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ABSTRACT

A real-time computer-control system for regulating the blood
pressure of an animal in a prolonged state of shock has been suc-
cessfully developed and is being theoretically analyzed. The com-
putér controls the rate of infusion of a vaso-constrictor drug
inputed to the animal, and monitors the blood-pressure output. An
adaptive model of the animal's drug response is used to derive the
required input for control of future blood-pressure values. A
transversal-filter model is used, and control is derived by forward-
time calculation including the known internal states of the model.

There is a great need for learning control systems which can
adapt their control laws to accomodate the requirements of plants
whose characteristics may be unknown and/or changeable in unknown
ways. A principal factor that has hampered the development of
adaptive.controls is the intrinsic difficulty of dealing with learn-
ing processes embedded in feedback loops. Interaction beteeen the
feedback of the learnlng processes and that of the signal flow paths
greatly complicates the analysis which is requlslte to the design
of dependable operating systems.

An elementdary form of adaptive control system employing an
adaptive series compensator is shown in Figure 1. This system is
simple in conception but is rather inefficient and difficult to
deal with from the point of view of adaptation. The compensator
could be easily adapted if one had available in real time an optimal
output or plant driving signal corresponding to the particular real-
time compensator input signal. The optimal compensator output
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Figure 1. Adaptive Series-Compensated Control System.

signal could serve as a training signal for an adaptive compensator.
This signal is very difficult to obtain when the plant is unknown
however. If this signal were available, the compensator and the
feedback loop would be unnecessary.

Another approach to the adaptation of the system of Figure 1
is the following. Suppose that the purpose of adaptation is the
minimization of the servo error in the mean square sense. Gradient
components could be measured by perturbing the compensator adjust-
ments. The mean square error could be minimized by using a gradient
method such as the method of steepest descent. There are two dif-
ficulties here that limit the technique. Regardless of the method
used in perturbing the adjustments, whether one at a time or all at
once, the system settling time must be waited before measurements
can be taken each time the compensator adjustments change or the
plant parameters change.[l]. Furthermore, assuming that the grad-
ient can be successfully measured, the mean-square-error performance
function is known to be irregular, non-parabolic, and containing
relative optima [2]. Hill-climbing techniques for such functions
still are in primitive stages of development.

The techniques proposed in this paper have been successfully
tested in a limited number of medical-electronic experiments and
they represent a different approach to plant control which circum-
vents many of the difficulties typified by the adaptive-system
example of Figure 1. . These techniques are still in development, so
this pépér should be regarded as a preliminary report. In some ways,
these techniques are related to those of Powell [3] who used an
adaptive model to determine a feedback-loop compensator.

The techniques proposed here will be referred to as Adaptive-
Model Control (AMC). The principle operates as follows. Form a
model of the plant, and continually update the model by an adaptive

process. Using the model and its internal states, do a forward-
" time analysis to determine inputs to the model which will cause
desired future model outputs, thereby controlling the model very
closely. Apply the same control to the actual plant, and if the
model behaves similarly to the plant, the output of the plant will
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be closely controlled. The control of the plant is in a sense open-
loop, but in fact, the loop is closed through the adaptive process.

To illustrate the adaptive-Model Control, an overall diagram
of a blood pressure control system that has been constructed and
tested is presented in Figure 2.

At the beginning of a test, a quantity of the powerful drug
Arfonod is injected into the animal (a dog). This drug has the
effect of disabling the natural blood pressure regulating system of
the animal inducing a prolonged state of shock. If left alone, the
blood pressure would drop close to zero and irreversible damage
would be done to the animal. A vasoconstrictor drug, Norepinephrine,
is infused slowly over many hours to compensate and to support the
blood pressure. The computer continually monitors blood pressure
and regulates the rate of infusion of the vasoconstrictor. The
ultimate purpose is to develop computer controls for human intensive
care systems.

Typical dynamic responses of the mean animal blood pressure
readings to step changes in rate of infusion of the vasoconstrictor
drug are sketched in Figure 3. The type of response resulting
depends upon the size, type, and especially upon the condition of
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Figure 2. The Experimental Set-up.
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Figure 3. Typlcal Average Blood Pressure Time Responses to Step
Changes in Vasoconstrictor Infusion Rates.

the animal. An animal in good health will respond to small increases
in drug flow by eventually settllng the blood pressure back to the.
original set point level. A sick animal will not be able to: compen-
sate for evén moderate increases in vasoconstrictor inputs and hence
the blood pressure will increase in a predictable manner and then
settle at a higher level. Tremendous variations in animal responses
to the vasoconstrictor have been observed. Typically, there is a
transport lag of 10 to 20 seconds before the animals respond, and
settling times are usually ‘about 50 .to 100 seconds.

The system illustrated in Figure 2 gives the appearance of
being an ordinary feedback control system. But this is not the case.
The dynamic response of an animal (including transport lag) is too
variable to be managed by a conventional feedback control. A block
diagram of the actual system is shown in Figure k.
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Figure L. Block-Diagram of an Adaptive-Model Control System. »
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The functions labeled "forward-time calculation" and "adaptive
model" are accomplished by a Hewlett-Packard 2116 computer, as are
many data logging and data display function which are not shown but
which are necessary in a laboratory set-up. The "plant" is the
dynamic response of the blood pressure system to the drug. The
zero—order hold is part of the electronic system interfacing the
computer to the drug-flow solenoid wvalve. A cycle time occurs every
five seconds. - Once per cycle, the adaptive model is updated and a
new drug rate (drops per minute) is calculated.

The adaptive model is a 20-tap transversal filter covering a
total real-time window of 95 seconds. A bias weight is inecluded to
represent the ambient average blood pressure when the input drug
rate is zero. The details of the adaptive model are shown in
Figure 5.

The adaptive model would be linear if the weights were fixed
or if their values were not functions of the input-signal character-
istics. The adaptive process automatically adjusts the weights so
that for the given input-signal statistics, the model provides a
best minimum-mean-square-error fit to a sampled version of the
combination of the zero order hold and the plant. The adaptive
process utilized is the IMS algorithm, presented first in refs. [4]
and [5] and presented more completely in the context of applications
to pattern recognition [6] and applications to spatial and temporal
filtering (adaptive antenna arrays) [7].
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Figure 5. Details of "Adaptive Model" Box, a 20-tap Adaptive
Transversal Filter with Bias Weight.
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The adaptive algorithm is

W

P A

3
(1)

The error €; is the difference between the desired response d: and
the model response X?Wj. The desired response dj is obtained by
sampling the actual plant response g(t). Therefore dj=gj, and the
error is €5 = gy - ngj. (Refer to Figure 5.)

With a stationary input and a stationary plant, the LMS
algorithm is known to be convergent when the convergence factor U

is chosen in the range

1 1
A > trace R Zu>0. ' (2)
max

The ipgput autocorrelation matrix R is defined below. Its largest
eigeﬁvalue is Améx' Note that trace R = E[Xj]z. The factor u

controls stability and rate of convergence of the algorithm. The
expected value of the weight vector converges to the optimal or
"Wiener" solution W .

* -1

lim E[W,] =W =R P,
o0
where
_ T b o= '
=E X.X. = N .
R [ J J] and P E[dJXj] (3)

A fundamental mathematical question is raised by this approach.
The input cannot be stationary, and it will be shown that this input
is partly determined from the weight values themselves (via the
"forward-time calculation"). Yet, the IMS algorithm behaves stably,
and in all cases in practice, always converges rapidly to a close
model of the unknown plant. There seem to be no practical problems
with the approach, only mathematical problems.

Refer now to the block diagram of the entire system shown in
Figure 4, The plant control X; is derived from the box labeled
"forward-time calculation." This box generates X; from the refer-
ence input r. and from the weight vector W. and the input vector Xj

- of the model. We shall now consider the operation of this box.

The objective is to derive a driving function Xj so that %
X?W. = r_. . Bach iteration cycle, the model weight wvector Wj is

J .
updated, and then x. is calculated taking into account Wj and

J
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p'd If the model behavior is essentially the

j-l’xj—e""’xj—n+l'
same as that of the plant, application of x: to the plant will cause
its output response to be close to the reference command signal ry.
Let us choose xj according to f1].

+ . . =r,
iji iZQ Xj—1+lw1 + W, rJ

N (4)

x, = = [r
W j J-i+l"i

3oow =0

Choosing x; according to this formula will allow the model to be
perfectly controlled, and applying the same input to the actual
plant will result in a mean-square control error E[r: - gJ]2 equal
to the mean-square error E[ee] of the modelling process.

Everything goes well using this method as long as w1 has sub-
stantial value. When there are transport delays however, wy tends
to be small and noisy. The values of x; computed by the above
formula could be very large and erratic, since division by w, is
required. This could create problems, particularly in the blood-
pressure control system where massive doses of drug are undesirable
and negative doses are impossible. Because of transport delays,
two somewhat different -approaches have been taken.

The first of these approaches constrains the first several
weights of the adaptive model to be zero. The number of zero-
constrained weights corresponds to the transport lag of the plant,
which would be obtained from a priori knowledge.

Details of the functional box "Forward-time Calculation" of
Figure 4 are shown in Figure 6a, illustrating how x; is calculated
in the situation when the first two model weights are zero. All
the weights shownd in Figure 6 are copied from the values derived by
the appropriate modeling process. The particular values shown are
for illustration only.

Each cycle, the value of' x; is calculated to cause the output
of the summer y. to be equal to'rs;. Since the plant is driven by
X3 its sampled output g; will closely approximate rj-os depending
on the closeness of fit of the model to the plant. The delay in
the response is an inevitable result of the plant transport delay.

The values of Xj are calculated according to .
n , .
1 . : '
x, == 1[r, -w - ) x PR I - (5)
Jov3 VO - i=h ;_;+3 *
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Figure 6. Details of "Forward-Time Calculation" Box.

It should be mentioned that to start one of these systems as
quickly as possible, initial weight values in the modeling process
are usually taken from the previous run. Initial values are not
critical, but if they are close to correct, there will be very lit-
tle start-up transient.: :

The second approach for dealing with plant transport delay
does not require a decision constraining a certain number of model
weights to zero. There are many cases where the leading weights
are small in magnitude, but non-zero. Such a set of weights is
illustrated in Figure 6b.

In this case, the values of x: cannot be calculated to
perfectly match the output yj with rj. Future tentative values
of x such as X,,.5 X,,.... are calculated so that the control sig-

S+l i+
nal Xj can be geducea. The tilde indicates that the values are
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tentative. Absence of the tilde means that the value is decided
and is used in controlling the plant. The "point of decision' in
the calculation is indicated in Figure 6b. The position of this
point of decision along the tapped delay line of the adaptive model
is chosen a priori by the system designer to correspond to the
plant transport delay. Choosing this position has some effect on

" system performance, but is not critical. '

The calculation of x; at the time of the jth cycle is accom-
plished according to eq. “(6). The point of decision is taken as

in Fig. 6b.
v n
\Y wlij+2 + W2§j+l + ks + izuwixj—i+3 =Ty
~ . 5
Wy * Wlxj+3 + W2Xj+2 + 3 341 + whx + 12 W, j—1+h = rj+l E
ot Xga T VoRns t VaRiap P Epe YNt 126W1 j-i+5 T Tra2 :

The number of equations is generally determined by the number ?§,
of future values of the reference command signal r ST, i

j+1 J+2"" 5
that may be available. These equations may be rearranged according :
to (7).

: . n
W3XJ + W2XJ+1 lxj+2 = rj - WO - iZhWixj—i+3
: ) ) » -
My Ry VR TRy =51 " Yo " iZSWin—i+h
n
e + whij+1 + W3§j+2 + w2ij+3 + W X3+h = Tio _,WO - iZ6Winfi+5 (7)

The numerical values of the right-hand sides of the equations (7)
can be calculated since rj, rj+l’rj+2"" are known, the weights
are known, and the prev1ously—dec1ded driving function values
J—l’xj-E"" are known. Let the right-hand sides be calculated.
These equations cannot be solved yet, sinece there are too many
"unknowns'" for:the number of equations. Since w, and w, are rela-
tively small, a solution can be obtained by letting two adjacent
distant-future values of X take arbltrary values, such as zero.

When only three values of the reference signal rg?rg+l’ J+2 re

known, we have three simultaneous equations to solve. We let

Xj+h = XJ+3 = 0. It is then possible to solve for x.,xj+1, and X

j+2° :
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Although we only need the decided value x, at the time of the jth
cycle for direct control purposes, the fulure tentative values a
interesting to have also.

At the j+l-th cycle, the entire process is repeated. The ten-
tative value of ij+l calculated on the j-th cycle should agree
closely with the decided value of Xj+1 calculated on the j+l—§h
cycle. The agreement will not be perfect because of setting X5+l
and §j+3 to zero. Let us call this effect "truncation error."

By using additional future values of the reference command signal,
tentative values of x's can be determined further into the future

and truncation error can be reduced.

Using X3 as the plant driving function will cause the plant
sampled output g: to agree closely with rjop- The error in the
system response will be due partly to imperfection in the modeling
fit and partly to truncation error.

Note that when the transport delay mechanism is such that the
first k weights of the model are relatively small, solving the
equations determining x; and future X-values requires assuming
that a sequence of k distant-future X-values are zero.

Also note that knowledge of future wvalues of the plant driving
function, although they are tentative, could be quite useful in
modifying the goals of the control system (i.e., modifying r;) in
cases where demands are made on the driving function that would
exceed limits, go negative where this is not possible, etc. For
example, the sequence r. could be modified by not insisting that
the system settle in thé minimum time achievable with an unrestricted
r., etc. It is possible to state and to have the system respond to
very sophisticated computer-directed goals. Since inexpensive
modern computers can operate much faster than real time, various
goals and control objectives can be practically explored each cal-
culation cycle.

The AMC techniques have already been used a number of times in
experiments to regulate and control average blood pressure in anim-
als. In these experiments, the standard deviation of the noise in
the blood-pressure sensing instrumentation has been about 5 to 10
mm Hg. The mean blood pressure is typically regulated to within
about 2 to 4 mm Hg in steady state and could be off ahput 5 to 10
mm Hg temporarily under extreme transient conditions. The typical
start-up settling times are of the order to two minutes, somewhat
longer than the total time window spanned by the adaptive plant
model. The Appendix presents data from an actual run.
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APPENDIX - AN EXPERIMENTAL RUN

Figures T-10 present results developed during an experimental
§' run while controlling an animal's average blood pressure.

The beginning of the run is shown in Figure 7. The dog was
“healthy and normal until the Arfonod was injected, whereupon his
blood pressure plummetted, as seen in the figure.

In this experiment, the adaptive-model weights began to form,
starting from initial settings, at the very outset before the
Arfonod was injected. The two upper tracings show the actual,
average blood pressure of the animal and the output of the model
respectively. Note how they stay closely together. They stay
moderately close together even in periods of great stress such as
just after the Arfonod was injected.

At the beginning of the run, the flow rate of the vasoconstric-
tor (the "drug rate") was manually set at 10 drops per minute. :
This was manually raised to 20 drops per minute after the Arfonod : ;
took hold. Raising the drug rate checked the blood pressure ) :
decline. Soon thereafter, as indicated by the cross on the drug-
rate tracing, the control of drug rate was turned over to the
automatic system and remained automatic thereafter. A pressure set
point was entered through the computer keyboard, and this level was
indicated by the cross near the upper two tracings. The control
_system then had the job of getting the animal blood pressure up to
the set point and holding it there in spite of natural disturbances
in the animal. Changes in the set point were inserted from time to
time as part of the system test. The middle curve shows a running
average mean square error (on a log scale) between the plant and
the adaptive model.

The total memory time of the adaptive model was 100 seconds.
The model contained 20 taps with 5 second delays between taps of
the transversal filter. Once automatic control was established,
the system took about 5 minutes to settle the blood pressure close
to the set point. Thus the system settling time was about 3 times
as long as the memory time of the model. ‘This represents rather
fast settling for an adaptive control system.

) In this test, the computer controlled the blood pressure during
several hours with the animal under different degrees of influence
to Arfonod. The results were uniformly good, and the response data
of Figures 8 and 9 typical. The data records were long, but the
data of Figures 7, 8 and 9 are contiguous with slight time overlaps.
Settling responses to changing set-point values are illustrated.

In each case, approximately 5 minute settling times were evident.
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Figure 9.
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The tapped-delay-line-model weights at several times -during the :
run were recorded and they are plotted in Figure 10. The weight
values are arranged chronologically along the line, and so represent
the model's view of the animal's impulse response. The twenty- -
first weight is the bias weight, (see Figure 5). The impulse re-
sponse of the top frame was taken before the Arfonod was injected
and here the animal was very sensitive to the vasoconstrictor drug.
The next frame was taken after the Arfonod was injected and had
taken hold, just before the automatic control was turned on. The.:
shape of the response was changed somewhat, but the sensitivity
level changed greatly. As time went on, the animal regulating
system was disabled due to the Arfonod. Changes in the animal
impulse response took place, but they were not drastic changes.

One can see that the amount of transport delay was not very clear-
cut, illustrating the type of plant behavior indicated in Figure 6b.

Although this system is simple in conception, making the hard-
ware and software work reliably has taken considerable effort.
Many runs over the past year or so were made in order to perfect

the algorithms, the system software, and the interface hardware.

Experimental results have been uniformly good using the algorithms
and procedures outlined here. The development of mathematical
analysis of the AMC adaptive control technique is progressing nicely.
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