Information Theoretic Limits of Randomness Generation

Abbas El Gamal

Stanford University

Shannon Centennial, University of Michigan, September 2016
The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point. Frequently the messages have meaning; that is they refer to or are correlated according to some system with certain physical or conceptual entities. These semantic aspects of communication are irrelevant to the engineering problem.

– A Mathematical Theory of Communication, Shannon (1948)
• Probabilistic models for the source and the channel
Information theory

- Probabilistic models for the source and the channel
- Entropy as measure of information

Fig. 1 — Schematic diagram of a general communication system.
Information theory

- Probabilistic models for the source and the channel
- **Entropy** as measure of information
- Minimum rate for compression: *entropy* H

Fig. 1 — Schematic diagram of a general communication system.
Information theory

- Probabilistic models for the source and the channel
- **Entropy** as measure of information
- Minimum rate for compression: entropy H
- Highest rate of reliable communication: capacity $C = \max$ mutual information I
Information theory

- Probabilistic models for the source and the channel
- Entropy as measure of information
- Minimum rate for compression: entropy H
- Highest rate of reliable communication: capacity $C = \max \text{ mutual information } I$
- Source can communicated over channel iff $H \leq C$

Bits as a universal interface between source and channel
Einstein looms large, and rightly so. But we’er not living in the relativity age, we’re living in the information age. It’s Shannon whose fingerprints are on every electronic device we own, every computer screen we gaze into, every means of digital communication. He’s one of these people who so transform the world that, after the transformation, the old world is forgotten.

– James Gleick in the NEW YORKER, April 30, 2016
INFORMATION theory has, in the last few years, become something of a scientific bandwagon. Starting as a technical tool for the communication engineer, it has received an extraordinary amount of publicity in the popular as well as the scientific press. ... As a consequence, it has perhaps been ballooned to an importance beyond its actual accomplishments. ... Applications are being made to biology, psychology, linguistics, fundamental physics, economics, the theory of organization, and many others. ...
INFORMATION theory has, in the last few years, become something of a scientific bandwagon. Starting as a technical tool for the communication engineer, it has received an extraordinary amount of publicity in the popular as well as the scientific press. . . . As a consequence, it has perhaps been ballooned to an importance beyond its actual accomplishments. . . . Applications are being made to biology, psychology, linguistics, fundamental physics, economics, the theory of organization, and many others. . . . I personally believe that many of the concepts of information theory will prove useful in these other fields—and, indeed, some results are already quite promising—but the establishing of such applications is not a trivial matter of translating words to a new domain, but rather the slow tedious process of hypothesis and experimental verification. . . .

– The Bandwagon, Shannon (1956)
Information theory beyond communication

– *Elements of Information Theory, Cover–Thomas (1991)*
Randomness generation

- Generating random variables with prescribed distribution from coin flips
Randomness generation

- Generating random variables with prescribed distribution from coin flips
- Important applications:
 - Monte Carlo simulation
 - Randomized algorithms
 - Cryptography
- Fundamental questions:
 - Notions and measures of common information
 - Secrecy
 - Classical and quantum channel synthesis
Randomness generation

- Generating random variables with prescribed distribution from coin flips
- Important applications:
 - Monte Carlo simulation
 - Randomized algorithms
 - Cryptography
- Fundamental questions:
 - Notions and measures of common information
 - Secrecy
 - Classical and quantum channel synthesis
- What is the minimum amount of coin flips needed?
 - Entropy and mutual information arise naturally as limits/bounds
 - Proofs use information theoretic techniques
Outline

- Centralized randomness generation:
 - One shot using a variable number of coin flips
 - Asymptotic using a fixed number of coin flips
Outline

- Centralized randomness generation:
 - One shot using a variable number of coin flips
 - Asymptotic using a fixed number of coin flips

- Distributed randomness generation:
 - Asymptotic
 - One shot – recent results
Outline

- Centralized randomness generation:
 - One shot using a variable number of coin flips
 - Asymptotic using a fixed number of coin flips

- Distributed randomness generation:
 - Asymptotic
 - One shot – recent results

- Channel synthesis (common randomness/communication tradeoff):
 - Asymptotic
 - One shot
One shot randomness generation

- W_1, W_2, \ldots is a Bern$(1/2)$ sequence; $X \sim p(x)$
- Use prefix-free code to generate X (as in zero error compression)
One shot randomness generation

- W_1, W_2, \ldots is a Bern(1/2) sequence; $X \sim p(x)$
- Use prefix-free code to generate X (as in zero error compression)
- Example: generating $X \sim$ Bern(1/3):

\[
P\{X = 1\} = \frac{1}{4} + \frac{1}{4^2} + \frac{1}{4^3} + \cdots = \frac{1}{3}
\]
One shot randomness generation

- W_1, W_2, \ldots is a Bern$(1/2)$ sequence; $X \sim p(x)$
- Use prefix-free code to generate X (as in zero error compression)
- Let L be the number of W_i bits used to generate X
- What is the minimum $E(L)$?
One shot randomness generation

- W_1, W_2, \ldots is a Bern$(1/2)$ sequence; $X \sim p(x)$
- Use prefix-free code to generate X (as in zero error compression)
- Let L be the number of W_i bits used to generate X
- What is the minimum $E(L)$?
- Knuth–Yao (1976) showed that:

$$H(X) \leq \min E(L) < H(X) + 2 \text{ bits/symbol},$$

where $H(X) = E[-\log p(X)]$ is the entropy of X

Measure of randomness of X
One shot randomness generation

\[W_1, W_2, \ldots \to \text{Randomness source} \to \text{Generator} \to X \]

- Example: generating \(X \sim \text{Bern}(1/3) \):

 \[
 \begin{align*}
 W_1 = 0 & \quad 0 \to X = 0 \\
 W_2 = 0 & \quad 10 \to X = 1 \\
 W_1 = 1 & \quad 110 \to X = 0 \\
 W_2 = 0 & \\
 W_3 = 0 & \\
 W_3 = 1 & \\
 & \ldots
 \end{align*}
 \]

\[
E(L) = \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{4} \cdot (2 + E(L)) \quad \Rightarrow \quad E(L) = 2,
\]

\[
H(1/3) = 0.9183
\]
Asymptotic randomness generation

- W^{nR} is i.i.d. Bern(1/2) nR-bit sequence; $X \sim p(x)$
Asymptotic randomness generation

- W^{nR} is i.i.d. Bern$(1/2)$ nR-bit sequence; $X \sim p(x)$
- Wish to generate \hat{X}^n such that: $p_{\hat{X}^n}(x^n) \to \prod_{i=1}^n p_X(x_i)$
Asymptotic randomness generation

- W^{nR} is i.i.d. Bern(1/2) nR-bit sequence; $X \sim p(x)$
- Wish to generate \hat{X}^n such that: $p_{\hat{X}^n}(x^n) \rightarrow \prod_{i=1}^n p_X(x_i)$

More specifically, we want the total variation distance:

$$d_n = \sum_{x^n} |p_{\hat{X}^n}(x^n) - \prod_{i=1}^n p_X(x_i)| \rightarrow 0 \text{ as } n \rightarrow \infty$$

- What is the minimum randomness generation rate R?
Asymptotic randomness generation

- W^{nR} is i.i.d. Bern(1/2) nR-bit sequence; $X \sim p(x)$
- Wish to generate \hat{X}^n such that: $p_{\hat{X}^n}(x^n) \rightarrow \prod_{i=1}^{n} p_X(x_i)$
 More specifically, we want the total variation distance:

 $$d_n = \sum_{x^n} | p_{\hat{X}^n}(x^n) - \prod_{i=1}^{n} p_X(x_i) | \rightarrow 0 \text{ as } n \rightarrow \infty$$

- What is the minimum randomness generation rate R?
- Turns out $\min R = H(X)$
Use random coding to show existence of codes (Han–Verdu 1993):
- Randomly generate $X^n(w), w \in [1 : 2^{nR}], X^n(w) \sim \prod_{i=1}^{n} p_X(x_i)$
- The generated code is revealed to the generator
Random coding generation scheme

- Use **random coding** to show existence of codes (Han–Verdu 1993):
 - Randomly generate $X^n(w)$, $w \in [1 : 2^{nR}]$, $X^n(w) \sim \prod_{i=1}^{n} p_X(x_i)$
 - The generated code is revealed to the generator
 - Upon observing $W = w$, the generator outputs $\hat{X}^n = X^n(w)$
Random coding generation scheme

- Use **random coding** to show existence of codes (Han–Verdu 1993):
 - Randomly generate $X^n(w), w \in [1 : 2^{nR}], X^n(w) \sim \prod_{i=1}^n p_X(x_i)$
 - The generated code is revealed to the generator
 - Upon observing $W = w$, the generator outputs $\hat{X}^n = X^n(w)$
 - Can show that: $E(D_n) \to 0$ if $R > H(X)$
 - Hence, there exists a sequence of codes with $d_n \to 0$ if $R > H(X)$
- This type of existence proof extends to distributed generation settings
Summary of centralized randomness generation

- One shot:
 - Entropy is the limit—same as for zero error compression
 - Both use optimal prefix codes

- Asymptotic:
 - Entropy is the limit—same as for lossless compression
 - Use random coding (key technique in information theory)

- Same limit for one shot and asymptotic—a more relaxed condition
Outline

- Centralized randomness generation:
 - One shot
 - Asymptotic

- Distributed randomness generation:
 - Asymptotic
 - One shot – recent results

- Channel synthesis (common randomness/communication tradeoff):
 - Asymptotic
 - One shot
Asymptotic distributed randomness generation

- W^{nR} i.i.d. Bern(1/2) sequence; $(X_1, X_2) \sim p(x_1, x_2)$
- Alice and Bob each has unlimited independent local randomness
Asymptotic distributed randomness generation

- W^{nR} i.i.d. Bern$(1/2)$ sequence; $(X_1, X_2) \sim p(x_1, x_2)$
- Alice and Bob each has unlimited independent local randomness
- Alice generates \hat{X}_1^n and Bob generates \hat{X}_2^n such that:

$$d_n = \sum_{(x_1^n, x_2^n)} \left| p_{\hat{X}_1^n, \hat{X}_2^n}(x_1^n, x_2^n) - \prod_{i=1}^{n} p_{X_1, X_2}(x_{1i}, x_{2i}) \right| \to 0$$

- What is the minimum common randomness rate R?
Asymptotic distributed randomness generation

- W^{nR} i.i.d. Bern(1/2) sequence; $(X_1, X_2) \sim p(x_1, x_2)$
- Alice and Bob each has unlimited independent local randomness
- Alice generates \hat{X}_1^n and Bob generates \hat{X}_2^n such that:

 $$d_n = \sum_{(x_1^n, x_2^n)} \left| p_{\hat{X}_1^n, \hat{X}_2^n}(x_1^n, x_2^n) - \prod_{i=1}^n p_{X_1, X_2}(x_{1i}, x_{2i}) \right| \to 0$$

- What is the minimum common randomness rate R?
- Wyner (1975) showed that:
 $$\min R = J(X_1; X_2) = \min_{X_1 \to U \to X_2} I(X_1, X_2; U)$$
 Wyner common information
Asymptotic distributed randomness generation

- Wyner (1975) showed that:
 \[\min R = J(X_1; X_2) = \min_{X_1 \rightarrow U \rightarrow X_2} I(X_1, X_2; U) \]

- Mutual information:
 \[I(X; Y) = H(X) + H(Y) - H(X, Y) \]
 \[= H(X) - H(X|Y) \]
 \[= H(Y) - H(Y|X) \]

Another measure of common information
Wyner (1975) showed that:

\[\min R = J(X_1; X_2) = \min_{X_1 \rightarrow U \rightarrow X_2} I(X_1, X_2; U) \quad \text{Wyner common information} \]

Mutual information:

\[I(X; Y) = H(X) + H(Y) - H(X, Y) \]
\[= H(X) - H(X|Y) \]
\[= H(Y) - H(Y|X) \quad \text{Another measure of common information} \]

It is not difficult to see that: \[I(X_1; X_2) \leq J(X_1; X_2) \leq \min \{H(X_1), H(X_2)\} \]
Wyner’s generation scheme

- Show $R > J(X_1; X_2) = \min_{X_1 \rightarrow U \rightarrow X_2} I(X_1, X_2; U)$ suffices
Wyner’s generation scheme

- Let $p(u)p(x_1|u)p(x_2|u)$ ($p(x_1, x_2)$ given) attain $J(X_1; X_2)$
- Generate $U^n(w)$, $w \in [1: 2^{nR}]$, each $\sim \prod_{i=1}^{n} p_U(u_i)$
- Codebook revealed to Alice and Bob before communication
 - Source outputs $W = w$
 - Alice generates $\hat{X}_1^n \sim \prod_{i=1}^{n} p_{X_1|U}(\hat{x}_{1i}|u_i(w))$
 - Bob generates $\hat{X}_2^n \sim \prod_{i=1}^{n} p_{X_2|U}(\hat{x}_{2i}|u_i(w))$
Wyner’s generation scheme

- Let $p(u)p(x_1|u)p(x_2|u)$ ($p(x_1,x_2)$ given) attain $J(X_1;X_2)$
- Generate $U^n(w)$, $w \in [1:2^{nR}]$, each $\sim \prod_{i=1}^{n} p_U(u_i)$
- Codebook revealed to Alice and Bob before communication
- Source outputs $W = w$
 - Alice generates $\hat{X}_1^n \sim \prod_{i=1}^{n} p_{X_1|U}(\hat{x}_{1i}|u_i(w))$
 - Bob generates $\hat{X}_2^n \sim \prod_{i=1}^{n} p_{X_2|U}(\hat{x}_{1i}|u_i(w))$
Wyner’s generation scheme

- Let $p(u)p(x_1|u)p(x_2|u)$ ($p(x_1, x_2)$ given) attain $J(X_1; X_2)$
- Generate $U^n(w)$, $w \in [1 : 2^{nR}]$, each $\sim \prod_{i=1}^{n} p_U(u_i)$
- Codebook revealed to Alice and Bob before communication
- Source outputs $W = w$ from which Alice and Bob recover $U^n(w)$
- Alice generates $\hat{X}_1^n \sim \prod_{i=1}^{n} p_{X_1|U}(\hat{x}_1|u_i(w))$
- Bob generates $\hat{X}_2^n \sim \prod_{i=1}^{n} p_{X_2|U}(\hat{x}_2|u_i(w))$
Wyner’s generation scheme

- Let $p(u)p(x_1|u)p(x_2|u)$ ($p(x_1, x_2)$ given) attain $J(X_1; X_2)$
- Generate $U^n(w)$, $w \in [1:2^{nR}]$, each $\sim \prod_{i=1}^{n} p_U(u_i)$
- Codebook revealed to Alice and Bob before communication
- Source outputs $W = w$ from which Alice and Bob recover $U^n(w)$
- Alice generates $\hat{X}_1^n \sim \prod_{i=1}^{n} p_{X_1|U}(\hat{x}_i|u_i(w))$
- Bob generates $\hat{X}_2^n \sim \prod_{i=1}^{n} p_{X_2|U}(\hat{x}_i|u_i(w))$
- Using asymptotic centralized generation scheme: $R > H(U)$ suffices
Wyner’s generation scheme

- Let \(p(u)p(x_1|u)p(x_2|u) \) (\(p(x_1, x_2) \) given) attain \(J(X_1; X_2) \)
- Generate \(U^n(w) \), \(w \in [1 : 2^{nR}] \), each \(\sim \prod_{i=1}^{n} p_U(u_i) \)
- Codebook revealed to Alice and Bob before communication
- Source outputs \(W = w \) from which Alice and Bob recover \(U^n(w) \)
- Alice generates \(\hat{X}^n_1 \sim \prod_{i=1}^{n} p_{X_1|U}(\hat{x}_{1i}|u_i(w)) \)
- Bob generates \(\hat{X}^n_2 \sim \prod_{i=1}^{n} p_{X_2|U}(\hat{x}_{1i}|u_i(w)) \)

- Using asymptotic centralized generation scheme: \(R > H(U) \) suffices
- Wyner (1975) showed that only \(R > I(X_1, X_2; U) \) (\(\leq H(U) \)) suffices

 Proof uses a covering lemma similar to lossy compression
Wyner’s generation scheme

- Let \(p(u)p(x_1|u)p(x_2|u) \) (\(p(x_1, x_2) \) given) attain \(J(X_1; X_2) \)
- Generate \(U^n(w), \ w \in [1 : 2^{nR}] \), each \(\sim \prod_{i=1}^{n} p_U(u_i) \)
- Codebook revealed to Alice and Bob before communication
- Source outputs \(W = w \) from which Alice and Bob recover \(U^n(w) \)
- Alice generates \(\hat{X}_1^n \sim \prod_{i=1}^{n} p_{X_1|U}(\hat{x}_{1i}|u_i(w)) \)
- Bob generates \(\hat{X}_2^n \sim \prod_{i=1}^{n} p_{X_2|U}(\hat{x}_{1i}|u_i(w)) \)
- Using asymptotic centralized generation scheme: \(R > H(U) \) suffices
- Wyner (1975) showed that only \(R > I(X_1, X_2; U) \) (\(\leq H(U) \)) suffices
 Proof uses a covering lemma similar to lossy compression
- Converse (\(\min R \geq J(X_1; X_2) \)) uses information theoretic inequalities
One shot distributed randomness generation

- W_1, W_2, \ldots i.i.d. Bern(1/2); $(X_1, X_2) \sim p(x_1, x_2)$
- Generator outputs common randomness variable W using prefix code
One shot distributed randomness generation

- W_1, W_2, \ldots i.i.d. $\text{Bern}(1/2)$; $(X_1, X_2) \sim p(x_1, x_2)$
- Generator outputs common randomness variable W using prefix code
- Let L be number of W_i bits used to generate W
- What is the minimum $E(L)$?
One shot distributed randomness generation

- What is the minimum $\text{E}(L)$?
- By Knuth–Yao (1976) can show:

$$G(X_1; X_2) \leq \min \text{E}(L) < G(X_1; X_2) + 2,$$

where

$$G(X_1; X_2) = \min_{X_1 \rightarrow W \rightarrow X_2} H(W) \quad \text{common entropy} \quad \text{(Kumar–Li–EG 2014)}$$

Another measure of common information (in addition to I and J)
One shot distributed randomness generation

W_1, W_2, \ldots → Generator → W → Alice → X_1 → Bob → X_2

- What is the minimum $E(L)$?
- By Knuth–Yao (1976) can show:

$$G(X_1; X_2) \leq \min E(L) < G(X_1; X_2) + 2,$$

where

$$G(X_1; X_2) = \min_{X_1 \to W \to X_2} H(W) \text{ common entropy (Kumar–Li–EG 2014)}$$

Another measure of common information (in addition to I and J)

- $G(X_1; X_2)$ is very difficult to compute except for simple cases
(X_1, X_2) discrete

\[I(X_1; X_2) \leq J(X_1; X_2) \leq G(X_1; X_2) \leq \min\{H(X_1), H(X_2)\} \]

- $I(X_1; X_2)$: mutual information
- $J(X_1; X_2) = \min_{X_1 \rightarrow U \rightarrow X_2} I(X_1, X_2; U)$: Wyner common information
- $G(X_1; X_2) = \min_{X_1 \rightarrow W \rightarrow X_2} H(W)$: common entropy

- All inequalities can be strict
Example: \((X_1, X_2)\) DSBS

\[
\begin{array}{cc}
1 & 1 - p \\
1 - p & 0 \\
1 - p & 0 \\
\end{array}
\]

\(X_1 \sim \text{Bern}(1/2)\)

\(X_2\)
Example: \((X_1, X_2)\) DSBS

\[
G(X_1; X_2) = H\left(\frac{1/2 - p}{1 - p}\right) \text{ for } p \leq 1/2
\]

\[
J(X_1; X_2) = 1 + H(p) - 2H(\alpha), \text{ where } 2\alpha(1 - \alpha) = p
\]

\[
I(X_1; X_2) = 1 - H(p); \quad H(X_1) = H(X_2) = 1
\]
\((X_1, X_2)\) continuous (Li–EG 2016)

- We still have: \(I(X_1; X_2) \leq J(X_1; X_2) \leq G(X_1; X_2)\)
- No known general upper bound on \(G\) or \(J\) \((H(X_1) = H(X_2) = \infty)\)
(X_1, X_2) continuous (Li–EG 2016)

- We still have: $I(X_1; X_2) \leq J(X_1; X_2) \leq G(X_1; X_2)$
- No known general upper bound on G or J ($H(X_1) = H(X_2) = \infty$)
- Example: (X_1, X_2) Gaussian with $\sigma_1 = \sigma_2 = 1, 0 \leq \rho < 1$

\[
I(X_1; X_2) = \frac{1}{2} \log \left(\frac{1}{1 - \rho^2} \right)
\]
\[
J(X_1; X_2) = \frac{1}{2} \log \left(\frac{1 + \rho}{1 - \rho} \right), \quad U \sim \mathcal{N}(0, \rho), \quad X_j = U + Z_j, \quad Z_j \sim \mathcal{N}(0, 1 - \rho)
\]
- Is $G(X_1; X_2)$ also finite?
Upper bound on G

- For (X_1, X_2) with log-concave pdf:

Theorem (Li–EG 2016)

$$I(X_1; X_2) \leq J(X_1; X_2) \leq G(X_1; X_2) \leq I(X_1; X_2) + 24$$
Upper bound on G

- For (X_1, X_2) with log-concave pdf:

Theorem (Li–EG 2016)

$$I(X_1; X_2) \leq J(X_1; X_2) \leq G(X_1; X_2) \leq I(X_1; X_2) + 24$$

- Result extends to generation of n continuous random variables
Outline of proof

- \((X_1, X_2)\) uniformly distributed over a set in \(\mathbb{R}^2\):
 - Construct \(W\) using dyadic decomposition scheme
 - Bound \(H(W)\) by \(I(X_1; X_2) + \text{const. for } S \text{ convex using erosion entropy}\)

- Extend proof to general pdf:
 - Apply scheme to uniform over positive hypograph of pdf
 - Bound \(G(X_1; X_2)\) by \(I(X_1; X_2) + 24\) for log-concave pdf
\((X_1, X_2) \sim \text{Unif}(S)\)

- Dyadic square:
\((X_1, X_2) \sim \text{Unif}(S) \)

- Dyadic square:

- **Dyadic decomposition**: Partition \(S \) into largest possible dyadic squares

\[k \in \mathbb{Z}, \; \nu \in \mathbb{Z}^2 \]
Dyadic decomposition for an ellipse

$k < 1$: no dyadic squares inside S
Dyadic decomposition for an ellipse

\(k = 1 \)
Dyadic decomposition for an ellipse

$k = 2$
Dyadic decomposition for an ellipse

\[k = 3 \]
Constructing W from dyadic decomposition

- W_D is the square containing (X_1, X_2)

Conditioned on W_D, X_1 and X_2 are uniform over dyadic square

Hence, $X_1 \rightarrow W_D \rightarrow X_2$
Constructing W from dyadic decomposition

- W_D is the square containing (X_1, X_2)

Conditioned on W_D, X_1 and X_2 are uniform over dyadic square

Hence, $X_1 \rightarrow W_D \rightarrow X_2$

- And, $H(W_D) \geq G(X_1; X_2) = \min_{X_1 \rightarrow W \rightarrow X_2} H(W)$
Generating W_D from coin flips

- Generate W_D using a prefix code

- Dyadic decomposition and code revealed to all parties
Generation scheme for \((X_1, X_2) \sim \text{Unif}(S)\)

\[1100 \rightarrow W_D = w\]
Generation scheme for \((X_1, X_2) \sim \text{Unif}(S)\)
(X_1, X_2) uniform over ellipse

- Gap between I and G of ≤ 6 bits (vs. 24 for general log-concave pdf)
Bounding $H(W_D)$

- $H(W_D) = \mathbb{E} \left[-\log(L_D^2/A(S)) \right]$, $A(S)$ is area of S

 L_D: side length of largest dyadic square (X_1, X_2) in

 $\Rightarrow (1/2)(H(W_D) - \log A(S)) = \mathbb{E} \left[-\log L_D \right]$
Bounding $H(W_D)$

- $H(W_D) = E \left[- \log \left(\frac{L_D^2}{A(S)} \right) \right]$, $A(S)$ is area of S

L_D: side length of largest dyadic square (X_1, X_2) in

$\Rightarrow (1/2)(H(W_D) - \log A(S)) = E \left[- \log L_D \right]$

- Erosion entropy: $h_\Theta(S) = E \left[- \log L_C \right]$

L_C: side length of largest square centered at (X_1, X_2)
Bounding $H(W_D)$

- $H(W_D) = E \left[- \log \left(\frac{L_D^2}{A(S)} \right) \right]$, $A(S)$ is area of S

 L_D: side length of largest dyadic square (X_1, X_2) in

 $\Rightarrow (1/2)(H(W_D) - \log A(S)) = E \left[- \log L_D \right]$

- **Erosion entropy:** $h_\Theta(S) = E \left[- \log L_C \right]$

 L_C: side length of largest square centered at (X_1, X_2)

Lemma 1

$$
\frac{1}{2}(H(W_D) - \log A(S)) \leq h_\Theta(S) + 2
$$
Suppose S is orthogonally convex, i.e.,
intersection with each axis-aligned line is connected

Then it can be shown that:

Lemma 2

$$h_\Theta = E[-\log L_C] \leq \log \left(\frac{L_1(S) + L_2(S)}{A(S)} \right) + \log e$$
Bounding $H(W_D)$

- Substituting from Lemma 2 into Lemma 1, we have:

$$H(W_D) \leq \log \left(\frac{(L_1(S) + L_2(S))^2}{A(S)} \right) + 4 + 2 \log e$$

Depends on perimeter to area ratio of S
Bounding $H(W_D)$

- Substituting from Lemma 2 into Lemma 1, we have:

\[
H(W_D) \leq \log \left(\frac{(L_1(S) + L_2(S))^2}{A(S)} \right) + 4 + 2 \log e
\]

Depends on perimeter to area ratio of S

- A flat S has high perimeter to area ratio \Rightarrow high $H(W_D)$
Bounding $H(W_D)$

• Substituting from Lemma 2 into Lemma 1, we have:

$$H(W_D) \leq \log \left(\frac{(L_1(S) + L_2(S))^2}{A(S)} \right) + 4 + 2 \log e$$

Depends on perimeter to area ratio of S

• A flat S has high perimeter to area ratio \Rightarrow high $H(W_D)$

• Pre-scale (X_1, X_2) to $(\tilde{X}_1, \tilde{X}_2) \sim \text{Unif}(\tilde{S})$ such that $L_1(\tilde{S}) = L_2(\tilde{S})$
Bounding $H(W_D)$

- Substituting from Lemma 2 into Lemma 1, we have:

$$H(W_D) \leq \log \left(\frac{(L_1(S) + L_2(S))^2}{A(S)} \right) + 4 + 2 \log e$$

Depends on perimeter to area ratio of S

- A flat S has high perimeter to area ratio \Rightarrow high $H(W_D)$

- Pre-scale (X_1, X_2) to $(\tilde{X}_1, \tilde{X}_2) \sim \text{Unif}(\tilde{S})$ such that $L_1(\tilde{S}) = L_2(\tilde{S})$

- This yields:

Proposition

$$H(\tilde{W}_D) \leq \log \left(\frac{4L_1(S) \cdot L_2(S)}{A(S)} \right) + 4 + 2 \log e$$
Bounding $H(\tilde{W}_D)$ by $I(X_1; X_2)$ for S convex

- We have

$$H(\tilde{W}_D) \leq \log \left(\frac{L_1(S) \cdot L_2(S)}{A(S)} \right) + 6 + 2 \log e$$
Bounding $H(\tilde{W}_D)$ by $I(X_1; X_2)$ for S convex

- We have

$$H(\tilde{W}_D) \leq \log \left(\frac{L_1(S) \cdot L_2(S)}{A(S)} \right) + 6 + 2 \log e$$

- Now

$$I(X_1; X_2) = h(X_1) + h(X_2) - \log A(S)$$
Bounding $H(\tilde{W}_D)$ by $I(X_1; X_2)$ for S convex

- We have

$$H(\tilde{W}_D) \leq \log \left(\frac{L_1(S) \cdot L_2(S)}{A(S)} \right) + 6 + 2 \log e$$

- Now

$$I(X_1; X_2) = h(X_1) + h(X_2) - \log A(S)$$

- Combining, we have

$$H(\tilde{W}_D) \leq I(X_1; X_2) + (\log L_1(S) - h(X_1)) + (\log L_2(S) - h(X_2)) + 6 + 2 \log e$$
Bounding $H(\tilde{W}_D)$ by $I(X_1; X_2)$ for S convex

- We have
 \[H(\tilde{W}_D) \leq \log \left(\frac{L_1(S) \cdot L_2(S)}{A(S)} \right) + 6 + 2 \log e \]

- Now
 \[I(X_1; X_2) = h(X_1) + h(X_2) - \log A(S) \]

- Combining, we have
 \[H(\tilde{W}_D) \leq I(X_1; X_2) + (\log L_1(S) - h(X_1)) + (\log L_2(S) - h(X_2)) + 6 + 2 \log e \]

- If S is convex, marginals close to uniform
 And, we obtain constant gap between $H(\tilde{W}_D)$ and $I(X_1; X_2)$
Generation scheme for \((X_1, X_2) \sim f\)

- Consider positive part of hypograph of the pdf

\[
S = \{(x_1, x_2, z) : 0 \leq z \leq f(x_1, x_2)\} \subset \mathbb{R}^3
\]
Generation scheme for \((X_1, X_2) \sim f\)

- Consider positive part of hypograph of the pdf

\[
S = \{(x_1, x_2, z) : 0 \leq z \leq f(x_1, x_2)\} \subset \mathbb{R}^3
\]

- **Key observation**: If we let \((X_1, X_2, Z) \sim \text{Unif}(S)\), then \((X_1, X_2) \sim f\)
Generation scheme for \((X_1, X_2) \sim f\)

- Consider positive part of hypograph of the pdf
 \[
 S = \{(x_1, x_2, z) : 0 \leq z \leq f(x_1, x_2)\} \subset \mathbb{R}^3
 \]
- **Key observation**: If we let \((X_1, X_2, Z) \sim \text{Unif}(S)\), then \((X_1, X_2) \sim f\)
- Apply dyadic decomposition scheme to uniform over \(S \subset \mathbb{R}^3\)
Bound on G for log-concave pdf

- f log-concave \Rightarrow positive part of hypograph orthogonally convex
- Using erosion entropy, scaling and additional nontrivial steps, we obtain:

Theorem

$$I(X_1; X_2) \leq J(X_1; X_2) \leq G(X_1; X_2) \leq I(X_1; X_2) + 24$$
Bound on G for log-concave pdf

- f log-concave \Rightarrow positive part of hypograph orthogonally convex
- Using erosion entropy, scaling and additional nontrivial steps, we obtain:

Theorem

$$I(X_1; X_2) \leq J(X_1; X_2) \leq G(X_1; X_2) \leq I(X_1; X_2) + 24$$

- Result can be extended to n agents:

Theorem

$$I_D \leq J(X_1; \ldots; X_n) \leq G(X_1; \ldots; X_n) \leq I_D + n^2 \log e + 9n \log n$$

$I_D(X_1; \ldots; X_n) = h(X_1, \ldots, X_n) - \sum_{i=1}^{n} h(X_i|X_1^{i-1}, X_{i+1}^n)$ is the Dual total correlation
Summary of distributed randomness generation

- Asymptotic distributed randomness generation:
 - Wyner common information J is the limit
 - Use random coding and similar covering lemma to lossy compression
Summary of distributed randomness generation

- Asymptotic distributed randomness generation:
 - Wyner common information J is the limit
 - Use random coding and similar covering lemma to lossy compression

- One shot distributed randomness generation:
 - Common entropy is the limit
 - Common entropy within constant of mutual information for log concave pdfs
Summary of distributed randomness generation

- Asymptotic distributed randomness generation:
 - Wyner common information J is the limit
 - Use random coding and similar covering lemma to lossy compression

- One shot distributed randomness generation:
 - Common entropy is the limit
 - Common entropy within constant of mutual information for log concave pdfs

- Limit can be larger for one shot than asymptotic ($G > J$)

- Common information has several different measures (I, J, G)
Outline

- Centralized randomness generation:
 - One shot
 - Asymptotic
- Distributed randomness generation:
 - Asymptotic
 - One shot – recent results
- Channel synthesis (common randomness/communication tradeoff):
 - Asymptotic
 - One shot
Asymptotic channel simulation with common randomness

- $(X, Y) \sim p(x, y); \hat{Y} = Y; X^n \sim \prod_{i=1}^{n} p_X(x_i)$
- W: common randomness
- Bob wishes to generate \hat{Y}^n such that:
 \[d_n = \sum_{(x^n, y^n)} \left| \prod_{i=1}^{n} p_X(x_i)p_{\hat{Y}^n|X^n}(y^n|x^n) - \prod_{i=1}^{n} p_{X,Y}(x_i, y_i) \right| \to 0 \]
- What is the minimum communication rate R?
Asymptotic channel simulation with common randomness

\[X^n \rightarrow Alice \quad M \in [1 : 2^{nR}] \rightarrow Bob \quad Y^n \]

- \((X, Y) \sim p(x, y); \widehat{Y} = Y; X^n \sim \prod_{i=1}^{n} p_X(x_i)\)
- \(W\): common randomness
- Bob wishes to generate \(\widehat{Y}^n\) such that:
 \[d_n = \sum_{(x^n, y^n)} \left| \prod_{i=1}^{n} p_X(x_i) p_{\widehat{Y}^n|X^n}(y^n|x^n) - \prod_{i=1}^{n} p_{X,Y}(x_i, y_i) \right| \rightarrow 0 \]
- What is the minimum communication rate \(R\)?
- Bennett–Shor–Smolin–Thapliyal (2002) showed that: \(\min R = I(X; Y)\)
Asymptotic channel simulation with common randomness

- For X^n arbitrary: $\min R = \max_{p(x)} I(X; Y) = C$, capacity of channel $p(y|x)$
Asymptotic channel simulation with common randomness

For X^n arbitrary: $\min R = \max_{p(x)} I(X; Y) = C$, capacity of channel $p(y|x)$

Reverse Shannon theorem: Noiseless channel with capacity C and unlimited common randomness can simulate any noisy channel with capacity C
Asymptotic channel simulation with common randomness

- For X^n arbitrary: $\min R = \max_{p(x)} I(X; Y) = C$, capacity of channel $p(y|x)$
- **Reverse Shannon theorem**: Noiseless channel with capacity C and unlimited common randomness can simulate any noisy channel with capacity C
- **Shannon theorem**: Noiseless channel with capacity C can be simulated by any noisy channel with capacity C
Asymptotic channel simulation with common randomness

- For X^n arbitrary: $\min R = \max_{p(x)} I(X; Y) = C$, capacity of channel $p(y|x)$
- **Reverse Shannon theorem**: Noiseless channel with capacity C and unlimited common randomness can simulate any noisy channel with capacity C
- **Shannon theorem**: Noiseless channel with capacity C can be simulated by any noisy channel with capacity C
- Hence any channel p can simulate a channel q iff $C(p) \geq C(q)$
Asymptotic channel simulation with common randomness

- For X^n arbitrary: $\min R = \max_{p(x)} I(X; Y) = C$, capacity of channel $p(y|x)$
- **Reverse Shannon theorem**: Noiseless channel with capacity C and unlimited common randomness can simulate any noisy channel with capacity C
- **Shannon theorem**: Noiseless channel with capacity C can be simulated by any noisy channel with capacity C
- Hence any channel p can simulate a channel q iff $C(p) \geq C(q)$
- Does the same hold for entanglement-assisted quantum channels?
Channel simulation without common randomness

\[X^n \rightarrow \text{Alice} \quad M \in [1 : 2^{nR}] \rightarrow \text{Bob} \quad \hat{Y}^n \]

- \((X, Y) \sim p(x, y); \ X^n \sim \prod_{i=1}^{n} p_X(x_i)\)
- Bob wishes to generate \(\hat{Y}^n\) such that:
 \[d_n = \sum_{(x^n, y^n)} \left| \prod_{i=1}^{n} p_X(x_i)p_{\hat{Y}|X^n}(y^n|x^n) - \prod_{i=1}^{n} p_{X,Y}(x_i, y_i) \right| \rightarrow 0 \]
- What is the minimum communication rate \(R\)?
Channel simulation without common randomness

- $(X, Y) \sim p(x, y); \quad X^n \sim \prod_{i=1}^n p_X(x_i)$
- Bob wishes to generate \hat{Y}^n such that:
 \[d_n = \sum_{(x^n, y^n)} \left| \prod_{i=1}^n p_X(x_i) p_{\hat{Y}^n|X^n}(y^n|x^n) - \prod_{i=1}^n p_{X,Y}(x_i, y_i) \right| \to 0 \]
- What is the minimum communication rate R?
- Cuff (2013) showed that: $\min R = J(X; Y)$
Channel simulation without common randomness

- $(X, Y) \sim p(x, y)$; $X^n \sim \prod_{i=1}^{n} p_X(x_i)$
- Bob wishes to generate \hat{Y}^n such that:
 $$d_n = \sum_{(x^n, y^n)} \left| \prod_{i=1}^{n} p_X(x_i) p_{\hat{Y}^n|X^n}(y^n|x^n) - \prod_{i=1}^{n} p_{X,Y}(x_i, y_i) \right| \to 0$$
- What is the minimum communication rate R?
- Cuff (2013) showed that: $\min R = J(X; Y)$
- Operationally shows that: $J(X; Y) \geq I(X, Y)$
Channel simulation without common randomness

- $(X, Y) \sim p(x, y); \ X^n \sim \prod_{i=1}^{n} p_X(x_i)$
- Bob wishes to generate \hat{Y}^n such that:
 \[d_n = \sum_{(x^n, y^n)} | \prod_{i=1}^{n} p_X(x_i)p_{\hat{Y}^n|X^n}(y^n|x^n) - \prod_{i=1}^{n} p_{X,Y}(x_i, y_i) | \rightarrow 0 \]
- What is the minimum communication rate R?
- Cuff (2013) showed that: $\min R = J(X; Y)$
- Operationally shows that: $J(X; Y) \geq I(X, Y)$
- For $X = Y$, problem reduces to lossless compression with limit $H(X)$
Tradeoff between communication and common randomness

- Suppose $W \in [1 : 2^{nR_C}]$ (still have $M \in [1 : 2^{nR}]$)
Tradeoff between communication and common randomness

- Suppose $W \in [1 : 2^{nR_C}]$ (still have $M \in [1 : 2^{nR}]$)

Set of (R, R_C) such that:

\[
R \geq I(X; U), \\
R_C + R \geq I(X, Y; U)
\]

for some $X \rightarrow U \rightarrow Y$
Tradeoff between communication and common randomness

- Suppose $W \in [1 : 2^{nR_C}]$ (still have $M \in [1 : 2^{nR}]$)

Set of (R, R_C) such that:

- $R \geq I(X; U)$,
- $R_C + R \geq I(X, Y; U)$

for some $X \rightarrow U \rightarrow Y$

- Application to information theoretic secrecy (Cuff 2013)
One shot channel simulation with common randomness

- \((X, Y) \sim p(x, y); L\) length of prefix code for \(M\)
- Bob wishes to generate \(Y \sim p_{Y|X}(y|x)\)
- What is the minimum \(E(L)\)?
One shot channel simulation with common randomness

- \((X, Y) \sim p(x, y)\); \(L\) length of prefix code for \(M\)
- Bob wishes to generate \(Y \sim p_{Y|X}(y|x)\)
- What is the minimum \(E(L)\)?
- Harsha–Jain–McAllester–Radhakrishnan (2010) showed that:

\[
I(X; Y) \leq \min E(L) \leq I(X; Y) + 2 \log(I(X; Y) + 1) + O(1)
\]
One shot channel simulation without common randomness

\[X \rightarrow \text{Alice} \rightarrow M \in \{0, 1\}^* \rightarrow \text{Bob} \rightarrow Y \]

- By Kumar–Li–EG (2014): \(G(X; Y) \leq \min E(L) < G(X; Y) + 1 \)
- For \(X = Y \), problem reduces to zero error compression with limit \(H(X) \)
One shot channel simulation without common randomness

- By Kumar–Li–EG (2014): $G(X; Y) \leq \min E(L) < G(X; Y) + 1$
- For $X = Y$, problem reduces to zero error compression with limit $H(X)$
- Optimal tradeoff between R and R_C is not known
Conclusion

- Limits of randomness generation and communication closely related
Conclusion

- Limits of randomness generation and communication closely related
- **Entropy** is the limit on compression and randomness generation
Conclusion

- Limits of randomness generation and communication closely related
- **Entropy** is the limit on compression and randomness generation
- **Mutual information** is the limit on:
 - Channel capacity and lossy compression
 - Channel simulation with common randomness
Limits of randomness generation and communication closely related

Entropy is the limit on compression and randomness generation

Mutual information is the limit on:
 - Channel capacity and lossy compression
 - Channel simulation with common randomness

Wyner common information is the limit on:
 - Asymptotic distributed randomness generation
 - Asymptotic channel simulation without common randomness
Conclusion

- Limits of randomness generation and communication closely related
- **Entropy** is the limit on compression and randomness generation
- **Mutual information** is the limit on:
 - Channel capacity and lossy compression
 - Channel simulation with common randomness
- **Wyner common information** is the limit on:
 - Asymptotic distributed randomness generation
 - Asymptotic channel simulation without common randomness
- **Common entropy** is the limit on:
 - One shot distributed randomness generation
 - One shot channel simulation without common randomness
Conclusion

- Limits of randomness generation and communication closely related
- **Entropy** is the limit on compression and randomness generation
- **Mutual information** is the limit on:
 - Channel capacity and lossy compression
 - Channel simulation with common randomness
- **Wyner common information** is the limit on:
 - Asymptotic distributed randomness generation
 - Asymptotic channel simulation without common randomness
- **Common entropy** is the limit on:
 - One shot distributed randomness generation
 - One shot channel simulation without common randomness
- Natural application of information theoretic ideas and techniques
Thank you!
References

