Distributed Lossy Computing

Abbas El Gamal

Stanford University

Based on work with Han-I Su, P. Cuff, Young-Han Kim

Partially supported by DARPA ITMANET

ITA 2010
Introduction

- Performance of distributed information processing systems often limited by communication
 - Digital VLSI
 - Multi-processors
 - Data centers
 - Peer-peer networks
 - Sensor networks
 - Networked mobile agents

Purpose of communication is to make decision, compute function, coordinate action based on distributed data.

How much communication is needed to perform such a task?
Introduction

- Performance of distributed information processing systems often limited by communication

 Digital VLSI
 Multi-processors
 Data centers
 Peer-peer networks
 Sensor networks
 Networked mobile agents

- Purpose of communication is to **make decision, compute function, coordinate action** based on distributed data
Introduction

- Performance of distributed information processing systems often limited by communication

 Digital VLSI

 Multi-processors

 Data centers

 Peer-peer networks

 Sensor networks

 Networked mobile agents

- Purpose of communication is to make decision, compute function, coordinate action based on distributed data

 How much communication is needed to perform such a task?
Problem Formulations

Problem formulated and studied in several fields:

- **Computer science**: Communication complexity; gossip
- **Information theory**: Coding for computing; \(\mu \)-sum problem
- **Control**: Distributed consensus
Problem Formulations

- Problem formulated and studied in several fields:
 - **Computer science**: Communication complexity; gossip
 - **Information theory**: Coding for computing; μ-sum problem
 - **Control**: Distributed consensus

- Formulations differ in:
 - **Data model** (discrete, continuous; deterministic, random)
 - **Type of coding–computing** (scalar, block)
 - **Estimation criterion** (error-free; lossless; lossy)
 - **Metric for communication cost** (bits; rate; rounds)
Problem formulated and studied in several fields:

- Computer science: Communication complexity; gossip
- Information theory: Coding for computing; μ-sum problem
- Control: Distributed consensus

Formulations differ in:

- Data model (discrete, continuous; deterministic, random)
- Type of coding–computing (scalar, block)
- Estimation criterion (error-free; lossless; lossy)
- Metric for communication cost (bits; rate; rounds)
This Talk: Lossy Distributed Computing

- Problem formulated and studied in several fields:
 - Computer science: Communication complexity; gossip
 - Information theory: Coding for computing; μ-sum problem
 - Control: Distributed consensus

- Formulations differ in:
 - Data model (discrete, continuous; deterministic, random)
 - Type of coding–computing (scalar, block)
 - Estimation criterion (error-free; lossless; lossy)
 - Metric for communication cost (bits; rate; rounds)

- Advantages of IT formulation:
 - Many real-world sources have large (continuous) alphabets
 - Limits that hold “in general”
 - Asymptotic approach simplifies analysis
Distributed Consensus

Distributed coordination, information aggregation in distributed systems

- Flocking and schooling behaviors in nature [Vicsek et al., 95]
- Spread of rumors, epidemics [Demers et al., 87]
- Coordination of autonomous vehicles [Jadbabaie et al., 03]
- Load balancing in parallel computers
- Finding file sizes in peer-to-peer networks [Bawa et al., 03]
- Information aggregation in sensor networks [Kempe et al., 03]
Distributed Averaging [Olfati-Saber et al., 03]

- Undirected graph \((\mathcal{M}, \mathcal{E})\) with \(m\) nodes
- Node \(j\) observes real-valued scalar \(x_j\)
- Each node wishes to estimate the average \(s = (1/m) \sum_{j=1}^{m} x_j\) to some prescribed MSE
Averaging Protocols

- Nodes communicate and perform local computing in *rounds*
 - For example, a node-pair is selected in each round
Averaging Protocols

- Nodes communicate and perform local computing in *rounds*
 - For example, a node-pair is selected in each round

- Sequence of communication rounds and operations performed in each round determined by an *averaging protocol*
Averaging Protocols

- Nodes communicate and perform local computing in *rounds*
 - For example, a node-pair is selected in each round

- Sequence of communication rounds and operations performed in each round determined by an *averaging protocol*

- In many applications, communication is asynchronous, subject to link and node failures and topology changes
 - **Distributed protocols**: Do not depend on node identities
 - **Gossip protocols**: Random node subset selections
 [Hedetniemi et al., 88]
Averaging Protocols

- Nodes communicate and perform local computing in *rounds*
 - For example, a node-pair is selected in each round

- Sequence of communication rounds and operations performed in each round determined by an *averaging protocol*

- In many applications, communication is asynchronous, subject to link and node failures and topology changes
 - **Distributed protocols:** Do not depend on node identities
 - **Gossip protocols:** Random node subset selections
 [Hedetniemi et al., 88]

Do the estimates converge to average? How many rounds are needed to achieve prescribed MSE?
Example: Gossip Protocol

- In each round, a node-pair \((j, k)\) is randomly selected.
- Nodes exchange values and average them:
 \[
 s_j(0) = x_j, \quad j = 1, 2, \ldots, m
 \]
 \[
 s_j(t + 1) = \frac{1}{2} s_j(t) + \frac{1}{2} s_k(t)
 \]
 \[
 = s_k(t + 1)
 \]
Example: Gossip Protocol

- In each round, a node-pair \((j, k)\) is randomly selected.
- Nodes exchange values and average them:

\[
\begin{align*}
 s_j(0) &= x_j, \ j = 1, 2, \ldots, m \\
 s_j(t + 1) &= \frac{1}{2} s_j(t) + \frac{1}{2} s_k(t) \\
 &= s_k(t + 1)
\end{align*}
\]
Example: Gossip Protocol

- In each round, a node-pair \((j, k)\) is randomly selected.
- Nodes exchange values and average them.

\[
s_j(0) = x_j, \quad j = 1, 2, \ldots, m
\]
\[
s_j(t + 1) = \frac{1}{2} s_j(t) + \frac{1}{2} s_k(t)
\]

\[
= s_k(t + 1)
\]
Example: Gossip Protocol

- In each round, a node-pair \((j, k)\) is randomly selected.
- Nodes exchange values and average them:

\[
s_j(0) = x_j, \quad j = 1, 2, \ldots, m
\]
\[
s_j(t + 1) = \frac{1}{2} s_j(t) + \frac{1}{2} s_k(t)
= s_k(t + 1)
\]
Example: Gossip Protocol

- In each round, a node-pair \((j, k)\) is randomly selected.
- Nodes exchange values and average them.

\[
s_j(0) = x_j, \quad j = 1, 2, \ldots, m
\]

\[
s_j(t + 1) = \frac{1}{2} s_j(t) + \frac{1}{2} s_k(t)
\]

\[
= s_k(t + 1)
\]
Example: Gossip Protocol

- In each round, a node-pair \((j, k)\) is randomly selected.
- Nodes exchange values and average them.

\[
s_j(0) = x_j, \quad j = 1, 2, \ldots, m
\]

\[
s_j(t + 1) = \frac{1}{2} s_j(t) + \frac{1}{2} s_k(t)
\]

\[
= s_k(t + 1)
\]
Example: Gossip Protocol

- In each round, a node-pair \((j, k)\) is randomly selected.

- Nodes exchange values and average them:

\[
\begin{align*}
 s_j(0) &= x_j, \quad j = 1, 2, \ldots, m \\
 s_j(t + 1) &= \frac{1}{2} s_j(t) + \frac{1}{2} s_k(t) \\
 &= s_k(t + 1)
\end{align*}
\]
Example: Gossip Protocol

- In each round, a node-pair \((j, k)\) is randomly selected.
- Nodes exchange values and average them:

\[
s_j(0) = x_j, \quad j = 1, 2, \ldots, m
\]
\[
s_j(t + 1) = \frac{1}{2}s_j(t) + \frac{1}{2}s_k(t) = s_k(t + 1)
\]
Example: Gossip Protocol

- In each round, a node-pair \((j, k)\) is randomly selected
- Nodes exchange values and average them

\[
s_j(0) = x_j, \quad j = 1, 2, \ldots, m
\]
\[
s_j(t + 1) = \frac{1}{2}s_j(t) + \frac{1}{2}s_k(t)
\]
\[
= s_k(t + 1)
\]
Example: Gossip Protocol

- In each round, a node-pair \((j, k)\) is randomly selected.
- Nodes exchange values and average them:

\[
\begin{align*}
 s_j(0) &= x_j, \quad j = 1, 2, \ldots, m \\
 s_j(t+1) &= \frac{1}{2} s_j(t) + \frac{1}{2} s_k(t) \\
 &= s_k(t+1)
\end{align*}
\]
Example: Gossip Protocol

- MSE = 0.00875
- Estimates converge to the average
- Bounds on the number of rounds as function of MSE [Boyd et al., 05]
Example: Gossip Protocol

Issues:
- Communicating/computing with infinite precision not realistic
- Number of rounds not good measure of communication cost
Quantized Distributed Averaging

Control: Scalar quantization

Signal Processing: Model quantization noise as additive noise

- M. Yildiz, A. Scaglione, ”Coding with side information for rate constrained consensus,” *IEEE Trans. on Sig. Proc.*, 2008

Information Theory: Treat quantization noise indirectly as link capacity constraint

Quantized Distributed Averaging

- **Control**: Scalar quantization

- **Signal Processing**: Model quantization noise as additive noise
Quantized Distributed Averaging

- **Control**: Scalar quantization

- **Signal Processing**: Model quantization noise as additive noise

- **Information Theory**: Treat quantization noise indirectly as link capacity constraint
Distributed Lossy Averaging [Su, EG 09]

- Graph with m nodes. Node j observes source X_j
- Assume (X_1, \ldots, X_m) jointly Gaussian
- Each node wishes to estimate $S^n = (1/m) \sum_{j=1}^{m} X^n_j$
Distributed Lossy Averaging [Su, EG 09]

- Graph with m nodes. Node j observes source X_j
- Assume (X_1, \ldots, X_m) jointly Gaussian
- Each node wishes to estimate $S^n = \frac{1}{m} \sum_{j=1}^{m} X^n_j$

Averaging protocol:
- Number of communication rounds T
- Sequence of node pairs selected (deterministic or random)
- Block code (two-way) used by each selected pair in each round
Distributed Lossy Averaging [Su, EG 09]

- Graph with m nodes. Node j observes source X_j
- Assume (X_1, \ldots, X_m) jointly Gaussian
- Each node wishes to estimate $S^n = (1/m) \sum_{j=1}^{m} X^n_j$
- **Averaging protocol:**
 - Number of communication rounds T
 - Sequence of node pairs selected (deterministic or random)
 - Block code (two-way) used by each selected pair in each round
- Let R be sum rate over the T rounds
- Let $S^n_j(T)$ be estimate of node j at end of round T
- **Per-letter MSE distortion:**
 \[
 D_j^{(n)} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[(S_i - S_{ji}(T))^2]
 \]
Distributed Lossy Averaging

For fixed T and node-pair selections:

- Rate distortion pair (R, D) achievable if there exists a sequence of codes with rate R such that

$$\limsup_{n \to \infty} \frac{1}{m} \sum_{j=1}^{m} D_j^{(n)} \leq D$$

- $R(D) = \inf\{R : (R, D) \text{ is achievable}\}$
Distributed Lossy Averaging

- For fixed T and node-pair selections:
 - Rate distortion pair (R, D) achievable if there exists a sequence of codes with rate R such that
 $$\limsup_{n \to \infty} \frac{1}{m} \sum_{j=1}^{m} D_j^{(n)} \leq D$$
 - $R(D) = \inf \{ R : (R, D) \text{ is achievable} \}$

- The network rate–distortion function:
 $$R^*(D) = \inf \{ R(D) : \text{all node-pair selection sequences and } T \}$$
Distributed Lossy Averaging

- For fixed T and node-pair selections:
 - Rate distortion pair (R, D) achievable if there exists a sequence of codes with rate R such that
 \[
 \limsup_{n \to \infty} \frac{1}{m} \sum_{j=1}^{m} D_j^{(n)} \leq D
 \]
 - $R(D) = \inf \{ R : (R, D) \text{ is achievable} \}$
- The network rate–distortion function:
 \[
 R^*(D) = \inf \{ R(D) : \text{all node-pair selection sequences and } T \}
 \]
- $R^*(D)$ is not known in general
$R^*(D)$ for 2-Node Network

- 2-nodes; (X_1, X_2) 2-WGN$(1, \rho)$; arbitrary number of rounds
- Nodes wish to estimate average $S^n = (X_1^n + X_2^n)/2$ with MSE distortion D

\[
R^*(D) = \log \left(\frac{1 - \rho^2}{4D} \right)
\]

- Achieved using two independent Wyner-Ziv coding rounds

Theorem (Su, EG 09)
2-Source Distributed Lossy Averaging

- Three nodes; \((X_1, X_2) \sim 2\text{-WGN}(1, \rho)\)
- Communication: 1 → 3, 2 → 3
- Node 3 wishes to estimate \(S^n = (X_1^n + X_2^n)/2\) with distortion \(D\)
2-Source Distributed Lossy Averaging

- Three nodes; \((X_1, X_2)\) 2-WGN(1,\(\rho\))
- Communication: \(1 \rightarrow 3, 2 \rightarrow 3\)
- Node 3 wishes to estimate \(S^n = (X_1^n + X_2^n)/2\) with distortion \(D\)

- Problem recently solved (\(\mu\)-sum) by Tse, Ramchandran 04; Oohama 05; Wagner, Tavildar, Viswanath 08
3-Node Cascade Network [Cuff, Su, EG 09]

- Three nodes; \(X_1, X_2\) independent WGN(\(P_1\)), WGN(\(P_2\)) sources
- Two rounds: \(1 \rightarrow 2\) followed by \(2 \rightarrow 3\)
- Node 3 wishes to estimate \(S^n = (X_1^n + X_2^n)/2\) with distortion \(D\)

\[
\begin{align*}
X_1^n & \quad M_1(X_1^n) \\
X_2^n & \quad M_2(X_2^n, M_1) \\
3 & \quad \hat{S}^n
\end{align*}
\]
3-Node Cascade Network [Cuff, Su, EG 09]

- Three nodes; X_1, X_2 independent WGN(P_1), WGN(P_2) sources
- Two rounds: $1 \rightarrow 2$ followed by $2 \rightarrow 3$
- Node 3 wishes to estimate $S^n_3 = (X^n_1 + X^n_2)/2$ with distortion D

Achievability schemes:

- **Compute–Compress:**
 \[
 \hat{S}^n_3 \left(M_1(X^n_1) \right)
 \]

Neither strategy is optimal; problem remains open.
Three nodes; X_1, X_2 independent WGN(P_1), WGN(P_2) sources
Two rounds: $1 \rightarrow 2$ followed by $2 \rightarrow 3$
Node 3 wishes to estimate $S^n = (X_1^n + X_2^n)/2$ with distortion D

Achievability schemes:

- **Compute–Compress:**

- **Forward:**
3-Node Cascade Network [Cuff, Su, EG 09]

- Three nodes; X_1, X_2 independent WGN(P_1), WGN(P_2) sources
- Two rounds: $1 \rightarrow 2$ followed by $2 \rightarrow 3$
- Node 3 wishes to estimate $S^n = (X_1^n + X_2^n)/2$ with distortion D

Achievability schemes:

- **Compute–Compress:**

 $M_1(X_1^n) \quad M_2(X_2^n, M_1) \quad \hat{S}^n$

- **Forward:**

 $M_1(X_1^n) \quad M_2(X_2^n, M_1) \quad \hat{S}^n$

Neither strategy is optimal; problem remains open
Cutset Lower Bound on $R^*(D)$

- Independent WGN(1) sources
Cutset Lower Bound on $R^*(D)$

- Independent WGN(1) sources

Super-node

$$P = \frac{m-1}{m^2}$$
Cutset Lower Bound on $R^*(D)$

- Independent WGN(1) sources

Super-node $P = \frac{m-1}{m^2}$

Theorem (Su,EG 09)

\[R^*(D) \geq \frac{m}{2} \log \left(\frac{m - 1}{m^2 D} \right) \quad \text{for} \quad D < \frac{(m - 1)}{m^2} \]
Upper Bound on $R^*(D)$

- Use centralized protocol
Upper Bound on $R^*(D)$

- Use centralized protocol
- Round $t = 1, \ldots, (m - 1)$:

\[r_j(t) = \frac{1}{2} \log \left(\frac{1}{d} \right) \]

\[d = \frac{mD}{2} \]
Upper Bound on $R^*(D)$

- Use centralized protocol
- Round $t = 1, \ldots, (m - 1)$:
 \[
 r_j(t) = \frac{1}{2} \log \left(\frac{1}{d} \right)
 \]

 \[
 d = \frac{mD}{2}
 \]
- Round $t = m, \ldots, (2m - 2)$:
 \[
 r_1(t) = \frac{1}{2} \log \left(\frac{2}{mD} \right)
 \]
Upper Bound on $R^*(D)$

- Use centralized protocol
- Round $t = 1, \ldots, (m - 1)$:
 \[
 r_j(t) = \frac{1}{2} \log \left(\frac{1}{d} \right)
 \]
 \[
 d = \frac{mD}{2}
 \]
- Round $t = m, \ldots, (2m - 2)$:
 \[
 r_1(t) = \frac{1}{2} \log \left(\frac{2}{mD} \right)
 \]
- Upper bound:
 \[
 R^*(D) \leq (m - 1) \log \left(\frac{2}{mD} \right)
 \]
 Within 2x of cutset bound
Distributed Weighted-Sum Protocols

- T rounds of node-pair, two-way communication/computing
- Estimate of node j at $t = 0$, $S^n_j(0) = X^n_j$
Distributed Weighted-Sum Protocols

- T rounds of node-pair, two-way communication/computing
- Estimate of node j at $t = 0$, $S_j^n(0) = X_j^n$
- Assume (j, k) selected in round $t > 0$:
 - Node j: Sends description $\hat{S}_j^n(t)$ to node j
 (Distortion $d \mathbb{E}(S_j^n(t))$ and rate $(1/2) \log(1/d)$)
 - Similarly, node k sends description $\hat{S}_k^n(t)$ to node j
Distributed Weighted-Sum Protocols

- T rounds of node-pair, two-way communication/computing
- Estimate of node j at $t = 0$, $S^n_j(0) = X^n_j$
- Assume (j, k) selected in round $t > 0$:
 - Node j: Sends description $\hat{S}^n_j(t)$ to node j
 (Distortion $d E(S^2_j(t))$ and rate $(1/2) \log(1/d)$)
 - Similarly, node k sends description $\hat{S}^n_k(t)$ to node j
 - Nodes update their estimates

\[
S^n_v(t + 1) = \frac{1}{2} S^n_v(t) + \frac{1}{2(1 - d)} \hat{S}^n_{j+k-v}(t) \text{ for } v = j, k
\]
Distributed Weighted-Sum Protocols

- T rounds of node-pair, two-way communication/computing
- Estimate of node j at $t = 0$, $S^n_j(0) = X^n_j$
- Assume (j, k) selected in round $t > 0$:
 - Node j: Sends description $\hat{S}^n_j(t)$ to node j
 (Distortion $d E(S^2_j(t))$ and rate $\frac{1}{2} \log(1/d)$)
 - Similarly, node k sends description $\hat{S}^n_k(t)$ to node j
 - Nodes update their estimates

\[
S^n_v(t + 1) = \frac{1}{2} S^n_v(t) + \frac{1}{2(1 - d)} \hat{S}^n_{j+k-v}(t) \text{ for } v = j, k
\]

- Define $R^*_{WS}(D) \geq R^*(D)$
Distributed Weighted-Sum Protocols

- T rounds of node-pair, two-way communication/computing
- Estimate of node j at $t = 0$, $S_j^n(0) = X_j^n$
- Assume (j,k) selected in round $t > 0$:
 - Node j: Sends description $\hat{S}_j^n(t)$ to node j
 (Distortion $d E(S_j^2(t))$ and rate $(1/2) \log(1/d)$)
 - Similarly, node k sends description $\hat{S}_k^n(t)$ to node j
 - Nodes update their estimates

\[
S_v^n(t+1) = \frac{1}{2}S_v^n(t) + \frac{1}{2(1 - d)}\hat{S}_{j+k-v}^n(t) \text{ for } v = j, k
\]

- Define $R_{WS}^*(D) \geq R^*(D)$

Theorem (Lower Bound on $R_{WS}^*(D)$)

\[
R_{WS}^*(D) \geq \left(\frac{m}{2} \log \frac{1}{\sqrt{D} + 1/m} \right) \left(\log \frac{1}{4mD} \right)
\]
Gossip-Based Weighted-Sum Protocol

- Node-pair selected independently at random in each round
Gossip-Based Weighted-Sum Protocol

- Node-pair selected independently at random in each round

- Expected weighted-sum network rate distortion function

\[E(R_{WS}(D)) = \inf \{ E(R) : (R, \Delta) \text{ is achievable}, E(\Delta) \leq D \} \]
Gossip-Based Weighted-Sum Protocol

- Node-pair selected independently at random in each round

- Expected weighted-sum network rate distortion function

\[E(R_{WS}(D)) = \inf \{ E(R) : (R, \Delta) \text{ is achievable, } E(\Delta) \leq D \} \]

- \[R^*_{WS}(D) \leq E(R_{WS}(D)) \]
Gossip-Based Weighted-Sum Protocol

- Node-pair selected independently at random in each round

- **Expected weighted-sum network rate distortion function**

\[
E(R_{WS}(D)) = \inf \{ E(R) : (R, \Delta) \text{ is achievable, } E(\Delta) \leq D \}
\]

- \(R^*_{WS}(D) \leq E(R_{WS}(D)) \)

Theorem (Upper bound on \(E(R_{WS}(D)) \))

\[
E(R_{WS}(D)) \leq (m - 1) \left(\ln \frac{2}{D} \right) \left(\log \frac{(m - 1) \ln(2/D)}{m^2 D} \right)
\]
Summary of Bounds

- Complete graph
Summary of Bounds

- **Complete graph**

<table>
<thead>
<tr>
<th>Bounds</th>
<th>$D = \Theta(1/m)$</th>
<th>$D = \Theta(1/m^2)$</th>
</tr>
</thead>
</table>

The penalty of using a distributed protocol is a factor of $\log m$ in the sum rate.
Summary of Bounds

- **Complete graph**

<table>
<thead>
<tr>
<th>Bounds</th>
<th>$D = \Theta(1/m)$</th>
<th>$D = \Theta(1/m^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centralized</td>
<td>$R^*(D)$</td>
<td>$\Theta(m)$</td>
</tr>
</tbody>
</table>
Summary of Bounds

- **Complete graph**

<table>
<thead>
<tr>
<th></th>
<th>Centralized</th>
<th>Distributed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bounds</td>
<td>$D = \Theta(1/m)$</td>
<td>$D = \Theta(1/m^2)$</td>
</tr>
<tr>
<td>$R^*(D)$</td>
<td>$\Theta(m)$</td>
<td>$\Theta(m \log m)$</td>
</tr>
<tr>
<td>$R^*_{WS}(D)$</td>
<td>$\Omega(m \log m)$</td>
<td>$\Omega(m(\log m)^2)$</td>
</tr>
<tr>
<td>$E(R_{WS}(D))$</td>
<td>$O(m(\log m)(\log \log m))$</td>
<td>$O(m(\log m)^2)$</td>
</tr>
</tbody>
</table>
Summary of Bounds

- Complete graph

<table>
<thead>
<tr>
<th></th>
<th>Bounds</th>
<th>$D = \Theta(1/m)$</th>
<th>$D = \Theta(1/m^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centralized</td>
<td>$R^*_C(D)$</td>
<td>$\Theta(m)$</td>
<td>$\Theta(m \log m)$</td>
</tr>
<tr>
<td>Distributed</td>
<td>$R^*_WS(D)$</td>
<td>$\Omega(m \log m)$</td>
<td>$\Omega(m(\log m)^2)$</td>
</tr>
<tr>
<td></td>
<td>$E(R_{WS}(D))$</td>
<td>$O(m(\log m)(\log \log m))$</td>
<td>$O(m(\log m)^2)$</td>
</tr>
</tbody>
</table>

Penalty of using distributed protocol is factor of $\log m$ in sum rate
Conclusion

- Distributed lossy averaging as example of lossy distributed computing
 - Upper and lower bounds on network rate distortion function
 - Formulation allowed us to quantify the penalty of distributedness
 - Network rate distortion function not known in general

To learn more:
Conclusion

- Distributed lossy averaging as example of lossy distributed computing
 - Upper and lower bounds on network rate distortion function
 - Formulation allowed us to quantify the penalty of distributedness
 - Network rate distortion function not known in general

- To learn more:
 - Su, EG, “Distributed Lossy Averaging,”
 http://arxiv.org/abs/0901.4134
 - Cuff, Su, EG, “Cascade Multiterminal Source Coding,”
 http://arxiv.org/abs/0905.1883
 - Kim, EG, “Lecture notes on network information theory,”
Thank You
Effect of Using Correlation

- We ignored the build up in correlation
- Can achieve better rate using Wyner-Ziv coding
- Very difficult to analyze
Effect of Using Correlation

- We ignored the build up in correlation
- Can achieve better rate using Wyner-Ziv coding
- Very difficult to analyze
- Using simulations ($m = 50$):

![Graph showing effect of using correlation with and without correlation, and an upper bound.]
Effect of Using Correlation

- We ignored the build up in correlation
- Can achieve better rate using Wyner-Ziv coding
- Very difficult to analyze
- Using simulations \((m = 50)\):