Comparative Analysis of SNR for Image Sensors with Enhanced Dynamic Range

David X. D. Yang, Abbas El Gamal

Information Systems Laboratory, Stanford University, Stanford, CA
Motivation

Dynamic range is synonymous to imager quality

- True for conventional CCD or CMOS imagers

- Not necessarily true when dynamic range enhancement schemes are used, e.g.,
 - Well capacity adjusting (Decker’98)
 - Multiple sampling (Yadid-Pecht’97, Yang’98)

SNR plot is a better indicator of imager quality
Outline

• Dynamic range and SNR in integration mode

• Enhancing dynamic range by adjusting well capacity

• Enhancing dynamic range via multiple sampling

• Comparisons of the two enhancement schemes
Simplified Photocurrent to Output Sensor Model

Direct integration

\[i_{ph} + i_d = C_d \]

Charge collected vs. time

Charge collected over time for high and low illumination.
Sensor Noise Model

Sensor model

Equivalent model with input referred noise

Need N_i to compute SNR and DR
SNR and Dynamic Range in Integration Mode

\[f_0(i + N_i) \approx f_0(i) + N_i f'_0(i) \]

\[\sigma^2_{N_i} = \frac{\sigma^2_N}{f'_0(i)^2} = \frac{\sigma^2_N}{t_{int}^2} \]

\[\text{SNR}(i_{ph}) = \frac{(i_{ph} t_{int})^2}{q(i_{ph} + i_d) t_{int} + \sigma_r^2} \quad \text{for} \quad i_{ph} \leq i_{max} \]

\[\text{DR} = \frac{i_{max}}{i_{min}} = \frac{q_{max} - i_d t_{int}}{\sqrt{q i_d t_{int} + \sigma_r^2}} \]
Dynamic Range = Sensor Quality (Integration Mode)

$q_{max} = 125000$

$\sigma_r = 20 \, e^-$

$t_{int} = 30\text{ms}$
Shuttering Does Not Affect Dynamic Range

Dynamic range vs. integration time t_{int}

- $q_{max} = 125000$
- $\sigma_r = 20 \text{ e}^{-}$
- $i_d = 1 \text{ fA}$
Shuttering Matches Dynamic Range to Scene Illumination

$q_{max} = 125000$

$\sigma_r = 20 \text{ e}^-$

$i_d = 5 \text{ fA}$
Outline

- Dynamic range and SNR in integration mode
- Enhancing dynamic range by adjusting well capacity
- Enhancing dynamic range via multiple sampling
- Comparisons of the two enhancement schemes
Enhancing DR by Adjusting Well Capacity

Compress the sensor’s current versus charge response curve using a lateral overflow gate (Sayag’91, Decker’98)

Well capacity is monotonically increased to its maximum value
\(f_0(i) \) for the Well Adjusting Scheme

\[
i_1 = \frac{q_{max} \theta}{t_1}
\]

\[
\frac{q_{max} \theta t_{int}}{t_1}
\]

\[
\frac{q_{max} (1-\theta)}{t_{int}-t_1}
\]
Dynamic Range and SNR for Well Adjusting

\[\text{SNR}(i_{\text{ph}}) = \begin{cases} \frac{i^2_{\text{ph}} t^2_{\text{int}}}{q(i_{\text{ph}}+i_d)t_{\text{int}}+\sigma^2_r} & \text{if } 0 \leq i_{\text{ph}} < \frac{q_{\text{max}} \theta}{t_1} - i_d \\ \frac{i^2_{\text{ph}} (t_{\text{int}}-t_1)^2}{q(i_{\text{ph}}+i_d)(t_{\text{int}}-t_1)+\sigma^2_r} & \text{if } \frac{q_{\text{max}} \theta}{t_1} - i_d \leq i_{\text{ph}} < \frac{q_{\text{max}} (1-\theta)}{t_{\text{int}}-t_1} - i_d \end{cases} \]

\[\text{DRF} = \frac{1-\theta}{1-\frac{t_1}{t_{\text{int}}}} \]
SNR vs. i_{ph} for the Well Capacity Adjustment Scheme

$q_{max} = 125000$

$\sigma_r = 20 \text{ e}^-$

$t_{int} = 30\text{ ms}$

$i_d = 1\text{ fA}$
Enhancing DR by Multiple Sampling

Dual sampling is the simplest case of multiple sampling (Yadid-Pecht’97)

- A scene is imaged twice, at a short and long integration times

- Two sampled images are combined into a high DR image
$f_0(i)$ for Dual Sampling
Dynamic Range and SNR for Dual Sampling

\[\text{SNR}(i_{ph}) = \begin{cases}
\frac{i_{ph}^2 t_{int}^2}{q(i_{ph}+i_d)t_{int} + \sigma_r^2} & \text{if } 0 \leq i_{ph} < \frac{q_{max}}{t_{int}} - i_d \\
\frac{i_{ph}^2 (\frac{t_{int}}{a})^2}{q(i_{ph}+i_d)\frac{t_{int}}{a} + \sigma_r^2} & \text{if } \frac{q_{max}}{t_{int}} - i_d \leq i_{ph} < \frac{aq_{max}}{t_{int}} - i_d
\end{cases} \]

\[\text{DRF} = \frac{aq_{max}}{t_{int}} - i_d \approx a, \text{ for small } i_d \]
SNR vs. i_{ph} for Dual Sampling

$q_{max} = 125000$

$\sigma_r = 20 \text{ e}^-$

$t_{int} = 30 \text{ ms}$

$i_d = 1 \text{ fA}$
SNR vs. i_{ph} for Both Well Adjusting and Dual Sampling

$q_{max} = 125000$

$\sigma_r = 20 \, \text{e}^-$

$t_{int} = 30\,\text{ms}$

$i_d = 1\,\text{fA}$
SNR vs. i_{ph} for Well Adjusting and Multiple Sampling

$q_{max} = 125000$

$\sigma_r = 20 \text{ e}^{-}$

$t_{int} = 30 \text{ ms}$

$i_d = 1 \text{ fA}$
Conclusion

Dynamic Range as a measure of imager quality

- Good for conventional CCD and CMOS imagers
- Does not tell the full story when dynamic range enhancement schemes are used

SNR plot is a better indicator of imager quality

Multiple sampling achieves higher SNR than well adjusting