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Functional representation of random variables

Lemma (see, e.g., EG–Kim (2011))

Given (X ,Y ), there exists Z independent of X and function (x, z) such
that Y = (X , Z)
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Functional representation of random variables

Lemma (see, e.g., EG–Kim (2011))

Given (X ,Y ), there exists Z independent of X and function (x, z) such
that Y = (X , Z)
∙ Applications:

é Broadcast channel (Hajek–Pursley 1979)

é MAC with cribbing encoders (Willems–van der Meulen 1985)

é Also see (EG–Kim 2011) for other applications
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∙ Applications:

é Broadcast channel (Hajek–Pursley 1979)

é MAC with cribbing encoders (Willems–van der Meulen 1985)

é Also see (EG–Kim 2011) for other applications

é Entropic causal inference (Kocaoglu–Dimakis–Vishwanath–Hassibi 2017)
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Functional representation of random variables

Lemma (see, e.g., EG–Kim (2011))

Given (X ,Y ), there exists Z independent of X and function (x, z) such
that Y = (X , Z)
∙ Example: B1 , B2 , B3 , B4 i.i.d. Bern(1/2), X = (B1 , B2 , B3), Y = (B2 , B3 , B4)é Z1 = B4, Y = (B2 , B3 , Z1) (Z1 part of Y not in X)
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∙ Example: B1 , B2 , B3 , B4 i.i.d. Bern(1/2), X = (B1 , B2 , B3), Y = (B2 , B3 , B4)é Z1 = B4, Y = (B2 , B3 , Z1) (Z1 part of Y not in X)

é Z2 = B1 ⊕ B4, Y = (B2 , B3 , B1 ⊕ Z2)
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Functional representation of random variables

Lemma (see, e.g., EG–Kim (2011))

Given (X ,Y ), there exists Z independent of X and function (x, z) such
that Y = (X , Z)
∙ Example: B1 , B2 , B3 , B4 i.i.d. Bern(1/2), X = (B1 , B2 , B3), Y = (B2 , B3 , B4)é Z1 = B4, Y = (B2 , B3 , Z1) (Z1 part of Y not in X)

é Z2 = B1 ⊕ B4, Y = (B2 , B3 , B1 ⊕ Z2)∙ What Z is most informative about Y = (X , Z)?
H(Y |Z1) = 2 = I(X ;Y), H(Y |Z2) = H(Y) = 3
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Functional representation of random variables

Lemma (see, e.g., EG–Kim (2011))

Given (X ,Y ), there exists Z independent of X and function (x, z) such
that Y = (X , Z)
∙ Example: B1 , B2 , B3 , B4 i.i.d. Bern(1/2), X = (B1 , B2 , B3), Y = (B2 , B3 , B4)é Z1 = B4, Y = (B2 , B3 , Z1) (Z1 part of Y not in X)

é Z2 = B1 ⊕ B4, Y = (B2 , B3 , B1 ⊕ Z2)∙ What Z is most informative about Y = (X , Z)?
H(Y |Z1) = 2 = I(X ;Y), H(Y |Z2) = H(Y) = 3∙ In general: H(Y |Z) ≥ I(X ;Y):
H(Y |Z) = I(X ;Y |Z) (Y = (X , Z))

= I(X ;Y , Z) (X and Z independent)
≥ I(X ;Y)
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Example (doubly symmetric binary r.v.s)

X ∼ Bern(1/2) Y

q

q

1

0

1

0

q = 1 − p, p ∈ (0, 0.5)
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Example (doubly symmetric binary r.v.s)

X ∼ Bern(1/2) Y

q

q

1

0

1

0

q = 1 − p, p ∈ (0, 0.5)

∙ Let Z1 ∼ Bern(p) be indep. of X, Y = X ⊕ Z1

X = 0 X = 1

Y = 0

Y = 0 Y = 1

Y = 1

H(Y |Z1 = 0) = 1

H(Y |Z1 = 1) = 1
1

Z1 = 0

Z1 = 1
q

H(Y |Z1) = 1
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Example (doubly symmetric binary r.v.s)

X ∼ Bern(1/2) Y

q

q

1

0

1

0

q = 1 − p, p ∈ (0, 0.5)

∙ Let Z2 = 1, 2, 3 w.p. p, 1 − 2p, p, respectively, indep. of X

X = 0 X = 1

Y = 0

Y = 0 Y = 1

Y = 1
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Y = 1
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H(Y |Z2 = 3) = 0

Z2 = 1

Z2 = 2

Z2 = 3

1

H(Y |Z2) = 1 − 2p

p

q
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Example (doubly symmetric binary r.v.s)

X ∼ Bern(1/2) Y

q

q

1

0

1

0

q = 1 − p, p ∈ (0, 0.5)

∙ Can show: minZ ,H(Y |Z) = 1 − 2p, i.e., second construction is optimal∙ But 1 − 2p > 1 −H(p) = I(X ;Y) (cannot always achieve I lower bound)
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General upper bound on H(Y |Z)

Strong functional representation lemma (SFRL) (Li–EG 2018)

Given (X ,Y ), there exists Z independent of X and function (x, z) such
that Y = (X , Z), and

I(X ; Y ) ≤ H(Y |Z) < I(X ;Y ) + log(I(X ; Y ) + 1) + 4
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General upper bound on H(Y |Z)

Strong functional representation lemma (SFRL) (Li–EG 2018)

Given (X ,Y ), there exists Z independent of X and function (x, z) such
that Y = (X , Z), and

I(X ; Y ) ≤ H(Y |Z) < I(X ;Y ) + log(I(X ; Y ) + 1) + 4

∙ Tighter and more general bound on rate for one-shot channel simulation
than in (Harsha et al. 2010), (Braverman–Garg 2014)∙ Provides simple achievability results for several coding setups
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Given (X ,Y ), there exists Z independent of X and function (x, z) such
that Y = (X , Z), and

I(X ; Y ) ≤ H(Y |Z) < I(X ;Y ) + log(I(X ; Y ) + 1) + 4

∙ Tighter and more general bound on rate for one-shot channel simulation
than in (Harsha et al. 2010), (Braverman–Garg 2014)∙ Provides simple achievability results for several coding setups∙ Upper bound can be quite loose, e.g., for binary example with p = 0.11,

é I(X ;Y) = 0.5, minH(Y |Z) = 0.78, upper bound = 4.08496
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than in (Harsha et al. 2010), (Braverman–Garg 2014)∙ Provides simple achievability results for several coding setups∙ Upper bound can be quite loose, e.g., for binary example with p = 0.11,

é I(X ;Y) = 0.5, minH(Y |Z) = 0.78, upper bound = 4.08496∙ For (X ,Y) = (Xn ,Yn) i.i.d.: (1/n)H(Yn|Zn) ≤ I(X ;Y) +O(logn/n) ≈ I(X ;Y)
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General upper bound on H(Y |Z)

Strong functional representation lemma (SFRL) (Li–EG 2018)

Given (X ,Y ), there exists Z independent of X and function (x, z) such
that Y = (X , Z), and
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than in (Harsha et al. 2010), (Braverman–Garg 2014)∙ Provides simple achievability results for several coding setups∙ Upper bound can be quite loose, e.g., for binary example with p = 0.11,

é I(X ;Y) = 0.5, minH(Y |Z) = 0.78, upper bound = 4.08496∙ For (X ,Y) = (Xn ,Yn) i.i.d.: (1/n)H(Yn|Zn) ≤ I(X ;Y) +O(logn/n) ≈ I(X ;Y)∙ There are examples where log term is necessary, SFRL tight within 5 bits
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Back to doubly symmetric binary r.v.s example

∙ Recall optimal Z2 construction for example

X ∼ Bern(1/2) Y

q

q

1

0

1

0

q = 1 − p, p ∈ (0, 0.5)

X = 0 X = 1

Y = 0

Y = 0

Y = 1

Y = 1Z2 = 1

Z2 = 2

Z2 = 3

1

p

q
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Back to doubly symmetric binary r.v.s example

∙ Recall optimal Z2 construction for example∙ Can equivalently let Z ∼ Unif[0, 1], and:
For X = 0, set y = 0 if

z

q
≤ 1 − z

p
; for X = 1, set y = 0 if

z

p
≤ 1 − z

q

X = 0 X = 1

Y = 0

Y = 0

Y = 1

Y = 1Z2 = 1
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Back to doubly symmetric binary r.v.s example

∙ Recall optimal Z2 construction for example∙ Can equivalently let Z ∼ Unif[0, 1], and:
For X = 0, set y = 0 if

z

q
≤ 1 − z

p
; for X = 1, set y = 0 if

z

p
≤ 1 − z

q∙ In general for |Y | = 2, optimal construction is Z ∼ Unif[0, 1] and:
y = (x , z) = argmin¦ z

pY |X(0|x) ,
1 − z

pY |X(1|x)§
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Y = 0
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Y = 1Z2 = 1

Z2 = 2
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Exponential construction of Z , 

∙ Let Y = {1, 2, . . . , l}∙ Take Z = (Z1 , Z2 , . . . , Zl) i.i.d. Exp(1) r.v.s independent of X, set
y = (x, z) = argmin

y�

Zy�

pY |X(y�|x)
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Exponential construction of Z , 

∙ Let Y = {1, 2, . . . , l}∙ Take Z = (Z1 , Z2 , . . . , Zl) i.i.d. Exp(1) r.v.s independent of X, set
y = (x, z) = argmin

y�

Zy�

pY |X(y�|x)
P{argmin

y�
Exp(pY |X(y� |x)) = y} = pY |X(y |x) ⇒ (x , Z) ∼ pY |X(.|x)
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Exponential construction of Z , 

∙ Let Y = {1, 2, . . . , l}∙ Take Z = (Z1 , Z2 , . . . , Zl) i.i.d. Exp(1) r.v.s independent of X, set
y = (x, z) = argmin

y�

Zy�

pY |X(y�|x)∙ Let Z� = (Z�
1 , . . . , Z

�
l ), where Z�

y = Zy/∑y� Zy� , use above construction of 
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Exponential construction of Z , 

∙ Let Y = {1, 2, . . . , l}∙ Take Z = (Z1 , Z2 , . . . , Zl) i.i.d. Exp(1) r.v.s independent of X, set
y = (x, z) = argmin

y�

Zy�

pY |X(y�|x)∙ Let Z� = (Z�
1 , . . . , Z

�
l ), where Z�

y = Zy/∑y� Zy� , use above construction of ∙ That is, pick Z uniform over probability simplex in ℝ|Y |−1

X = 1

Y = 2

Y = 3

Y = 1

(1, 0, 0)

(0, 0, 1) (0, 1, 0)
z

X = 2

Y = 2 Y = 3

Y = 1

(1, 0, 0)

(0, 0, 1) (0, 1, 0)
z

El Gamal (Stanford University) Functional Representation 7 / 32



Poisson construction for general Y

∙ Let T1, T2, . . . be arrival times of Poisson process with λ = 1, indep. of X

ỹ

t
t1 t2 t3 t4 ti
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ỹ
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∙ Let T1, T2, . . . be arrival times of Poisson process with λ = 1, indep. of X∙ Let Ỹ1, Ỹ2, . . . be i.i.d. ∼ PY indep. of T1, T2, . . . and X∙ Set Z = {(Ti , Ỹi)} (marked PP with intensity measure μ × PY )
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(t3 , ỹ3)(t4 , ỹ4)
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Poisson construction for general Y

∙ Let T1, T2, . . . be arrival times of Poisson process with λ = 1, indep. of X∙ Let Ỹ1, Ỹ2, . . . be i.i.d. ∼ PY indep. of T1, T2, . . . and X∙ Set Z = {(Ti , Ỹi)} (marked PP with intensity measure μ × PY ), and

Y = (x , Z) = Ỹk(x,Z) , where k(x , Z) = argmin
i

ti ⋅ d PY

d PY |X(.|x) (Ỹi)

(

ỹ

y

t

(t1 ỹ1)

(t2 , ỹ2)

(t3 , ỹ3)(t4 , ỹ4)
(ti , ỹi)

t1 t2 t3 t4 ti
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Example

∙ Let Y ∼ Unif[0, 1], Y |{X = x} ∼ Unif[x, 1 − x], x ∈ [0, 1/2], hence
k(x , z) = argmin

i

ti ⋅ fY ( ỹi)
fY |X( ỹi |x) for ỹi ∈ [x , 1 − x]

= argmin
i

ti ⋅ (1 − 2x) for ỹi ∈ [x , 1 − x]
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∙ Let Y ∼ Unif[0, 1], Y |{X = x} ∼ Unif[x, 1 − x], x ∈ [0, 1/2], hence
k(x , z) = argmin

i

ti ⋅ fY ( ỹi)
fY |X( ỹi |x) for ỹi ∈ [x , 1 − x]

= argmin
i

ti ⋅ (1 − 2x) for ỹi ∈ [x , 1 − x]
= argmin

i

ti for ỹi ∈ [x , 1 − x],

replacements

ỹ

x

1

1 − x

t

(t1 ỹ1)

(t2 , ỹ2)

(t3 , ỹ3)(t4 , ỹ4)
(ti , ỹi)

t1 t2 t3 t4 ti
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Example

∙ Let Y ∼ Unif[0, 1], Y |{X = x} ∼ Unif[x, 1 − x], x ∈ [0, 1/2], hence
k(x , z) = argmin

i

ti ⋅ fY ( ỹi)
fY |X( ỹi |x) for ỹi ∈ [x , 1 − x]

= argmin
i

ti ⋅ (1 − 2x) for ỹi ∈ [x , 1 − x]
= argmin

i

ti for ỹi ∈ [x , 1 − x],
y = ỹk

ỹ

x

1

1 − x

t

(t1 ỹ1)

(t2 , ỹ2)
(t4 , ỹ4)

(ti , ỹi)

t1 t2 t3 t4 ti

y

(t3 , ỹ3)
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SFRL proof outline

Strong functional representation lemma (Li–EG 2018)

Given (X ,Y ), there exists Z independent of X and function (x, z) such
that Y = (X , Z), and

I(X ; Y ) ≤ H(Y |Z) < I(X ;Y ) + log(I(X ; Y ) + 1) + 4

∙ Poisson construction: Z = {(Ti , Ỹi)} marked PP with intensity measure μ×PY ,

Y = (x , Z) = Ỹk(x,Z) , where k(x , Z) = argmin
i

Ti ⋅ d PY

d PY |X(⋅|x) (Ỹi)
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Given (X ,Y ), there exists Z independent of X and function (x, z) such
that Y = (X , Z), and

I(X ; Y ) ≤ H(Y |Z) < I(X ;Y ) + log(I(X ; Y ) + 1) + 4

∙ Poisson construction: Z = {(Ti , Ỹi)} marked PP with intensity measure μ×PY ,

Y = (x , Z) = Ỹk(x,Z) , where k(x , Z) = argmin
i

Ti ⋅ d PY

d PY |X(⋅|x) (Ỹi)
∙ (x , Z) ∼ PY |X(⋅|x): Consider mapping (t , y) Ü→ (t ⋅ d PY /d PY |X(⋅|x)(y), y)
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SFRL proof outline

Strong functional representation lemma (Li–EG 2018)

Given (X ,Y ), there exists Z independent of X and function (x, z) such
that Y = (X , Z), and

I(X ; Y ) ≤ H(Y |Z) < I(X ;Y ) + log(I(X ; Y ) + 1) + 4

∙ Poisson construction: Z = {(Ti , Ỹi)} marked PP with intensity measure μ×PY ,

Y = (x , Z) = Ỹk(x,Z) , where k(x , Z) = argmin
i

Ti ⋅ d PY

d PY |X(⋅|x) (Ỹi)
∙ (x , Z) ∼ PY |X(⋅|x): Consider mapping (t , y) Ü→ (t ⋅ d PY /d PY |X(⋅|x)(y), y)

By the mapping theorem, {(Ti ⋅ d PY /d PY |X(⋅|x)(Ỹi), Ỹi)} is PP with

intensity measure μ × PY |X

Hence, Θ = min
i

Ti ⋅ d PY

d PY |X(⋅|x) (Ỹi) ∼ Exp(1), ỸK |{X = x} ∼ PY |X(⋅|x)
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SFRL proof outline

∙ Since Y is a function of Z and K : H(Y |Z) ≤ H(K)∙ Proposition (max. H(K) for fixed E(logK)): Let K ∈ ℕ, then

H(K) ≤ E(logK) + log(E(logK) + 1) + 1
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∙ Since Y is a function of Z and K : H(Y |Z) ≤ H(K)∙ Proposition (max. H(K) for fixed E(logK)): Let K ∈ ℕ, then

H(K) ≤ E(logK) + log(E(logK) + 1) + 1

∙ To bound E(logK), first consider E(logK |X = x)
Given {X = x , Θ = θ}, {(Ti ⋅ d PY /d PY |X(⋅|x)(Ỹi), Ỹi)}i ̸=K is marked PP with
intensity measure μ[θ,∞) × PY |X(.|x)
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Given {X = x , Θ = θ}, {(Ti ⋅ d PY /d PY |X(⋅|x)(Ỹi), Ỹi)}i ̸=K is marked PP with
intensity measure μ[θ,∞) × PY |X(.|x)
By mapping theorem for (t , y) Ü→ (t ⋅ d PY |X /d PY (⋅|x)(y), y), {(Ti , Ỹi)}i ̸=K is
marked PP

Hence, given {X = x , Θ = θ, ỸK = ỹ}, K − 1 ∼ Poisson(λ( ỹ))
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Given {X = x , Θ = θ}, {(Ti ⋅ d PY /d PY |X(⋅|x)(Ỹi), Ỹi)}i ̸=K is marked PP with
intensity measure μ[θ,∞) × PY |X(.|x)
By mapping theorem for (t , y) Ü→ (t ⋅ d PY |X /d PY (⋅|x)(y), y), {(Ti , Ỹi)}i ̸=K is
marked PP

Hence, given {X = x , Θ = θ, ỸK = ỹ}, K − 1 ∼ Poisson(λ( ỹ))
It’s not difficult to show: λ( ỹ) ≤ θ ⋅ d PY |X(⋅|x)/d PY ( ỹ)
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Applications of SFRL

∙ Upper bound on rate of one-shot (exact) channel simulation∙ One-shot lossy compression∙ Minimax learning for distributed inference (Li–Wu–Özgür–EG 2018)
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Background on channel simulation

∙ Shannon (1948) channel capacity theorem can be interpreted as:

DMC with capacity C can simulate noiseless channel with capacity C

PY |X

C
C∼∼∼
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DMC with capacity C can simulate noiseless channel with capacity C

PY |X

C
C∼∼∼

∙ Bennett–Shor–Smolin–Thapliyal (2002) asked the reverse question:

Can noiseless channel with capacity C and common randomness
simulate any DMC with capacity C?

PY |X
C

CW

∼∼∼
?

∙ Their motivation was to answer this question for entanglement-assisted
quantum channels
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Approximate channel simulation

Xn

Alice Bob

W

M ∈ [1 : 2nR] Ỹn

randomness source
Common

∙ W unlimited common randomness; X arbitrary process; p(y|x) DMC∙ Alice maps every (xn ,w) pair into an index m(xn ,w) ∈ [1 : 2nR]∙ Bob generates Ỹn(m(xn ,W),W) ∼ q(yn|xn)
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Xn

Alice Bob

W

M ∈ [1 : 2nR] Ỹn

randomness source
Common

∙ W unlimited common randomness; X arbitrary process; p(y|x) DMC∙ Alice maps every (xn ,w) pair into an index m(xn ,w) ∈ [1 : 2nR]∙ Bob generates Ỹn(m(xn ,W),W) ∼ q(yn|xn)∙ R is achievable if there exists sequence of simulation schemes such that

lim
n→∞

!!!!!!!!p(xn)q(yn |xn) − p(xn) nI
i=1

pY |X(yi |xi)!!!!!!!!TV = 0

∙ Optimal (approx.) simulation rate R∗
ch−sim is inf. over achievable rates
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Approximate channel simulation

Theorem (Bennett–Shor–Smolin–Thapliyal 2002)

R∗
ch−sim = max

p(x)
I(X ;Y ) (capacity of DMC)

∙ Hence reverse Shannon channel capacity theorem holds for DMC
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Approximate channel simulation

Theorem (Bennett–Shor–Smolin–Thapliyal 2002)

R∗
ch−sim = max

p(x)
I(X ;Y ) (capacity of DMC)

∙ Hence reverse Shannon channel capacity theorem holds for DMC∙ They also established partial results for certain quantum channels∙ Follow on work (Cuff 2013, Bennett–Devetak–Harrow–Shor–Winter 2014)
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One-shot exact channel simulation

X
Alice Bob

W

M ∈ {0, 1}∗ Y

randomness source
Common

∙ W unlimited common randomness; X ∼ PX , PY |X given channel
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One-shot exact channel simulation

X
Alice Bob

W

M ∈ {0, 1}∗ Y

randomness source
Common

∙ W unlimited common randomness; X ∼ PX , PY |X given channel∙ For each w, Alice uses prefix code to map each x into m(x, w) ∈ {0, 1}∗∙ Bob generates Y = y(m(x,W),W) ∼ PY |X(.|x)∙ Let L be the length of the index M
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W
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randomness source
Common

∙ W unlimited common randomness; X ∼ PX , PY |X given channel∙ For each w, Alice uses prefix code to map each x into m(x, w) ∈ {0, 1}∗∙ Bob generates Y = y(m(x,W),W) ∼ PY |X(.|x)∙ Let L be the length of the index M∙ Optimal average simulation rate is R̄∗
ch−cim = inf

generators
E(L)
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One-shot exact channel simulation

X
Alice Bob

W

M ∈ {0, 1}∗ Y

randomness source
Common

Theorem (Harsha–Jain–McAllester–Radhakrishnan 2010)

For discrete X ∼ p(x), and DMC p(y|x),
I(X ; Y ) ≤ R̄∗

ch−sim ≤ I(X ; Y ) + (1 + є) log(I(X ; Y ) + 1) + cє

∙ More generally they showed for any x: R̄∗
ch−sim ≤ C + (1 + є) log(C + 1) + cє∙ Proof uses rejection sampling and is quite involved
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One-shot exact channel simulation

X
Alice Bob

W

M ∈ {0, 1}∗ Y

randomness source
Common

Theorem (Li–EG 2018)

For X ∼ PX , and general memoryless channel PY |X ,

I(X ; Y ) ≤ R̄∗
ch−sim < I(X ; Y ) + log(I(X ; Y ) + 1) + 5

∙ Proof of upper bound uses SFRL∙ Can be extended to arbitrary x case
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Proof of upper bound using SFRL

X
Alice Bob

W

M ∈ {0, 1}∗ Y

randomness source
Common

∙ By SFRL, there exists W indep. of X such that Y = (X ,W), and
H(Y |W) < I(X ;Y) + log(I(X ;Y) + 1) + 4
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Common

∙ By SFRL, there exists W indep. of X such that Y = (X ,W), and
H(Y |W) < I(X ;Y) + log(I(X ;Y) + 1) + 4∙ For each w, map y(x, w) into m(x, w) using Huffman code for pY |W (y|w)∙ Codes {y(x, w),m(x, w)} are provided to Alice and Bob∙ Given (x, w), Alice computes y(x, w); given (m, w), Bob recovers y∙ Hence, R̄∗

ch−sim ≤ E(L) < H(Y |W) + 1 < I(X ;Y) + log(I(X ;Y) + 1) + 5
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One-shot lossy source coding

X M ∈ {0, 1}∗ X̂
Alice Bob

W

randomness source
Common

∙ X ∼ PX , X̂ reproduction alphabet, d(x, x̂) ≥ 0 distortion measure
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∙ X ∼ PX , X̂ reproduction alphabet, d(x, x̂) ≥ 0 distortion measure∙ Alice maps each (x, w) into m(x, w); let L be length of M∙ Bob maps each (m, w) into estimate x̂(m, w)∙ (R̄,D) is achievable if there exits code with R̄ = E(L), E(d(X , X̂)) ≤ D∙ Avg rate-dist. function R̄(D) is inf over all achievable R̄: E(d(X , X̂)) ≤ D
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One-shot lossy source coding

X M ∈ {0, 1}∗ X̂
Alice Bob

W

randomness source
Common

∙ Avg rate-dist. function R̄(D) is inf over all achievable R̄: E(d(X , X̂)) ≤ D

Theorem (Li–EG 2018)

R(D) ≤ R̄(D) < R(D) + log(R(D) + 1) + 5,

where R(D) = inf
PX̂|X : E(d(X,X̂)) ≤D

I(X ; X̂) (rate-dist. function for asymptotic case)
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Proof of upper bound using SFRL

∙ Let X̂ attain I(X ; X̂) = R(D) and E(d(X , X̂)) ≤ D
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∙ By Carathéadory’s theorem, |W | ≤ 2 suffices to satisfy (∗), E(d(X , X̂)) ≤ D∙ For each w ∈ {1, 2}, use Huffman code to map x̂ into m(x̂ ,w) ∈ {0, 1}∗∙ Codes {x̂(x, w),m(x̂ ,w)} are provided to Alice and Bob

El Gamal (Stanford University) Functional Representation 19 / 32



Proof of upper bound using SFRL

∙ Let X̂ attain I(X ; X̂) = R(D) and E(d(X , X̂)) ≤ D∙ By SFRL, there exists W indep. of X s.t. X̂ = (X ,W) and
H(X̂ |W) < I(X ; X̂) + log(I(X ; X̂) + 1) + 4 = R(D) + log(R(D) + 1) + 4 (∗)

∙ By Carathéadory’s theorem, |W | ≤ 2 suffices to satisfy (∗), E(d(X , X̂)) ≤ D∙ For each w ∈ {1, 2}, use Huffman code to map x̂ into m(x̂ ,w) ∈ {0, 1}∗∙ Codes {x̂(x, w),m(x̂ ,w)} are provided to Alice and Bob∙ Alice maps (x, w) into m∙ Bob recovers x̂(x, w)

El Gamal (Stanford University) Functional Representation 19 / 32



Proof of upper bound using SFRL

∙ Let X̂ attain I(X ; X̂) = R(D) and E(d(X , X̂)) ≤ D∙ By SFRL, there exists W indep. of X s.t. X̂ = (X ,W) and
H(X̂ |W) < I(X ; X̂) + log(I(X ; X̂) + 1) + 4 = R(D) + log(R(D) + 1) + 4 (∗)
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Related work

∙ Pinkston (1967) studied variable-length finite blocklength lossy
compression for i.i.d. source, per-letter distortion∙ Zhang–Yang–Wei (1997) established similar order bound to ours for
finite blocklength∙ Kostina–Polyanskiy–Verdú (2015) studied variable length finite
blocklength lossy compression with prob. of distortion constraint∙ Our coding scheme resembles Song–Cuff–Poor (2016) likelihood encoder
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Applications of SFRL

∙ Upper bound on rate of one-shot (exact) channel simulation∙ One-shot lossy compression∙ Minimax learning for distributed inference (Li–Wu–Özgür–EG 2018)
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Supervised learning

{(Xi ,Yi)}ni=1 Learner f ∈ F

Y → X Inferrer Ŷ = f̃ (X)

∙ Risk function: l(y, ŷ), Pn empirical pmf of (X , Y ), function class F∙ Empirical risk minimization: choose f̃ = argmin
f∈F

EPn
(l(Y , Ŷ))
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Minimax learning

{(Xi ,Yi)}ni=1 Pn Γ(Pn) Learner f

Y → X Inferrer Ŷ = f̂ (X)

∙ Minimax learning: choose f̂ = argmin
f

max
P∈Γ(Pn)

EP(l(Y , Ŷ))
Γ(Pn): ambiguity set around Pn, e.g.,

é Set of pmfs with same 1st, 2nd moments as Pn (Farnia–Tse 2016)

é f -divergence, Wasserstein ball (Namkoong–Duchi 2017, Lee–Raginsky 2017)
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∙ Minimax learning: choose f̂ = argmin
f

max
P∈Γ(Pn)

EP(l(Y , Ŷ))
Γ(Pn): ambiguity set around Pn, e.g.,

é Set of pmfs with same 1st, 2nd moments as Pn (Farnia–Tse 2016)

é f -divergence, Wasserstein ball (Namkoong–Duchi 2017, Lee–Raginsky 2017)∙ If X ,Y discrete, Γ convex, closed (Farnia–Tse 2016):

é First find p∗ = argmax
p∈Γ(pn)

min
f

Ep(l(Y , Ŷ)), use it to find f̂ = argmin
f

Ep∗(l(Y , Ŷ))
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Minimax learning

{(Xi ,Yi)}ni=1 Pn Γ(Pn) Learner f

Y → X Inferrer Ŷ = f̂ (X)

∙ Minimax learning: choose f̂ = argmin
f

max
P∈Γ(Pn)

EP(l(Y , Ŷ))
Γ(Pn): ambiguity set around Pn, e.g.,

é Set of pmfs with same 1st, 2nd moments as Pn (Farnia–Tse 2016)

é f -divergence, Wasserstein ball (Namkoong–Duchi 2017, Lee–Raginsky 2017)∙ If X ,Y discrete, Γ convex, closed (Farnia–Tse 2016):

é First find p∗ = argmax
p∈Γ(pn)

min
f

Ep(l(Y , Ŷ)), use it to find f̂ = argmin
f

Ep∗(l(Y , Ŷ))
é Recovers linear/logistic regression for suitable l , Γ
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Minimax learning for distributed inference

{(Xi ,Yi)}ni=1 Pn Γ(Pn) Learner (m, f )

Y → X
M ∈ {0, 1}∗

Mobile Cloud Ŷ = f (m)
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Minimax learning for distributed inference

{(Xi ,Yi)}ni=1 Pn Γ(Pn) Learner (m, f )

Y → X
M ∈ {0, 1}∗

Mobile Cloud Ŷ = f (m)

∙ Assume common randomness W available between cloud/mobile∙ Mobile maps every (x, w) into index m(x, w)∙ Cloud maps (m, w) into an estimate ŷ = f (m, w)∙ Let T be the length of M

El Gamal (Stanford University) Functional Representation 23 / 32



Minimax learning for distributed inference

{(Xi ,Yi)}ni=1 Pn Γ(Pn) Learner (m, f )

Y → X
M ∈ {0, 1}∗

Mobile Cloud Ŷ = f (m)
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Minimax learning for distributed inference

{(Xi ,Yi)}ni=1 Pn Γ(Pn) Learner (m, f )

Y → X
M ∈ {0, 1}∗

Mobile Cloud Ŷ = f (m)

∙ Let T be the length of M∙ Minimax risk-rate cost: L∗λ = inf
m, f

sup
P∈Γ

�EP(l(Y , Ŷ)) + λ EP(T)�
Theorem (Li–Wu–Özgür–EG 2018)

Let Γ be convex, then

L∗λ ≥ inf
P̂Ŷ |X

sup
P∈Γ

�EP(l(Y , Ŷ)) + λI(X ; Ŷ)�
L∗λ < inf

P̂Ŷ |X

sup
P∈Γ

�EP(l(Y , Ŷ)) + λ(I(X ; Ŷ) + 2 log(I(X ; Ŷ) + 1) + 6)�
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Proof outline of upper bound

Theorem (Li–Wu–Özgür–EG 2018)

Let Γ be convex, then

L∗λ < inf
P̂Ŷ |X

sup
P∈Γ

�EP(l(Y , Ŷ)) + λ(I(X ; Ŷ) + 2 log(I(X ; Ŷ) + 1) + 6)�

∙ For Γ = {P}, problem reduces to one-shot noisy lossy compression

Proof essentially same as for one-shot lossy compression via SFRL,

L∗λ < inf
P̂Ŷ |X

�E(l(Y , Ŷ)) + λ(I(X ; Ŷ) + log(I(X ; Ŷ) + 1) + 5)�
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Proof outline of upper bound

Theorem (Li–Wu–Özgür–EG 2018)

Let Γ be convex, then

L∗λ < inf
P̂Ŷ |X

sup
P∈Γ

�EP(l(Y , Ŷ)) + λ(I(X ; Ŷ) + 2 log(I(X ; Ŷ) + 1) + 6)�

∙ For general Γ, we need refined version of SFRL:

For PŶ |X , P̃Ŷ , there exists r.v. W , two functions k(x, w) ∈ ℕ, ŷ(k , w):
ŷ(k(x ,W),W) ∼ PŶ|X

E(log k(x ,W)) ≤ D(PŶ |X(.|x)| |P̃Ŷ ) + 1.6

∙ Encode K using Elias (1975) codes: E(T) ≤ E(logK) + 2 log(E(logK) + 1) + 1∙ Rest of proof is technical, see details in (Li–Wu–Özgür–EG 2018)
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Principle of max risk-information cost

∙ Minimax risk-rate cost: L∗λ = inf
f ,m

sup
P∈Γ

�Ep(l(Y , Ŷ)) + λ Ep(T)�
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El Gamal (Stanford University) Functional Representation 25 / 32



Principle of max risk-information cost

∙ Minimax risk-rate cost: L∗λ = inf
f ,m

sup
P∈Γ
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Principle of max risk-information cost

∙ Minimax risk-rate cost: L∗λ = inf
f ,m

sup
P∈Γ

�Ep(l(Y , Ŷ)) + λ Ep(T)�∙ Minimax risk-information cost: L̄∗λ = inf
PŶ|X

sup
P∈Γ

�E(l(Y , Ŷ)) + λI(X ; Ŷ)�∙ If X ,Y , Ŷ are finite, Γ convex and closed, by Sion’s theorem:

L̄∗λ = max
p∈Γ

min
pŶ |X

�E(l(Y , Ŷ)) + λI(X ; Ŷ)�
∙ To design robust descriptor-estimator pair that works for every p ∈ Γ,

é First find: p∗ = argmax
p∈Γ

min
pŶ |X

�E(l(Y , Ŷ)) + λI(X ; Ŷ)�
é Then find: p∗

Ŷ|X
= argmin

pŶ|X

�Ep∗(l(Y , Ŷ) + λIp∗(X ; Ŷ)�
∙ Extends maximum conditional entropy principle in (Farnia–Tse 2016)
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Linear regression

∙ Let X ∈ ℝd, Y , Ŷ ∈ ℝ, l(y, ŷ) = (y − ŷ)2, E(X) = 0, E(Y) = 0

Γ = {PX,Y : E(X) = 0, E(Y) = 0, ΣX , CXY , same as Pn}
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Γ = {PX,Y : E(X) = 0, E(Y) = 0, ΣX , CXY , same as Pn}∙ Minimax solution: P∗
X,Y Gaussian with same mean, covariance as Pn,

Ŷ = ®a ⋅ C t
XYΣ

−1
X
X + Z if a > 0,

0 otherwise

L̃∗λ = .>Fσ2Y − C t
XYΣ

−1
X
CXY − λ

2
log e(1 − a) if a > 0,

σ2Y otherwise,

a = 1 − λ log e

2C t
XYΣ

−1
X
CXY

, Z ∼ N�0, aλ log e/2� independent of X
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σ2Y otherwise,

a = 1 − λ log e
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XYΣ
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CXY

, Z ∼ N�0, aλ log e/2� independent of X
∙ λ = 0 (no rate constraint) ⇒ linear regression (Farnia–Tse 2016)
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Ŷ = ®a ⋅ C t
XYΣ
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X + Z if a > 0,

0 otherwise

L̃∗λ = .>Fσ2Y − C t
XYΣ

−1
X
CXY − λ

2
log e(1 − a) if a > 0,

σ2Y otherwise,

a = 1 − λ log e

2C t
XYΣ

−1
X
CXY

, Z ∼ N�0, aλ log e/2� independent of X
∙ λ = 0 (no rate constraint) ⇒ linear regression (Farnia–Tse 2016)∙ Straightforward estimate-compress scheme optimal:

é Estimate: Compute MMSE estimate of Y given X

é Compress: Scale MMSE estimate and add Z to obtain Ŷ
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Classification example

X

.6666>6666F

X1 ∼ Unif(Y1)

X2 ∼ Unif(Y2)
|Yi | = ki , i = 1, 2, q2 = 1 − q1

q1

q2

Y

∙ Let Y = Ŷ = Y1 ∪ Y2, Y1 ∩ Y2 = , |Y1| = k1, |Y2| = k2; l(y, ŷ) = 1{ ŷ ̸=y};

Γ = {P}, P: X = (X1 , X2) ∼ Unif [Y1 × Y2], Y = X1 w.p. q1 or X2 w.p. q2 = 1 − q1
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Classification example

X

.6666>6666F

X1 ∼ Unif(Y1)

X2 ∼ Unif(Y2)
|Yi | = ki , i = 1, 2, q2 = 1 − q1

q1

q2

Y

∙ If q1 > q2, MAP estimate is Ŷ = X1
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Classification example

X

.6666>6666F

X1 ∼ Unif(Y1)

X2 ∼ Unif(Y2)
|Yi | = ki , i = 1, 2, q2 = 1 − q1

q1

q2

Y

∙ Minimum risk-information cost: Let a1 = 2λ
−1q1 + k1 − 1, a2 = 2λ

−1q2 + k2 − 1,

L̄∗λ = 1 − λ logmax �a1/k1 , a2/k2�, (∗)
If a1/k1 > a2/k2 , Ŷ = ®X1 w.p. a−11 2λ

−1q1 ,

∼ Unif(Y1\{x1}) w.p. a−11

If a1/k1 ≤ a2/k2 , exchange 1 and 2 in above
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|Yi | = ki , i = 1, 2, q2 = 1 − q1

q1

q2

Y

∙ Minimum risk-information cost: Let a1 = 2λ
−1q1 + k1 − 1, a2 = 2λ

−1q2 + k2 − 1,

L̄∗λ = 1 − λ logmax �a1/k1 , a2/k2�, (∗)
If a1/k1 > a2/k2 , Ŷ = ®X1 w.p. a−11 2λ

−1q1 ,

∼ Unif(Y1\{x1}) w.p. a−11

If a1/k1 ≤ a2/k2 , exchange 1 and 2 in above∙ Comparison to estimate-compress: If q1 > q2, MAP estimate Ŷ = X1

é Estimate-compress: Set Ŷ to compressed X1 or pick random y ∈ Y2,

L̄λ = 1 − λ logmax �a1/k1 , 2λ−1q2k−12 � (∗∗)
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X2 ∼ Unif(Y2)
|Yi | = ki , i = 1, 2, q2 = 1 − q1

q1

q2

Y

∙ Minimum risk-information cost: Let a1 = 2λ
−1q1 + k1 − 1, a2 = 2λ

−1q2 + k2 − 1,

L̄∗λ = 1 − λ logmax �a1/k1 , a2/k2�, (∗)
If a1/k1 > a2/k2 , Ŷ = ®X1 w.p. a−11 2λ

−1q1 ,

∼ Unif(Y1\{x1}) w.p. a−11

If a1/k1 ≤ a2/k2 , exchange 1 and 2 in above∙ Comparison to estimate-compress: If q1 > q2, MAP estimate Ŷ = X1

é Estimate-compress: Set Ŷ to compressed X1 or pick random y ∈ Y2,

L̄λ = 1 − λ logmax �a1/k1 , 2λ−1q2k−12 � (∗∗)
é If k1 ≫ k2, optimal scheme is to pick random y ∈ Y2 and (∗∗) can be >> (∗)
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Summary

∙ Strong functional representation lemma (SFRL)

é H(Y |Z) is between I and I(X ;Y) + log I(X ;Y)
é Poisson construction of Z , 
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é Poisson construction of Z , ∙ Applications of SFRL:

é Channel simulation with common randomness

é One-shot lossy compression

é Minimax learning for distributed inference

Estimate–compress is not optimal in general
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Summary

∙ Strong functional representation lemma (SFRL)

é H(Y |Z) is between I and I(X ;Y) + log I(X ;Y)
é Poisson construction of Z , ∙ Applications of SFRL:

é Channel simulation with common randomness

é One-shot lossy compression

é Minimax learning for distributed inference

Estimate–compress is not optimal in general

é Other applications:

Multiple description coding, Gray–Wyner system, Gelfand–Pinsker
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Thank you!
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