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I. INTRODUCTION

Many techniques for shrinking the size, weight, and power consumption
of electronic components, circuit assemblages, and functional units have

1

been proposed, demonstrated, and exploited in recent months. In some
éases, individual components retain their separate identities, and are
interconnected by relatively standard, although sophisticated, wiring
techniques. 1In certain of the more far;reaching approaches, a number of
recognizable devices are combined into an integrated structure or array,
or even into a complex structure in which the interconnecting medium be-
tween the devices contributes to the electrical properties of the struc-
ture.2:3 Even more elegant, although speculative, techniques have been
proposed in which large numbers of components are formed en masse in thin-
film patterns on appropriate substrates by evaporative or ion-beam depo-
sition or by electron-beam micromac]niningol’4 Thus, technological skills
are leading us toward ever increasing density of components, with decreased
cost per component.

One of the great hopes for microelectronics technology is that it
will provide improved dependability of highly complex electronic systems.
It is thought that this imp;ovement will be the result of one or more of
the following factors:

(1) Eliminating, or greatly reducing, the number of mechanlcally

made electrical connections within a system,

(2) Increasing component uniformity during manufacture,

(3) Taking advantage of the ease of isolating physically small
systems from damaging enviromments, and

(4) Exploiting the ease with which large numbers of moderately
reliable components might be manufactured in systems whose
reliability is ensured through a reasonable amount of re-
dundancy.

1Superscript numerals refer to reference :at end of report.




A part of this paper is concerned with the application of adaptive téch-
niques to redundant systems in order to enhance the effectiveness with
which redundancy improves dependability. How such techniques might be
used to create systems which are trained by experience, rather than de-
signed explicitly to perform given tasks or to tolerate low component
yield at manufacture, is also considered. Finally, consideration is given
to the characteristics of components out of which such adaptive systems
could be built, and examples of devices showing the desired character-
istics are discussed.

The ‘birth* of an electronic data-processing system is achieved when
the system components or parts are so assembled that the desired system
performance is obtained. With present-day design and assembly techniques,
this achievement demands that the individual parts all function and be
flawlessly interconnected. With appropriate redundance95 majority vote,6
or weighted vote, ! the need for initial perfection is considerably re-
laxed.

During ‘life’, the possibility of random errors in the signals of
a data processing system can be greatly diminished through the use of
paralleled (redundant) systems or parts, particularly if the system is
continually adapted so as to place little confidence in those parts which
are most inclined to make mistakes.

At ‘death’, a system is incapable of further correct functioning.
With present-day nonredundant design, the failure of any component would
cause the death of the system, were it not for the external substitution
of replacements. The use of redundancy, or redundancy plus adaptation,
can greatly defer the death of a system in which individual parts or sub-

systems cannot be replaced.

*
It is not the intent of this paper to propose that an adaptive vote-taker would
necessarily provide an optimum political system.
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Various schemes for effecting birth, postponing death, and providing
dependable life of a large data handling system have been proposed re-
cently.8 For a system of relays, the use of redundant relay contacts in
series, parallel, or lattice connections (the most suitable conmections
can be prescribed from statistical knowledge of the manner in which com-
ponent failures occur) was described by Shannon and Moore.® The majority
vote-taker of von Neumann can be used in a binary data-processing system
to given correct signals at any point of a redundant system, provided
the majority of inputs to the vote-taker are correct.® The adaptive vote-
taker described here is a more elegant (often optimum) decisionvelement
for exploiting redundancy efficiently. The use of redundant systems
(complete machines) was considered by Fosenheim and Ash, who compared the
advantages of keeping one or more duplicate machines inactive but ready
for operation with the advantages of running redundant machines inde-
pendently and switching outputs when one fails.?

Ye are not yet prepared to prescribe quantitatively the level (com-
ponents, subsystems, or complete systems) at which redundancy can be
applied most efficiently. If one considers only the statistics of the
problem, and ignores relative costs, it is probable that, with adaptive
vote-takers, the size of inaividual subassemblies should be such that their
reliability is comparable with that of the vote-taker; the various economic
factors involved could appreciably alter this conclusion. Flehinger has
shown that the reliability improvement depends more on the degree of re-
dundancy than on the system level at which redundancy is applied when
the individual parts are very reliable; when the parts are unreliable,
redundancy must be applied at the level of relatively small subsystems.10

Improved system dependability is not the oély promise of adaptive
logic in microelectronics. Equally intriguing are the possibilities of
systems whose function can be continually altered to optimize their per-
formance on the basis of the statistics of past experience (for example,
adaptive pattern recognizers) and of systems that are initially trained

by experiences---rather than designed---to their desired function. The
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latter possibility is appealing because it implies not only that systems
could be trained to ignore manufacturing defects, but that various system
functions could be achieved using similar, or even the same, microelec-
tronic fabricating facilities.

The heart of the system philosophies proposed in this report is an
adaptive vote-taker, whose function is to determine whether or not the
weighted sum of its input signals exceeds a given threshold. The vote-
taker comprises variable-gain (weighting) elements plus a summing element
and a threshold detector. The vote-weight assigned to each input must
be stored in the vote-taker, thereby giving it memory. It is most de-
sirable that permanent, analog quantities be remembered (stdred), al-
though transient or quantized memories might have economic advantages and
be functionally adequate. ‘Permanenty analog memory probably cannot be
achieved electronically, except possibly via the persistent current stored
in a superconducting ring; mere likely, ionic or magnetic effacts involving
the translation or rotation of atoms will prove optimum for providing such
memory, Certain electrochemical and magnetic phenomena described below
have already been studied, and look promising; however, much remains to
be done before the function of variable gain with memory can be achieved
dependably and economically.

For microelectronic applications, the average power dissipation per
element should be extremely small. This rule also applies to the variable-
gain elements of an adaptive system, with the possible exception that
during adaptation (which would typigally occur infrequently during opera-
tion) higher power levels could he applied to the Variable*»ga'in elements.
Fortunately, the redundancy and adaptation introduced to expidite birth
and postpone death of an adaptive system also provide protection from
random errors during operation. Consequently, the circuits in such a
system can operate with a lower signal-to-noise ratio than those of a
nonredundant system, so that the average power dissipation per component

is correspondingly reduced.




II. IMPROVED DEPENDABILITY WITH REDUNDANCY PLUS ADAPTATION

When redundant digital circuits are used in an appropriate con-
figuration, yield factors can be made arbitrarily close to 100 per cent,
and error rates can be made arbitrarily close to zeroy.regardless of
system complexity. In these configurations, restoring organs provide re-
liable output information from redundant but less reliable input infor-
mation. Restoring organs were first proposed by von Neumann, who defined
their function, indicated their placement in redundant systems, and dem-

onstrated their universality in digital networks.® Let © be the number

of circuits in a redundant network in which the same digit is independently

computed; o will be called the redundancy of the circuit. A restoring
organ is a circuit with o redundant inputs and p redundant outputs. The
function of the restoring organ is to use the redundant information in
the o inputs, each of which is the same digit, to make each of the p out-
puts more reliable.

The internal structure of a restoring organ need not be the compli-
cated structure proposed by von Neumann. Simple restoring organs may be
composed of decision elements, as shown in Fig. 1. Each decision element
furnishes one of the outputs of the restoring organ, Every decision
element uses information from each input, thereby making efficient use of
the redundant information in the inputs. To construct a redundant cir-
cuit from a circuit without redundancy, insert p separate logical devices
where one appears in the original. Then insert a restoring organ after
each of the logical operations. The simple circuit of Fig. 2(a) is made
redundant, as shown in Fig. 2(b), using the restoring organs illustrated
in Fig. 1. The arrangement permits unreliable decision elements to be
used, because an error in a decision element can introduce mno more er-
roneous information in the circuit than an error in the circuit which

follows the decision element.
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FIG. 1. A RESTORING ORGAN USING DECISION ELEMENTS. THE
REDUNDANT INFORMATION ON THE INPUT LINES ON THE LEFT IS
USED TO MAKE MORE RELIABLE INFORMATION ON THE OUTPUT LINES
ON THE RIGHT.

(a) Arrangement without redundancy
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(b): Arrangement with redundancy
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FIG. 2. PLACEMENT OF RESTORING ORGANS IN A REDUNDANT
CIRCUIT, ILLUSTRATED FOR A SIMPLE TREE CIRCUIT.




The simplest decision element for binary systems is a majority-rule
circuit. When each of the inputs to a majority-rule decision element has
error probability A, the probability that a majority of independent in-
puts will be in error, Ap, (assuming P odd) is the following sum of terms

of the binomial distribution.

p-1
2 Ve p-1-2n  ptl+2n
Ap = (1-X 2N 2 1
D pritan | 1M (1)
n‘xO 2

Ap is bounded from below by the term for n = 0. Ap can be bounded from
above by an infinite geometric series in which the kth term is

[h/(l-h)]k"l times the term for n = 0. Therefore, for A < 0.5,

Je p-1  ptl
a-» 2 x 2
0 p-1 ptl ptrl
(1-N) 2 5 2 i)\Di 2 (2)
ptl 1 - A
2 1-A

The logarithm of Ap is\plotted in Fig. 3 versus the redundancy, p,
for several values of A\. 1In order to give an idea of the error prob-
abilities involved, the mean time between errors has been plotted on the
right side of the graph, assuming 10° calculations per second. When
each input makes one error in 200, note that the mean time between errors
in the output decision 1s a century with a redundancy of only 15.

If the inputs to a decision element are not all equally reliable,
an improvement in system reliability may be obtaiﬁed by distinguishing
between inputs with different error probabilities. Pierce has shown
that the binary number which is more likely to be correct may be obtained
from independent inputs by a circuit which takes a weighted vote, such
as shown 1in Fig. 4.7 Let x; be the binary digit, +1 or -1, which is on

th

the 1 input. Each value of x; 1s multiplied by a; in the device shown

1
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as a triangle, giving the output x; a;. The values xja; are summed in

the summing device, shown with a X, so that
output of summing device = a, * }: a;x; (3)
i=1

If the output of the summing device is positive, the nonlinear device

causes the value of output decision to be +1; if the output is negative,

the nonlinear device causes the output decision to be -1. TIf the weight-
ing factors, a;, are
p(ith input is correct)
a; = log (4)

(ith input 1s 1incorrect)
P P

and the bias term, a (which depends on relatively how often +1 is the

o] H

. *
correct answer) 1s

a priori probability of +1 (5)

a = lo
£ 3 priori probability of -1

(o]

then the output decision will be the binary digit more likely to be

LR
correct.

* o 5 - £ ° o o
A. Bayes’ decision (assuming zero loss for a correct output decision) is made by
adding the log of the ratio of relative losses for incorrect decisions.

"*The proof is based upon the following equation for conditional probabilities:

og n_ = log

p(?iAlw.AD By...B,) p, (%)

p(x|Al...A, Bl...B) Po(x)

m

n .
> lo b3 lo

p(A: 1is correct)
g —I - g
i=]1 p(Aj is incorrect) i=1 p(Bj is incorrect)

p(gj is correct)

where x is any Boolean proposition (here x = ®+1 is correct’)

X is the complement of x (here X = ¢-1 1s correct’)

Al..uAn are observations favorable to x

Bl'“"Bn are observations favorable to X.

P,(x) is the a priori probability of x

p,(¥X) is the a priori probability of %.
Assuming independence of errors in the inputs, the equation follows from manipulation
with conditional probabilities (Bayes’s Law) and the simple properties of logarithms.
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The decision element of Fig. 4 can be made adaptive by circuits
which estimate the probabilities in the expression for the optimum a;, and
then use this estimate to adjust the actual vote weights in the decision
element. Defective inputs are automatically eliminated from the vote by
a being given a vote weight of zero. 1In general, the more reliable in-
puts to a decision element are given greater votes.

The error probabilities of each input to a decision element can be
estimated by counting errors between each input and the correct answer.
The correct answer could initially be supplied for this purpose. How-
ever, if the output decision of the decision element is very reliable---
as it would be in a digital computer---then the output decision could be
used as if it were the correct answer for the purpose of counting errors.
Thus, a decision element with inputs which are initially very reliable
could maintain a reliable output as the inputs fail one by one. When-
ever an input failed, it would disagree with the output decision of the
majority, and be thereby classified as defective and given a vote weight
of zero.

Adaptation may often be exchanged for redundancy, and vice versa,
without change of reliability. The rate of exchange will be discussed
quantitatively in Appendix I.

The initial yield and the expected lifetime of a redundant sy;tem
depend upon the complexity of the system, the amount of redundancy, and
the type of adaptation used, if any. For instance, consider a system
with 100 different stages, each of which must work for the system to work.
Assume that the probability that any stage works is 90 percent. Without
redundancy, the probability of successful manufacture is 2.7 x 10°°. When
majority-rule decision elements are used, a redundancy of 3 gives a prob-

ability of successful manufacture of 0.058, while a redundancy of 9 gives

" .
The examples are special cases of the combinatorial formulas of Appendix I.
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0.90: If adaptive decision elements which require only one good input
are usedy* a redundancy of 3 gives a probability of successful manufacture
of 0.91, while a redundancy of 9 gives a probability of 1- 107 7.

The lifetime of a system with many different stages is extended by
the use of redundancy; the lifepime may be extended even beyond the median
lifetime of each component if adaptation is also used. For example, as-
sume that a system with 100 stages is made from stages which have a sur-
vival probability of e“t., The survival probability of a system which
uses majority-rule decision elements is shown as a function of time in
Fig. 5 for p = 3 and p = 9; the system without redundancy is shown by the
curve labeled p = 1. A system which uses perfectly adaptivé decision
elements, which require only one good input, has the survival prob-
ability shown in Fig. 6. Redundant systems have an initial period of high
reliability, which makes them especially valuable in critical applications.
The curves from Figs. 5 and 6 have been replotted in Fig. 7 on logarithmic
scales 1in order to demonstrate this fact.

The compound problem of initial yield and lifetime can be treated
simul taneously. Suppose the system with 100 stages has an initial yield
probability of 95 per cent per stage, and a survival probability of e~t/T
thereafter. The system can be analyzed, using Fig. 5, 6, and 7 by letting
the time on these figures be a variable t’, where t’ E»i - An 0.95. Thus,
at t = 0, Fig. 5 shows the probability that the nonredundant system has
survived manufacture is below 0.2 (actually it is 0.006), while the prob-
abilities that the majority-rule systems have survived manufacture are
0.55 for p = 3 and 1-0.003 for p = 9. The adaptive systems have yields
of 1-7x10"4 for p = 3 and 1 - 4x10°6 for p . 9. Given the fact that the
systems survived manufacture, the median lifetime of each system is 7

times the interval between An (1/0.95) and the value of time on the graphs

* o ° o o < o
This assumption is not necessarily impractical. External correct signals could be
supplied temporarily in order to find the correct inputs to a decision element, even

when they are in the minority.
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FIG. 6. SURVIVAL PROBABILITY AS A FUNCTION OF TIME FOR A
SYSTEM OF 100 STAGES, WITH A REDUNDANCY OF o, USING PERFECTLY
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BILITY e-t.
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FIG. 7. LOGARITHMIC PLOTS WHICH SHOW THE HIGH RELIABILITY

OF REDUNDANT, AND REDUNDANT ADAPTIVE, SYSTEMS DURING THE
INITIAL PART OF LIFETIME, ALL CURVES ARE FOR A SYSTEM OF 100
STAGES WITH A REDUNDANCY OF 0, CONNECTED BY DECISION ELEMENTS;
ASSUMING EACH STAGE HAS SURVIVAL PROBABILITY e-'. CURVE
1--p=3, MAJORITY-RULE DECISION ELEMENTS; CURVE 2--p0=9,
MAJORITY-RULE DECISION ELEMENTS; CURVE 3--p=3, PERFECTLY
ADAPTIVE DECISION ELEMENTS; CURVE 4--0=9, PERFECTLY ADAPTIVE
DECISION ELEMENTS.

for which the survival probability is 0.5 times the probability of
surviving manufacture. Thus the majority-rule systems which survived

manufacture would have a median lifetime of 0.015 7 for p = 3, and

9. The adaptive systems would have a median lifetime of

0.12 7 for p
3, 0.80 7 for p = 9, and 1.72 7 for p = 27.

0.16 7 for p



ITI. ADAPTIVE LOGIC

In the previous section, it was seen that adaptive decision elements,
also called vote-takers, dispersed throughout microelectronic systems,
are like automatic repairmen constantly on duty in their respective lo-
cales, always ready to delete parts that become defective. This type‘of
self-repair makes optimal use of the remaining functioning components,
and is especially applicable to systems of fixed logical structure. A
new type of logic, adaptive logic, is being devised that promises to play
a significant role in the future development of computers. This type of
logic is not designed in detail in the usual way. Instead, it can learn
to function by being trained by the designer, or it can spontaneously
learn from its environment. 1In a sense, such systems are inherently re-
liable. They can adapt to their own internal failures. Systems con-
taining adaptive vote-takers are bridges between conventional fixed-logic
systems and systems adaptive ‘from the ground up’.

A self-contained automatically-adapted logical element called the
ADALINE ‘neuron’1l:12 has been developed for pattern recognition systems
and as a basic element for adaptive logical circuits. This element would
serve directly as an adaptive vote-taker, and such an application is dis-
cussed in detail below. A schematic of ADALINE is shown in Fig. 8. (Note
the similarity to the decision element of Fig. 4.) It represents a flex-
ible threshold-logic circuit having input lines, a single output line,
and an input line, called the ‘desired output’, which is actuated during
training only.

The binary input signals to ADALINE have values of +1 or -1, rather
than the usual values of 1 or 0. Within the neuron, a linear combination
of the input signals, each of which is multiplied by a certain weighting
factor, is formed. The weights are the gains ay, ag,...a,, which can
have both positive and negative values, The output signal is +1 if the

weighted sum is greater than a certain threshold, and -1 otherwise. The




The threshold level is determined by the setting of ag, whose input is
permanently connected to a +1 source. Varying 50 varies a constant added
to the linear combination of input signals. |

For fixed gain settings, each of the 2" possible input combinations
could cause either a +1 or a -1 output. Thus, all possiblé inputs are
classified into two categories. The jnput-output relationship is de-
termined by choice of the gains'ao, aj,...ap. Invthe adaptive neuron,
these gains are set during the training pfocedure.

In general, thefg are 2zn different input-outpup relationshipé, or
truth funétions; by whi ch the n binary inbut variables can be mapped into
a single binary output variable. Only a subset of these relationships,
the linearly sepafated truth functions,13 can be realized by a single
neuron of the form shown in Fig. g.* Although this realizable subset is
not all-inclusive, it is a very useful subset, and it is ‘searchable’,
in that optimum gain settings for a given truth function can usually be

.found by a convergent iterative process.

n e Output
Input ° e :iﬁ +1,-1
signals -
+,-1

o
e Adaptlofion

procedure

1, -1 I desired output
(acterated during training only)

FIG. 8. BLOCK DIAGRAM OF THE ADAPTIVE ADALINE NEURON.

*As an example of a truth function which cannot be realized, no combination of
gains ag, aj, and ag in a two-input neuron could give a +1 output with inputs -1,
-1 and +1, +1 while giving a -1 output with inputs +1, -1 and -1, +1. Indeed, as n
becomes large, the fraction of all possible truth functions which ‘a single neuron can

realize becomes exceedingly small.
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REFERENSE

*

FIG. 9. A MANUALLY-ADAPTED ADALINE NEURON.

Application of this neuron in adaptive pattern classifiers was first
made by Mattson.l4:15 He has shown that complete generality in choice of
switching function could be achieved by combining these neurons. He de-
vised an iterative digital cpmpute; routine for finding the best set of
a’'s for the classification of noisy geometric patterns. An iterative
procedure having similar objectives has been devised by B. Widrow and
M. E. Hoff and is described next. This procedure is simple to implement,

and can be analyzed by statistical methods that have been developed for

the analysis of adaptive sampled-data systems.16
A. AN ADAPTIVE PATTERN CLASSIFIER

An adaptive pattern-classification machine has been constructed for
the purpose of studying and illustrating adaptive behavior and artificial
learning. It represents a single manually-adapted ADALINE neuron. A

photograph of this machine is shown in Fig. 9.
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During traihing, crude geometric patterns are fed to the machine by
setting the toggle switches in the 4 x 4 input switch array. Setting
another toggle switch (the reference switch) tells the machine whether
the desired output for the particular input pattern is +1 or -1. The sysfem
learns sdmething from'eaéh pattern and accordingly experiences a design
change. The machine’s total ‘experience’ is stored in the values of the
weights ag...ajg. The machine can be trained on undiétorted noise-free
patterns by repeating them over and over until the iterative search process
converges, or it can be trained on a sequence of noisy patterns on a one-
pass basis such that the iterative process converges statistically. Com-
binations of these methods can be accommodated simultaneously, After
training, the machine can be used to classify the original patterns, and
noisy or distorted versions of these patterns.

Details of the iterative searching routine used to train the manually
adapted ADALINE are given in Appendix II. The iterative routine described
is purely mechanical, and requires only adherence to a fixed set of rules.
Electronic automation of this procedure, to get the completely self-

adaptive ADALINE neuron of Fig. 8, will be discussed below.
B. STATISTICAL THEORY FOR THE ADAPTIVE NEURON ELEMENT

The statistical theory which led to the highly successful iterative
searching routine, described in Appendix II, used to train ADALINE is de-
rived in detail in references 11 and 12. Appendix III summarizes the
results of this theory, which shows that the training pfocedure described
in Appendix II converges toward thesegain settings, ag..-an, which minimize

of Fig. 10, for all the

the mean of the square of the neuron errors, €,

patterns on which the neuron has been trained.

It is also possible to predict howvmuch training a neuron needs before
it will have reached its optimum state for handling a given set of input
patterns, One can even show, statistically, how much worse than op timum

the neuron is after any number of training experiences. To this end, it
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FIG. 10. RELATIONS BETWEEN ACTUAL NEURON
ERRORS AND MEASURED ERRORS.

is useful to define a dimensionless parameter M, the ‘misadjustment’, as
the ratio of the excess error probability to the minimum error probability.
M =0 implies a perfectly adjusted neuron, and M = 1 implies a neuron
that makes twice as many errors as the optimum neuron. M is a measure of
how an adaptive system performs, on the average, after adapting transients
have died out,vcompared to a fixed system, whose design is optimized,
based on perfect statistical knowledge. Misadjustment formulas developed
for adaptive sampled-data systemsl6 may be applied to the adaptive neuron.
Simulation tests have shown that the misadjustment formulas are
highly accurate over a very wide range of pattern and noise character-
istics. A description of a typical experiment and its results is given
in Fig. 11. Noisy 3 x 3 patterns were generated by randomly injecting
errors in ten per cent of the positions of the four ‘pure’ patterns, X,
T, C, J. The best system, arrived at by slow precise adaptation on the
full body of 100 noisy patterns, was able to classify these patterns as

desired, except for twelve errors. The gains were then set to zero and
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FIG. 11. EXPERIMENTAL ADAPTATION ON NOISY
3 x 3 BINARY PATTERNS.

ten patterns were chosen at random. The best system for these patterns
was arrived at and tested on the full body of 100 patterns. Twenty-five
classification errors out of 100 were made. The misadjustment was 108%.
The experiment was repeated three more times, and the misadjustments that
resulted, in order, were 58%, 67% and 133%. Since N = 10 patterns and

n = 9 input lines, the expected misadjustment was, using the following
formula for the theoretical misadjustment,

m*t1l - 300 per cent

An average taken over the four experiments gives a measured misadjustment

of 91.5%, a close agreement.

The adaptive neuron can thus adapt to the job of pattern classifi-

cation after seeing a very few patterns. A misadjustment of 20% is
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reasonable in many applications. To achieve this, all one has to do is
supply the adaptive classifier with about five times as many patterns as
there are input lines, regardless of how noisy thevpatterns are and how
difficult the ‘pure’ patterns are to separate. Although the misadjustment
formulas have been derived for the specific classifier consisting of a
single adaptive neuron, it is suspected that the following 'ruie of thumb’
will apply well to a variety of adaptive classifiers: the number of pat-
terns required to train an adaptive classifier is equal to several times

the number of bits per pattern.
C. NETWORKS OF ADAPTIVE ADALINE NEURONS

Pure patterns and noisy versions of them that are linearly separable
are readily classified by the single neuron. Nonlinearly separable pure
patterns and their noisy equivalents can also be separated (as in the ex-
periment of Fig. 11) by a single neuron, butvabsolute performance can be
improved and the generality of the classification scheme can be greatly
increased by using more than one neuron.

Two ADALINES were combined by usiﬁg the following adaptation pro-
ceduré:. if the desired output for a given input pattern applied to both
machines was -1, then both machines were adapted in the usual manner to
ensure this; if the desired output &as +1, the machine with the smallest
measured error € was assigned to adapt to give a +1 output while the other
machine remained unchanged. If either or both machines gave outputs of
+1, the pattern was classified as +1. If both machines gave -1 outputs,
the pattern was classified as -1,

This procedure assigns specific *responsibility’ to the neuron that
can most easily assume it. If, at the beginning of adaptation, a given
neuron takes responsibility for producing a +l with a certain input, pat=
tern, it will invariably take this responsibility each time the pattern is
applied during training. Notice that it is not necessary for the teacher
to assign responsibility. This is done by a purely mechanical ‘job assign-
er!., The combination does this automatically and requires only input pat-

terns and the associated desired outputs, like the single neuron.
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Various classification problems could be solved simultaneously by
multiplexing neurons or combinations of neurons. One neuron might be
trained to decide whether the man in a given picture does or does not have
a gfeen tie, while another neuron or combination could be trained to de-
cide whether or not the man bas a checkered shirt. Each neuron or com-
bination has its own output line, and each is fed the appropriate desired
output signal during training. The input signals are common to all neurons.
In this manner, it is possible to form adaptive classifiers that can sep-
arate, with great accuracy, large quantities of complicated patterns into
many output categories. FEach neuron becomes a ‘specialist? in classify-

ing certain types of patterns.
D. ADALINE AS AN ADAPTIVE VOTE-TAKER

Vote-taking is actually a form of pattern recognition. The array of
output signals arising at each calculation cycle from a set of voters com-
prises a spatial pattern which the vote-taker must classify (which the
adaptive vote-taker must learn to classify) and deliver an output decision.
The ADALINE neuron, utilizing the above<described adaptation procedure,
has been applied directly fo the job of adaptive vote-taker. Its per-
formance closely approximates the ideal (whose structure is based on sure-
ness information measurements), and is simple to implement physically.

The training of the adaptive vote-taker 1s a continuous process. The
‘correct’ decision is injected at the ‘desired output® point (Fig. 8).

The changes in weight values per cémputation cycle are made to be exceed-
ingly small. 1In a practical situation, the time constant of the adaptation
process would be of the order of magnitﬁde of the average interval between
component failures.,

The ‘correct®’ decision signal could be supplied externally to permit
adapting on check programs. An alternative method would derive this sig-
nal from the output decision of vote-taker itself. 1In Fig. 8, the ‘de-

sired output® point would be connected to the neuron output in a *bootstrap’



feedback arrangement. This alternative is the more attractive, since it
does not require external signals to be supplied to vote-takers dispersed
throughout a system, and since adaptation is possible during normal pro-
ductive system operation. The bootstrap arrangement introduces a stability
problem, however. Long chains of random errors could cause the vote-taker
to so adapt as to consistently produce incorrect results. This cén be
prevented by setting the vote wéights initially to produce correct results,
and by making the adaptation process a very slow one. In system design,
the chief problem is to choose a time constant of adaptation long enough

to prevent instability and, at the same time, short enough to weed out

components as they become defective.
E. REALIZATION OF AUTOMATIC ADAPTIVE NEURONS BY CHEMICAL *MEMISTORS'

The structure and the adaptation procedure of the ADALINE neuron are
sufficiently simple that an electronic fully-automatic neuron is being
developed. The objective is a self-contained device, like the one sketch-
ed in Fig. 8, that has many signal input lines, a ®desired output’ input
line (which is actuated during training only), an output line, and a
power supply. The device itself should be suitable for mass production,
should contaiﬁ few parts, and should be reliable.

To have such an adaptive neuron, it is necessary to be able to store
the gain values, analog quantities which-could be positive or negative,
in such a manner that these values can be changed electronically.

A new circuit element called the memistor (a resistor with memory)
has been devised by B. Widrow and M. E. Hoff for the realization of auto-
ﬁatically adapted ADALINE neurons.l? A memistor provides a single variable
gain. Each neuron therefore employs a number of memistors equal to the
number of input lines plus one.

A memistor consists of a conductive substrate with insulated connect-
ing leads, and a metallic anode, all in an electrolytic plating bath. The

conductance of the element is reversibly controlled by electroplating.
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Like the transistor, the memistor is a 3-terminal element. The conductance
between two of the terminals is controlled by the time integral of the
currenﬁ in the third, rather than by its instantaneous value as in the
transistor. Reproducible elements have been méde which are continuously
variable (thousands of possible analog storage levels), and which typical-
ly vary in resistance from 100 ohms to 1 ohm, and cover this range in
about 10 seconds with several milliamperes of plating current. Adaptation
is accomplished by direct current, while sensing the neuron logical struc-
ture is accompliéhgd nondestructively by passing alternating currents
through the array of memistor cells,

A circuit for a memistor ADALINE is shown in Fig. 12. Notice the
schematic symbol for the 3—terminél memistor. This circuit presumes that

the neuron input signals are applied by means of switches, and that the

-overvall direction and extent of adaptation are controlled manually. The

direction in which each memistor should be adapted (plated or stripped)
is determined by the algebraic product of the error signal multiplied by
the particular input signal., This product, and hence the direction of
adaptation, is effected by the joint action of the adaptation control
switch and a gang of each pattern switch, as shown in Fig., 12.

In the circuit of Fig°’l2, the effect of positive and négative géin
values is obtained by balancing the memistor against a fixed resistor in
a bridge arrangement. The sensing of the gain is done by applying an a-c
voltage to the memistor, and another a-c voltage with a 180~degree phase
difference to the fixed resistor. The currents are propoftional to the
conductances and are summed. An individual gain is zero when the memistor
condu@tance equals that of its reference, and an ideal value of reference
conductance. is the average of the conduétance eXtremes of the memistor,
None of the element values or memistor characteristics are critical, be-
cause of the inherent feedback in the adaptation process. These neurons
have been built and have adapted (with somewhat reduced efficiency) even

with 30 per cent of their memistors improperly manufactured and defective.
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The first working memistors were made of ordinary pencil leads im-
mersed in test tubes containing copper sulphate-sulphuric acid plating baths.
Present elements‘are made by grinding down small T% waﬁt carbon resistors
so that a flat graphite surface is obtained with the resistors’ connections
exposed. Light coats of rhodium provide smobth substrates for plating, and
protect the copper lead connéctions. The connections are insulated, éﬁd
the substrates are sealed, with their individual copper plating baths, in
lucite cells. These elements are small and rugged, cheab, simple, and non-
critical in manufacture. Improvements are being sought (by using different
baths and different plating metals, different geometries and different
substrate materials) in lifetime, and in electrical characteristics such
as stability, relaxation, smoothness, and speed of plating.

The first successful neuron using the lucite cells is pictured in
Fig. 13. Patterns are fed to it in the usual manner, and it is trained to
deliver the desired response to each pattern by holding the adapt control
in the direction of desired needle motion, until the needle reads the de-
sired response, then released. This 4 x 4 ADALINE has no knobs on its front
panel, being equipped instead with 17-dimensional ‘power steering’.

In addition to the electrochemical memistors described above, magnetic
elements have shown promise for the creation of variable gain with memory.
Analog storage in saturated magnetic cores has already been demonstrated. 18
A variable small-signal transformer of the form shown in Fig. 14 also shows
promise; 1in this structure the coupling between the perpendicular input and
output windings is controlled by the difference in small-signal permeabil-
ities of legs A and B.

Input

FIG. 14. AN ELECTRONICALLY
VARIABLE TRANSFORMER.




IV. CONCLUSION

The application of the technology of microelectronics will be enhanced
greatly by the use of redundancy and adaptation in prescribing systems
which can adapt around their own internal flaws and which can be trained
to their intended function. Study of various phenomena and devicé con-
figurations which might provide the needed variable gain with memory should
accompany the advances now being made in microelectronic techniques for

fabricating active and passive components and subassemblies.

- 26 -




APPENDIX I: ERROR PROBABILITIES OF ADAPTIVE DECISION ELEMENTS

The proBability that the decision element of Fig. 4 will make an
error is based on the probabilities that the output of the summing element
will be negative when the correct answer is +1, and positive when fhe
correct answer is -1. Let v be the output of the summing element times
the correct answer, so that v > 0 implies a correct output and v < 0
implies an incorrect one, If errors in the inputs are independent, v is
just the sum of p random variables, namely the sum of each input times
the correct answer times the vote weight. Therefore, the probability
density of v is the convolution of the probability densities of the terms
in the sum.

Let Ap be the error ﬁrobability of the output decision. Ap may\be
found exactly from the probability density of v, or it may be approximat-

ed by the inequality

P ' i .
KD < igl 2/N; (1 - Aj) cosh — (A-1)

where Il denotes the product of o terms of the form shown.

The closeness of the bound can be evaluated for the majority-rule
decision element with equally reliable inputs. When the formula for
majority-rule [Eq. (2) of text] is evaluated using Stirling's formula,
the ratio of the bound on AD given by (A-1) to the actual value of AD is
approximately /?;;Y7§ . Because the bound on KD goes geometrically in p,
the bound is quite close, (Example: Find p when each input to a majority-
rule decision element makes one error in 50,.and AD must be less than
10°14,  The exact formula gives o = 23; the bound gives o = 26.)

The bound on Ap cleérly demonstrates the advantage of adaptation, for

the cosh term has its minimum, for each i, when

= (A-2)
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This is just the optimum vote weight discussed in the text. If the
optimum a; are used, adding an input with errér probability, Aj multiplies
the bound on Ap by 2/X3?in37 . Thus, for small A, and good adaptation,
the bound on A goes roughly as 2P times the product of the square roots
of the A;. 1If an input has an error probability of one half, the bound
on XD will be increased unless that input is given a vote weight of zero.
If poor or no adaptation is used, then there muét be an increase in the
redundancy for given Ap over that with perfect adaptation.

The importance of redundancy in a large digital network can be demon-
strated by a simple combinational analysis. Assume a redundant digital

network using restoring organs in the manner shown in Fig. 2. Let

N = total number of different stages in the network,
p = the redundancy (number of inputs to each decision element),

m = number of inputs to a decision element which must perform
correctly in order for the decision element to perform
correctly,

A = the probability that the output of one logical stage
performs correctly.

Note that the value of m depends upon the adaptation. Without adaptation
(majority-rule) m is greater than p/2. With perfect adaptation, m could
conceivably be as low as 1. %

The probability that one of the stages will not have at least m

correctly performing inputs is

m-1 /.

0
Z (1-n)h \e-b
h=o\ b -

Therefore, the probability that the system with N stages performs correct-

ly 1is
) m-1 N
P .
p(system performs correctly) = 1 - }E: (1 -K)hhp°h
h=0\ P
(A-3)




The above formula was used to find the inifial yields for the examples

in the text. It was also used to find the survival probability plotted
in Figs. 5 and 6, by setting A = e't/T for T = i. The median lifetime,
T, is found by equating the left side of the equation to 0.5 énd A in the
‘right side to e /7. When m = 1, the median lifetime can be found ex-

plicitly:
T o o740 1-[(1-2"1/N)1/F] (A-4)
For N = 100, o ¢ 1 gives T  0.0069 7, p = 3 gives T = 0.21 7, and o = 9

gives T = 0.86 7. Thus, a redundancy of 3, with adaptation, can extend

the median lifetime by a factor of 30.
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APPENDIX II: TRAINING THE MANUAL ADALINE NEURON

This appendix is a description of the iterative searching routine
used to train the manually adapted ADALINE shéwn in Fig., 9. A pattern
is fed to the machine, and the reference switch is set to correspond to
the desired output. The error is then read (by switching the reference
switch, the error voltage appears on the meter, rather than the neuron
output voltage). All gains including the level are to be changed by the
same absolute magnitude, so that the error is brought to zero. This is
accomplished by changing each gain (which could be positive or negative)
in the direction which will diminish the error magnitude by 1/17. The 17
gains may be changed in any sequence, and after all changes are made, the
error for the present input pattern is zéro. Returning the reference to
the neutral position, the meter reads exactly the desired output.
The next pattern, and its desired output, are presented and the error is
read. The same adjustment routine is followed and the error is brought
to zero. If the first pattern were reapplied at this point, the error
would be small but not necessarily zero. More patterns are inserted in
like manner. Convergence is indicated by small errors (before adaptation),
with small fluctuations about a stable rootemean~square value,

This adaptation procedure may be readily modified to get slower (and
smoother) adaptation by correcting only a fraction of the error with the

insertion of each pattern.




APPENDIX III: STATISTICAL THEORY FOR ADAPTIVE NEURONS

The error signal measured and used in adaptation of the neuron of
Fig. 9 is the difference between the desired output and the weighted sum
before quantization. This error is indicated by € in Fig. 10. The actual
neuron error, indicated by €, in Fig. 10, is the difference between the
neuron output and the desiréd output,

The objective of adaptation could be stated in the following manner.

Given a collection of input patterns and the associated desired outputs,

find the best set of weights Ag, Ap,...ay to minimize the mean square of
the neuron error, €§n Individual neuron errors could only have the values
2

of +2, 0, and -2 with a two-level quantizer. Minimization of:-€? is there-

n

fore equivalent to minimizing the average number of neuron errors,

~~ The simple adaptation procedure described in this paper minimizes

—— ey

62y rather than €2

ne The measured error € will be assumed to be Gaussian-

distributed with zero mean. Using certain geometric arguments, it can be

shown that undgr these conditions, Eg is a monotonic function of €2 and
that minimization of :E is equivalent to the minimization of 6% and thus
to the minimization of the probability of neuron error. The ratio of
these mean squares has been calculated and is plotted in Fig. 10 as a
function of the neuron error probability. This plot is a good approximation
even when the error probability density differs considerably from the
above assumptions.
Given any collection of input patterns and the associated desired

outputs, the measured mean square error €2 can be shown to be a precisely

parabolic function of the gain settings, ag,...ay. Therefore, adjusting

gy

2

the a’s to minimize €“ is equivalent to searching a parabolic stochastic
surface (having as many dimensions as there are a's) for a minimum. How
well this surface can be searched will be limited by a sample size, 1i.e.,

by the number of patterns ‘seen’ in the searching process.
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The method of searching that has proven most useful is the method of

steepest descent. Vector adjustment changes are made in the direction of
the surface gradient. The procedure described for bringing each error to
zero implements the method of steepest descent with each successive input

pattern.




10.

11.

12.

13.

14.

15.

16.

17.

- 18.

REFERENCE

M. M. Perugini, and Nilo Lindgren, ‘Microminiaturization’, Electronics,

vol. 33, pp. 78-108; November 25, 1960.

I. A. Lesk, et al., ‘A categorization of the solid-state device aspects
of microsystems electronics?’, Proc. IRE, vol. 48, pp. 1833-1841;
November, 1960.

J. T. Wallmark, ‘Design considerations for integrated electronic de-

vices’, Proc. IRE, vol. 48, pp. 293-300; March, 1960.

K. B. Shoulders, ‘On microelectronic components, interconnections,

and system fabrication®, 1960 Western Joint Computer Conference, May,
1960.

C. E. Shannon and E.. F. Moore, *‘Reliable circuits using less reliable
relays?, J. Franklin Inst., vol. 262, pp. 191-208 and 281-297; September
and October, 1956.

J. von Neumann, ‘Probabilistic logics and the synthesis of reliable
organisms from unreliable components?, Automata Studies, Princeton
University Press:; 1956,

W. H. Pierce, °A proposed system of redundancy to improve the reliability
of digital computers?, Technical Report 1522-1, Stanford Electronics
Laboratories, Stanford, California; July 29, 1960.

J. J. Suran ---- this issue.

D. E. Rosenheim, and R. B. Ash, ‘Increasing reliability by the use of
redundant machines®, IRE Trans. (Electronic Computers), vol. EC-8,
pp. 125-130; June, 1959.

B. J. Flehinger, °®Reliability improvement through redundancy at various
system levels®, IBM J. Res. and Dev., vol. 2, pp. 148-158; April 1958.

B. Widrow and M. E. Hoff, “Adaptive switching circuits’, 1960 WESCON
Convention Record, part IV, pp. 96-104; August 23, 1960.

B. Widrow and M. E. Hoff, ‘Adaptive switching circuits?, Technical
Report No. 1553-1, Stanford Electronics Laboratories, Stanford
University, Stanford, Californiaj June, 1960.

R. McNaughton, ®Unate truth functions?, Technical Report No. 4, Applied
Math. and Statistics Lab., Stanford University; October 21, 1957.

R. L. Mattson, °The design and analysis of an adaptive system for
statistical classification”, S.M. Thesis; Electrical Engineering Dept.,
Mass. Inst. of Tech.; May 22, 1959.

R. L. Mattson, ‘A self-organizing logical system’, 1959 E.J.C.C., Con-
vention Record, Inst. of Radio Engineers, 1959.

B. Widrow, °‘Adaptive sampled-data-systems---a statistical theory of
adaption?, 1959 WESCON Convention Record, part 4.

B. Widrow, ®An adaptive ADALINE neuron using chemical memistors?,
Technical Report No. 1553-2, Stanford Electronics Laboratory, Stanford,
California; October 17, 1960.

A. E. Brain, ‘The simulation of neural elements by electronical networks
based on multi-aperture magnetic cores’, Proc. IRE, vol, 49, pp. 49-52;
January, 1961,

- 33 -



§




