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Abstract— The LMS algorithm is used to find the optimal
minimum mean-squared error (MMSE) solutions for a wide
variety of problems. Unfortunately, its convergence speed depends
heavily on its initial conditions when the autocorrelation matrix
R of its input vector has a high eigenvalue spread. In many
applications such as system identification or channel equalization,
R is Toeplitz. In this paper we exploit the Toeplitz structure of
R to show that when the weight vector is initialized to zero, the
convergence speed of LMS is related to the similarity between
the input PSD and the power spectrum of the optimum solution.

I. INTRODUCTION

The LMS algorithm is widely used to find the minimum
mean-squared error (MMSE) solutions for a variety of linear
estimation problems, and its efficiency has been extensively
studied during the last decades [1]-[18]. The convergence
speed of LMS depends on two factors: the eigenvalue dis-
tribution of the input autocorrelation matrix R, and the chosen
initial condition. Modes corresponding to small eigenvalues
converge much more slowly than those corresponding to large
eigenvalues, and the initialization of the algorithm determines
how much excitation is received by each of these modes. In
practice, it is not known how the chosen initial conditions ex-
cite each of the modes, making the LMS speed of convergence
difficult to predict. Our analysis of the convergence speed
is concerned with applications where the input vector comes
from a tapped delay line, inducing a toeplitz structure in the R
matrix. Using the toeplitz nature of R, we show that the speed
of convergence of the LMS algorithm can be estimated from its
input power spectral density and the spectrum of the difference
between the initial weight vector and the optimum solution.
The speed of convergence of LMS was qualitatively assessed
by comparing it to its ideal counterpart, the LMS/Newton
algorithm, which is often used as a benchmark for adaptive
algorithms [17], [18]. In section II we describe both the LMS
and LMS/Newton algorithms and derive approximations to
their learning curves on which our transient analysis is based.
In section III we define the performance metric used to eval-
uate LMS speed of convergence, and in section IV we show
how that metric can be estimated from spectral information.
We illustrate our result with simulations in section V and
summarize our conclusions and future work in Section VI.
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II. THE LMS AND LMS/NEWTON ALGORITHMS

Adaptive algorithms such as LMS and LMS/Newton are
used to solve linear estimation problems like the one depicted
in Fig. 1, where the input vector @) = [z1xTor - 2Lk]T
and desired response di € R are jointly stationary random
processes, wy = [wirway ---wrk]? is the weight vector,
Yk = wfwk is the output, and €, = dj, — yy, is the error. The
Mean Square Error (MSE) is defined as &, = Ele7] and it is
a quadratic function of the weight vector. The optimal weight
vector that minimizes & is given by w* = R~'p, where
R = E[zyxT] is the input autocorrelation matrix (assumed to
be full rank), and p = E[xdk] is the crosscorrelation vector.
The minimum MSE (MMSE) obtained using w* is denoted

by &£*.
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Fig. 1. Adaptive Linear Combiner

A. The LMS algorithm

Often in practice R™'p cannot be calculated due to the
lack of knowledge of the statistics R and p. However, when
samples of x; and dj are available, they can be used to
iteratively adjust the weight vector to obtain an approximation
of w*. The simplest and most widely used algorithm for this is
LMS [1]. It performs instantaneous gradient descent adaptation
of the weight vector:

ey

The step size parameter is p and the initial weight vector wy is
arbitrarily set by the user. The MSE sequence &, corresponding

Wyt = Wi + 2UELTE-
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to the sequence of adapted weight vectors wy is commonly
known as the learning curve.

Next we derive an approximation for & that is the basis
of our speed of convergence analysis. Since R is symmetric,
we can diagonalize it as R = QTAQ, where A is a
diagonal matrix of the eigenvalues \; of R, and Q is a real
orthonormal matrix with the corresponding eigenvectors of

R as columns. Let vy 2 wy, — w* be the weight vector
deviation from the optimal solution and v, 2 QT vy,. Let Fy,
be the vector obtained from the diagonal of E[vjv}"], and
A 2 A1z ...Az]T. Assuming the random processes {xy, dy }
to be independent, it can be shown [3] that the MSE at time
k can be expressed as

& =& + ATF,. 2)

If we further assume xj to be gaussian, it was shown in [5]
and [3] that F}; obeys the following recursion

Fiy1 = (I —4pA + 81° A% + 4> AT Fy, + 426X, (3)

where Fj is shown [5] to converge if pu < 3%(1%). This
condition in y allows us to approximate (3) by

Fiy1 ~ (I — 4pA)Fy + 4p26° X )
Denoting by 1 € R” a vector of ones and using (4),
Fy ~ (I = 4pA)*(Fy — p&™1) + pg™1, )

Substituting (5) in (2), we obtain the following approximation
for the LMS learning curve

& & oo+ AT(L = 4pp)* (Fy — pg"1). (©6)
where £oo 2 limp_o &~ (1+ pTr (R)).

B. The LMS/Newton algorithm

The LMS/Newton algorithm [6] is an ideal variant of the
LMS algorithm that uses R to “whiten” its input. Although
most of the time it cannot be implemented in practice due
to the lack of knowledge of R, it is of theoretical impor-
tance as a benchmark for adaptive algorithms [17], [18]. The
LMS/Newton algorithm is the following

Wri1 = Wk + 2\ R e i @)
where Aayq = # It is well known [6] that the
LMS/Newton algorithm is equivalent to the LMS algorithm
with learning rate pM,, and x; previously whitened and
normalized such that A = I. Therefore, assuming the same
independence and gaussian statistics of xj and dj as with
LMS, we can replace p by pthaye and A by I in (6) to obtain the
following approximation for the LMS/Newton learning curve

&k & oo + (1 — dpdae) " AT (Fy — p€°1) (8)

where the asymptotic MSE £ is the same as for LMS.
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III. LMS TRANSIENT EFFICIENCY

Examining (6) and (8) we can see that the learning curve for
LMS is a sum of geometric sequences (modes) with 1 —4u\;
as geometric ratios, whereas for LMS/Newton it consists of a
single geometric sequence with geometric ratio 1 — 4pAay,. If
all the eigenvalues of R are equal, the learning curves for LMS
and LMS/Newton are the same. Generally, the eigenvalues of
R are not equal, and LMS consists of multiple modes, some
faster than LMS/Newton and some slower than it as depicted
in Fig. 2
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Fig. 2. LMS and LMS/Newton modes

To evaluate the speed of convergence of a learning curve
we use the natural measure suggested in [5],

oo
A
T2 oo ©)
k=0
Small values of J indicate fast convergence and large values

indicate slow convergence. Using (6) and (8) to obtain J for
LMS and LMS/Newton respectively we get

goms o VR —ple  wowo L&
4u 4u 4
JLJMS/Newton ~ )‘TFO — MAquLf* — ngvO _ K
4,U)\avg 4)“)‘avg 4
(1)

To compare the speed of convergence of LMS to the one
of LMS/Newton, we define what we call the LMS Transient
Efficiency

JLMS/Newton

LMS Tansient Efficiency = (12)

JLMS

If the Transient Efficiency is bigger/smaller than one, then
LMS performs better/worse than LMS/Newton in the sense of
the J metric. Assuming that the initial weight vector wq is
far enough from w* such that v vy > pLE* and UI’LT)\—I?:” >
wLE*, we obtain from (10), (11) and (12)

1 vl Ru

avg 'Ugv()

LMS Transient Efficiency ~ (13)



Since (13) is invariant to scaling of vy and R, we can assume
without loss of generality ||vo| = Aave = 1, obtaining the
following compact expression:

LMS Transient Efficiency ~ UOT Ruvy (14)

This is the first contribution in this paper and it will be used
to obtain an approximation of the LMS Transient Efficiency
in terms of spectra in the next section.

IV. LMS TRANSIENT EFFICIENCY IN TERMS OF SPECTRAL
INFORMATION

In this section we show that in the case that R is toeplitz,
the LMS Transient Efficiency can be expressed in terms of the
Fourier spectrum of vy and the input power spectral density.
The toeplitz structure of R arises from applications where the
input vector xj comes from a Tapped Delay Line (TDL) as
shown in Fig. 3, 1. e. T — [l’k Th—1 Tp—2 ... .’Ek,L+1]T,
where xj, is a stationary scalar random process with autocor-
relation sequence ¢ [n] = E[z) Tk+n]. The input autocorre-
lation matrix is therefore given by Ry ; = ¢z [k — I].

Tk 1

Tk y=1 Tk-1 -l TkoL41

desired
response

Fig. 3. Tapped Delay Line

We define the Input Power Spectral Density vector @4, €
RM as the M uniformly spaced samples of the DTFT of the N-
point truncation of the input autocorrelation function ¢, [n],
i.e.

A —2mj mn
= Z ¢rz 2m3 % (15)
n=—N-+1
m=0,1,...M -1, N>L M>N+L-1.

In order to show how ®,, € RM is related to the LMS
Transient Efficiency, the following Lemma will be needed

Lemma 1 (Spectral Factorization of R): Let ¥ be a M x
M diagonal matrix with ¥, ,, = ®zx[m| as its diagonal
entries, and let U be a L x M matrix with elements U ,,, =
=™ with 0 <1< L—1and 0 <m < M—1,then R
can be factored in the following way

R=UYU" (16)
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Proof: Let T = UWU*, then

1 1 —ml
Ty = Z SR e (17)
\/M M
1 M 1 i)
= — 3 @uu[m]e? T (18)
M m=0
1 M-1 N-1 (k1)
= — ¢xw [n]e_QTrj 7;1;1 e27rj M (19)
M m=0n=—N+1
Nl 1 M-l m(k—l—n)
= D Gwllgp Yo e (20)
n=—N+1 m=0
-1
= Y ¢uuln]dlk—1—n] (21)
=—N+1
= ¢ualk — 1] = Ry (22)

where the step from (20) to (21) was done using the following

inequalities: —L+1<k—I<L—-1,-N+1<n<N-1,

and M > N +L—1. [ ]
Let VO U*vq be the M-point DFT of vy, i. e.

m=0,1,...M —1,

A
Volm] = vo[n]e” 2T
= Z
(23)
Using Lemma 1 and (23) we obtain

M—-1

Z cI)ma: o “2;

furthermore, inserting (24) into (14), we arrive to the following
approximation for the LMS Transient Eficciency in terms of
the input psd and the spectrum of v,

v, TRy, = v, TUwU v, = 24)

M—1
LMS Transient Efficiency ~ Z Dyn[m

m=0

JVolmll*  (25)
We should note that, although the independence assumption
under which the approximation in (14) was derived is violated
when a tapped delay line is used, it has been observed to hold
in simulations. Since vy and R are scaled such that ||vg|| =
Aavg = 1, we can show that

M-1
Zm:() (I)lm[m]

=1
M )

=1 (26)

M—1

> [Vo[m]?
m=0

These normalizations on ®,,[m] and |Vy[m][? allow us to
interpret the right hand side of (25) as a weighted average of
®,..[m] where the weights are given by |V[m]|2. Therefore, if
®,..[m)] is large in the frequency ranges where |V;[m]|? is also
large, the LMS Transient Efficiency will likely be bigger than
one, implying that LMS will outperform LMS/Newton under
the J metric. On the other hand, if ®,,[m] tends to be small
in the frequency ranges where |Vy[m]|? is large, the LMS
Transient Efficiency will likely be less than one indicating that
LMS will perform worse than LMS/Newton in the J metric
sense.



An important application of (25) is to the special case when
the weight vector is initialized to zero w, = 0, hence v, =
—w™, which results in

[Vo[m][* = [W*[m]|* @7

where W*[m] is the M-point Discrete Fourier Transform
of the optimal or Wiener solution w* as defined in (23).
Therefore, when the weight vector is initialized to zero, the
speed of convergence of the LMS algorithm can be estimated
by the weighted average of the input psd with the weights
given by the spectrum of the Wiener solution. This observation
can be very useful for system identification applications, where
prior approximate knowledge of the input psd and frequency
response of the plant to be identified may be used to estimate
LMS’s performance before implementing it. For example, if
the plant has a low-pass frequency response and the input
psd has very little power in the frequency range above the
cut-off frequency, LMS will converge very fast. On the other
hand, if the plant has a high-pass nature and the input psd is
small for high frequencies, LMS will be very slow. In channel
equalization applications the spectrum of the optimum solution
is the opposite of the channel frequency response; hence, if we
initiliaze the weight vector to zero, (25) will be small implying
a slow convergence of LMS, a phenomenom often observed
when using LMS in equalization or adaptive inverse control
problems. We illustrate these ideas with two examples in the
next section.

V. SIMULATIONS

Consider the system identification problem depicted in
Fig. 4. The additive plant noise is independent of the input.
Both, the adaptive filter and the plant consists of 16 taps, so
the spectrum of the optimum solution coincides with the plant
frequency response. The weight vector is initialized to zero
and adapted for 800 iterations. The learning rate is set so that
uTr (R) = 0.05. The power spectrum of the input and the
frequency response of the plant to be identified are shown
in Fig. 5, where a value of M = 200 was used to calculate
®,.[m] and |W*[m]|?. The eigenvalue spread for this exercise
was 5709. By inspection of the input psd and the frequency
response of the plant we expect the LMS Transient Efficiency
to be bigger than one, indicating that LMS should perform
better than LMS/Newton, which is confirmed by their learning
curves shown in Fig. 6. The estimate for the LMS Transient
efficiency obtained from the simulation was 2.064, very close
to the approximation of 2.069 given by (25).

To illustrate what happens if we use zero initial conditions
when the input psd and the Wiener solution spectrum are very
distinct, consider the simple equalization problem depicted in
Fig. 7. The input to the channel is a white signal, hence
the input psd for the adaptive filter is given by the magni-
tude squared of the channel frequency response. The channel
frequency response and spectrum of the wiener solution for
the adaptive equalizer are shown in Fig. 8 where a value of
M = 200 was used. The eigenvalue spread of the input to
the adaptive filter was 75.4. As intuitively expected, the input
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psd and Wiener spectrum have opposite shapes resulting in
a small LMS Transient Efficiency,indicating that LMS should
perform worse than LMS/Newton, which was corroborated by
their learning curves shown in Fig. 9. The estimate for the
LMS Transient efficiency obtained from the simulation was
0.132, very close to the approximation of 0.137 given by (25).
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VI. CONCLUSIONS AND FUTURE WORK

We have shown that when the LMS algorithm is used to
train a transversal adaptive filter with jointly stationary input
and desired response signals, its transient performance can be
assesed by the inner product between the input psd and the
spectrum of the initial weight vector deviation from the Wiener
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solution. This implies that when the initial weight vector is
set to zero, the transient efficiency of the LMS algorithm
can be predicted from approximate knowledge of the input
psd and the frequency response of the Wiener solution. We
described how this theory can be applied to system identi-
fication and equalization tasks; however, our results can be
useful in predicting the LMS performance in any application
where the input autocorrelation matrix is toeplitz and spectral
information about the input and optimum solution is available.

An extension of this analysis is being made to nonstationary
conditions, where the spectral characteristics of the input
and optimum solutions keep a general shape, say both being
always low pass. A similar analysis based on the Mean
Square Deviation (MSD) instead of the MSE is also currently
investigated.
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