation. Figure 20
represents a system for preprocessing reti-
nal patterns with a translation-invariant
fixed neural net followed by a two-layer
adaptive descrambler net. The system can

be expanded to incorporate rotational
invariance. Suppose that all input patterns
can be presented in “normal” vertical
orientation, approximately centered
within the field of view of the retina. Sup-
pose further that all input patterns can be
presented when rotated from normal by
90, 180, and 270 degrees. Thus, each pat-
tern can be presented in all four rotations
and in all possible left-right, up-down
translations. The number of combinations
would be large. The problem is to design
a neural net preprocessor that is invariant
to translation and to rotation by 90
degrees.

Begin with a single slab of Adaline ele-
ments, as shown in Figure 19, producing
a majority output that is insensitive to
translation of the input pattern on the ret-
ina. Next, replicate this slab four-fold, and
let the majority outputs feed into a single
majority output element. In the first slab,
(W ,) designates the upper-left Adaline’s
matrix of weights. (See Equation 17 for the
weight matrices of all first-slab Adalines.)

March 1988 37

-
Figure

-
22. A

In the second slab, the upper-left Adaline’s
weight matrix corresponds to the first-slab
weight matrix rotated 90 degrees clock-
wise. This can be designated by Rcl(Wl),
and the corresponding third- and fourth-
slab weight matrices can be designated by
Ra(W ,) and Ra(Wl). Thus, the weight
matrices of the upper-left Adalines begin
with (W,) in the first slab, and are rotated
clockwise by 90 degrees in the second slab,
by 180 degrees in the third slab, and by 270
degrees in the fourth slab. The weight
matrices of all slabs are translated right
and down, in the fashion of Equation 17,
starting with the Adalines in the upper left-

hand corner. For example, the array of
weight matrices for the second slab is

(18)

Clearly, translating the pattern on the
retina does not change the majority output
response. Rotating the pattern 90 degrees
causes an interchange of the roles of the
slabs in making their responses, but, since
the output majority element weights them

equally, the output response is unchanged.
Insensitivity to 45-degree rotation can be
accomplished by using more slabs; thus, a
complete neural network providing invar-
iance to rotation and translation could be
constructed. Each translation-invariant
slab of Figure U) would need to be replaced
by the rotation-invariant multiple slab and
majority-element system described above.

Invariance to scale. The same principles
can be used to design invariance nets that
are insensitive to scale or pattern size. By
establishing a “point of expansion” on the
retina so that input patterns can be

38 COMPUTER

expanded or contracted with respect to this
point, two Adalines can be trained to give
similar responses to patterns of two differ-
ent sizes if the weight matrix of one
expands (or contracts) about the point of
expansion like the patterns themselves.
The amplitude of the weights must be
scaled in inverse proportion to the square
of the linear dimension of the retinal pat-
tern. By adding many more slabs, the
invariance net can be built around this idea
to be insensitive to pattern size as well as
to translation and rotation. (Implementa-
tion would, of course, require the abun-
dance and low cost of VLSI electronics.)

Simulation results. The system of Fig-
ure 20 was computer simulated. The train-
ing set consisted of 36 patterns, each
arranged on a 5 x 5 pixel retina in “stan-
dard” position. Twenty-five slabs, each
with 25 Adalines having weights fixed
according to Equation 17, were used in the
translation-invariant preprocessor. The
preprocessor output represented a scram-
bled version of the input pattern. The
nature of this scrambling was determined
by the choice of the key weight matrices
(W,), . . . , (These key weights were
chosen randomly, the only requirement
was that the input pattern to preprocessor
output map be one-to-one. (This choice of
weights produced a very noise-intolerant
mapping. We are investigating methods of
training in the key weights, using MRII to
customize them to the training set.)

We used MRII to train the descrambler,
a two-layer system with 25 Adalines in
each layer. The initial descrambler weights
were chosen randomly and independently,
distributed uniformly on the interval (- 1,
+ 1). Patterns were presented in random
order, each pattern being equally likely of
being the next presented. The desired
response used was the training pattern in
standard position. The system as a whole
would then recognize any trained-in pat-
tern in any translated position on the input
retina and reproduce it in standard posi-
tion at the output. Figure 21, a typical
descrambler learning curve, graphs the
number of incorrect pixels at the output,
averaged over the training set, every 50

The concept of using an invariance
preprocessor followed by a descrambler is
a potentially powerful one. We plan to
apply the concept to a speech recognition
problem. When a word is spoken by differ-
ent people or even by the same person at
different times, the sounds produced dif-
fer greatly but remain recognizable as the
same word-at least to a human. There-
fore, those sounds must have properties
that are invariant from utterance to utter-
ance. We believe a system similar to the
one in Figure 20 would be useful in
developing a multiuser speech recognition
system.

T he general pattern-recognition
concept we’ve described involves
use of an invariance net followed

by a trainable classifier. Figure 22 illus-
trates the key ideas. The invariance net can
be trained or designed to produce a set of
outputs that are insensitive to translation,
rotation, scale change, etc., of the retinal
pattern. These outputs are scrambled, but
the adaptive layers can be trained to
descramble them and reproduce the origi-
nal patterns in “standard” position, orien-
tation, and scale. Multilayer adaptation
algorithms are essential to making such a
scheme work, and we’ve devised a new
Madaline adaptation rule-MRII-for
that purpose. Our preliminary experimen-
tal results indicate that it works and is
effective. U

References
1. B. Widrow and S.D. Stearns, AdaptiveSig-

nul Processing, Prentice Hall, Englewood
Cliffs, N.J., 1985.

2. B. Widrow, “Generalization and Informa-
tion Storage in Networks of Adaline ‘Neu-
rons’,’’ in Self-organizing Systems 1962,
M.C. Yovitz, G.T. Jacobi, and G.. Gold-
stein, eds., Spartan Books, Washington,

3. T. Kailath, Lectures on Wiener and Kalman
Filtering, Springer Verlag, New York, 1981.

4. R.W. Lucky, “Automatic Equalization for
Digital Communication,” Bell Syst. Tech.
J., Vol. 44, Apr. 1965, pp. 547-588.

5 . P.M. Lewis I1 and C.L. Coates, Threshold
Logic, John Wiley and Sons, New York,
I 967.

DC, 1962, pp. 435-461.

9. P. Werbos, BeyondRegression: New Tools
f o r Prediction and Analysis in the
Behavioral Sciences, PhD thesis, Harvard,
Aug. 1974.

10. D.B. Parker, Learning Logic, Tech. Rep.
TR-47, Center for Computational Research
in Economics and Management Science,
MIT, Apr. 1985.

Bernard Widrow is a professor of electrical
engineering at Stanford University. Before join-
ing the Stanford faculty in 1959, he was with the
Massachusetts Institute of Technology, Cam-
bridge. He is presently engaged in research and
teaching in systems theory, pattern recognition,
adaptive filtering, and adaptive control systems.
He is an associate editor of the journals Adap-
tive Control and Signal Processing, Neural Net-
works, Information Sciences, and Pattern
Recognition and coauthor with S.D. Stearns of
Adaptive Signal Processing (Prentice Hall).

Widrow received the SB, SM and ScD degrees
fromMITin 1951,1953,and 1956. Heisamem-
ber of the American Association of University
Professors, the Pattern Recognition Society,
Sigma Xi, and Tau Beta Pi. A fellow of the
IEEE and of the American Association for the
Advancement of Science, Widrow received the
IEEE Alexander Graham Bell Medal in 1986 for
exceptional contributions to the advancement
of telecommunications.

Rodney Winter is a captain in the United States
Air Force and a graduate student attending
Stanford University through the Civilian Insti-
tutes Program of the Air Force Institute of
Technology. His research interests include sig-
nal processing, pattern recognition, and adap-
tive systems. His doctoral thesis topic is the ~. . .
application of neural networks to optimal non-

pi,ot, most recently in the F-lM interceptor,

from Purdue Universitv in 1977. He is a mem-

6’ w’c’ Ridgway ‘I1, An AdaptiveLogic ’YS- linear filtering. His prior duties were those o f a
pattern presentations.

Much work on MRII remains to be

vergence properties and its ability to pro-

tern with GeneralizingProperties, PhD the-

SEford University’ Calif., Apr.
done, including detailed studies Of its Con- Stanford Labs. Rep. 1556-1, Winter hisBSEE andMSEE degrees

IYOL.
duce generalizations. Preliminary results
are very encouraging. Applying the algo-
rithm to problems lead to insights that
Will, we hope, allow a mathematical ana!-
ysis of the algorithm.

ber of Eta Kappa Nu and a student member of
the IEEE. 7. N. Nilsson, LearningMachines, McGraw-

 ill, N~~ York, 1965,
8. D.E. Rumelhart and J.L. McClelland, Par-

allelDistributed Processing, Vol. I and 11,
MIT Press, Cambridge, Mass., 1986.

The authors’ address is Information Systems
Laboratory, Dept. of Electrical Engineering,
Stanford University, Stanford, CA 94305.

March 1988 39

