Functional Representation of Random Variables and Applications

Abbas El Gamal

Stanford University

MIT LIDS, Fall 2018

Based mostly on joint work with Cheuk Ting Li

Lemma (see, e.g., EG-Kim (2011))

Lemma (see, e.g., EG-Kim (2011))

Lemma (see, e.g., EG-Kim (2011))

- Applications:
 - Broadcast channel (Hajek–Pursley 1979)
 - MAC with cribbing encoders (Willems-van der Meulen 1985)
 - ▶ Also see (EG-Kim 2011) for other applications

Lemma (see, e.g., EG-Kim (2011))

- Applications:
 - Broadcast channel (Hajek–Pursley 1979)
 - MAC with cribbing encoders (Willems-van der Meulen 1985)
 - ▶ Also see (EG-Kim 2011) for other applications
 - ► Entropic causal inference (Kocaoglu–Dimakis–Vishwanath–Hassibi 2017)

Lemma (see, e.g., EG-Kim (2011))

- Example: B_1, B_2, B_3, B_4 i.i.d. Bern(1/2), $X = (B_1, B_2, B_3)$, $Y = (B_2, B_3, B_4)$
 - $ightharpoonup Z_1 = B_4, \qquad Y = (B_2, B_3, Z_1) \quad (Z_1 \text{ part of } Y \text{ not in } X)$

Lemma (see, e.g., EG-Kim (2011))

- Example: B_1, B_2, B_3, B_4 i.i.d. Bern(1/2), $X = (B_1, B_2, B_3)$, $Y = (B_2, B_3, B_4)$
 - ▶ $Z_1 = B_4$, $Y = (B_2, B_3, Z_1)$ (Z_1 part of Y not in X)

Lemma (see, e.g., EG-Kim (2011))

- Example: B_1, B_2, B_3, B_4 i.i.d. Bern(1/2), $X = (B_1, B_2, B_3)$, $Y = (B_2, B_3, B_4)$
 - ▶ $Z_1 = B_4$, $Y = (B_2, B_3, Z_1)$ (Z_1 part of Y not in X)
- What Z is most informative about Y = q(X, Z)?

$$H(Y|Z_1) = 2 = I(X;Y), \quad H(Y|Z_2) = H(Y) = 3$$

Lemma (see, e.g., EG-Kim (2011))

Given (X,Y), there exists Z independent of X and function g(x,z) such that Y=g(X,Z)

- Example: B_1, B_2, B_3, B_4 i.i.d. Bern(1/2), $X = (B_1, B_2, B_3)$, $Y = (B_2, B_3, B_4)$
 - ▶ $Z_1 = B_4$, $Y = (B_2, B_3, Z_1)$ (Z_1 part of Y not in X)
- What Z is most informative about Y = g(X, Z)?

$$H(Y|Z_1) = 2 = I(X;Y), \quad H(Y|Z_2) = H(Y) = 3$$

• In general: $H(Y|Z) \ge I(X;Y)$:

$$H(Y|Z) = I(X;Y|Z)$$
 $(Y = g(X,Z))$
= $I(X;Y,Z)$ $(X \text{ and } Z \text{ independent})$
 $\geq I(X;Y)$

• Let $Z_1 \sim \operatorname{Bern}(p)$ be indep. of X, $Y = X \oplus Z_1$

• Let $Z_2 = 1, 2, 3$ w.p. p, 1 - 2p, p, respectively, indep. of X

- Can show: $\min_{Z,g} H(Y|Z) = 1 2p$, i.e., second construction is optimal
- But 1 2p > 1 H(p) = I(X; Y) (cannot always achieve I lower bound)

Strong functional representation lemma (SFRL) (Li-EG 2018)

$$I(X; Y) \le H(Y|Z) < I(X; Y) + \log(I(X; Y) + 1) + 4$$

Strong functional representation lemma (SFRL) (Li-EG 2018)

$$I(X; Y) \le H(Y|Z) < I(X; Y) + \log(I(X; Y) + 1) + 4$$

- Tighter and more general bound on rate for one-shot channel simulation than in (Harsha et al. 2010), (Braverman–Garg 2014)
- Provides simple achievability results for several coding setups

Strong functional representation lemma (SFRL) (Li-EG 2018)

$$I(X; Y) \le H(Y|Z) < I(X; Y) + \log(I(X; Y) + 1) + 4$$

- Tighter and more general bound on rate for one-shot channel simulation than in (Harsha et al. 2010), (Braverman–Garg 2014)
- Provides simple achievability results for several coding setups
- Upper bound can be quite loose, e.g., for binary example with p = 0.11,
 - I(X; Y) = 0.5, min H(Y|Z) = 0.78, upper bound = 4.08496

Strong functional representation lemma (SFRL) (Li-EG 2018)

$$I(X; Y) \le H(Y|Z) < I(X; Y) + \log(I(X; Y) + 1) + 4$$

- Tighter and more general bound on rate for one-shot channel simulation than in (Harsha et al. 2010), (Braverman–Garg 2014)
- Provides simple achievability results for several coding setups
- Upper bound can be quite loose, e.g., for binary example with p = 0.11,
 - I(X; Y) = 0.5, min H(Y|Z) = 0.78, upper bound = 4.08496
- For $(X, Y) = (X^n, Y^n)$ i.i.d.: $(1/n)H(Y^n|Z_n) \le I(X; Y) + O(\log n/n) \approx I(X; Y)$

Strong functional representation lemma (SFRL) (Li-EG 2018)

$$I(X; Y) \le H(Y|Z) < I(X; Y) + \log(I(X; Y) + 1) + 4$$

- Tighter and more general bound on rate for one-shot channel simulation than in (Harsha et al. 2010), (Braverman–Garg 2014)
- Provides simple achievability results for several coding setups
- Upper bound can be quite loose, e.g., for binary example with p = 0.11,
 - I(X; Y) = 0.5, min H(Y|Z) = 0.78, upper bound = 4.08496
- For $(X, Y) = (X^n, Y^n)$ i.i.d.: $(1/n)H(Y^n|Z_n) \le I(X; Y) + O(\log n/n) \approx I(X; Y)$
- There are examples where log term is necessary, SFRL tight within 5 bits

Back to doubly symmetric binary r.v.s example

• Recall optimal Z_2 construction for example

$$Y q = 1 - p, \ p \in (0, 0.5)$$

Back to doubly symmetric binary r.v.s example

- Recall optimal Z_2 construction for example
- Can equivalently let Z ~ Unif[0, 1], and:

For
$$X=0$$
, set $y=0$ if $\frac{z}{q} \le \frac{1-z}{p}$; for $X=1$, set $y=0$ if $\frac{z}{p} \le \frac{1-z}{q}$

Back to doubly symmetric binary r.v.s example

- Recall optimal Z_2 construction for example
- Can equivalently let $Z \sim \text{Unif}[0, 1]$, and:

For
$$X=0$$
, set $y=0$ if $\frac{z}{q} \leq \frac{1-z}{p}$; for $X=1$, set $y=0$ if $\frac{z}{p} \leq \frac{1-z}{q}$

• In general for $|\mathcal{Y}| = 2$, optimal construction is $Z \sim \text{Unif}[0,1]$ and:

$$y = g(x, z) = \operatorname{argmin} \left\{ \frac{z}{p_{Y|X}(0|x)}, \frac{1-z}{p_{Y|X}(1|x)} \right\}$$

- Let $\mathcal{Y} = \{1, 2, ..., l\}$
- Take $Z = (Z_1, Z_2, ..., Z_l)$ i.i.d. Exp(1) r.v.s independent of X, set

$$y = g(x, z) = \underset{y'}{\operatorname{argmin}} \frac{Z_{y'}}{p_{Y|X}(y'|x)}$$

- Let $\mathcal{Y} = \{1, 2, ..., l\}$
- Take $Z = (Z_1, Z_2, ..., Z_l)$ i.i.d. Exp(1) r.v.s independent of X, set

$$y = g(x, z) = \underset{y'}{\operatorname{argmin}} \frac{Z_{y'}}{p_{Y|X}(y'|x)}$$

$$P\{\underset{y'}{\operatorname{argmin}} \operatorname{Exp}(p_{Y|X}(y'|x)) = y\} = p_{Y|X}(y|x) \Rightarrow g(x, Z) \sim p_{Y|X}(.|x)$$

- Let $\mathcal{Y} = \{1, 2, ..., l\}$
- Take $Z = (Z_1, Z_2, ..., Z_l)$ i.i.d. Exp(1) r.v.s independent of X, set

$$y = g(x, z) = \underset{y'}{\operatorname{argmin}} \frac{Z_{y'}}{p_{Y|X}(y'|x)}$$

• Let $Z' = (Z'_1, \dots, Z'_l)$, where $Z'_y = Z_y / \sum_{y'} Z_{y'}$, use above construction of g

- Let $\mathcal{Y} = \{1, 2, ..., l\}$
- Take $Z = (Z_1, Z_2, ..., Z_l)$ i.i.d. Exp(1) r.v.s independent of X, set

$$y = g(x, z) = \underset{y'}{\operatorname{argmin}} \frac{Z_{y'}}{p_{Y|X}(y'|x)}$$

- Let $Z' = (Z'_1, \dots, Z'_l)$, where $Z'_y = Z_y / \sum_{y'} Z_{y'}$, use above construction of g
- That is, pick Z uniform over probability simplex in $\mathbb{R}^{|\mathcal{Y}|-1}$

• Let T_1, T_2, \ldots be arrival times of Poisson process with $\lambda = 1$, indep. of X

- Let T_1, T_2, \ldots be arrival times of Poisson process with $\lambda = 1$, indep. of X
- Let $\tilde{Y}_1, \tilde{Y}_2, \ldots$ be i.i.d. $\sim P_Y$ indep. of T_1, T_2, \ldots and X

- Let T_1, T_2, \ldots be arrival times of Poisson process with $\lambda = 1$, indep. of X
- Let $\tilde{Y}_1, \tilde{Y}_2, \ldots$ be i.i.d. $\sim P_Y$ indep. of T_1, T_2, \ldots and X
- Set $Z = \{(T_i, \tilde{Y}_i)\}$ (marked PP with intensity measure $\mu \times P_Y$)

- Let T_1, T_2, \ldots be arrival times of Poisson process with $\lambda = 1$, indep. of X
- Let $\tilde{Y}_1, \tilde{Y}_2, \ldots$ be i.i.d. $\sim P_Y$ indep. of T_1, T_2, \ldots and X
- Set $Z = \{(T_i, \tilde{Y}_i)\}$ (marked PP with intensity measure $\mu \times P_Y$), and

$$Y = g(x, Z) = \tilde{Y}_{k(x,Z)}$$
, where $k(x, Z) = \underset{i}{\operatorname{argmin}} t_i \cdot \frac{d P_Y}{d P_{Y|X}(.|x)} (\tilde{Y}_i)$

Example

• Let $Y \sim \text{Unif}[0, 1]$, $Y | \{X = x\} \sim \text{Unif}[x, 1 - x]$, $x \in [0, 1/2]$, hence

$$k(x, z) = \underset{i}{\operatorname{argmin}} t_i \cdot \frac{f_Y(\tilde{y}_i)}{f_{Y|X}(\tilde{y}_i|x)} \text{ for } \tilde{y}_i \in [x, 1 - x]$$
$$= \underset{i}{\operatorname{argmin}} t_i \cdot (1 - 2x) \text{ for } \tilde{y}_i \in [x, 1 - x]$$

Example

• Let $Y \sim \text{Unif}[0, 1]$, $Y | \{X = x\} \sim \text{Unif}[x, 1 - x]$, $x \in [0, 1/2]$, hence

$$k(x, z) = \underset{i}{\operatorname{argmin}} t_i \cdot \frac{f_Y(\tilde{y}_i)}{f_{Y|X}(\tilde{y}_i|x)} \text{ for } \tilde{y}_i \in [x, 1 - x]$$

$$= \underset{i}{\operatorname{argmin}} t_i \cdot (1 - 2x) \text{ for } \tilde{y}_i \in [x, 1 - x]$$

$$= \underset{i}{\operatorname{argmin}} t_i \text{ for } \tilde{y}_i \in [x, 1 - x],$$

Example

• Let $Y \sim \text{Unif}[0,1]$, $Y | \{X = x\} \sim \text{Unif}[x, 1-x]$, $x \in [0, 1/2]$, hence

$$k(x, z) = \underset{i}{\operatorname{argmin}} t_i \cdot \frac{f_Y(\tilde{y}_i)}{f_{Y|X}(\tilde{y}_i|x)} \text{ for } \tilde{y}_i \in [x, 1 - x]$$

$$= \underset{i}{\operatorname{argmin}} t_i \cdot (1 - 2x) \text{ for } \tilde{y}_i \in [x, 1 - x]$$

$$= \underset{i}{\operatorname{argmin}} t_i \text{ for } \tilde{y}_i \in [x, 1 - x],$$

$$y = \tilde{y}_k$$

Strong functional representation lemma (Li-EG 2018)

Given (X,Y), there exists Z independent of X and function g(x,z) such that Y=g(X,Z), and

$$I(X; Y) \le H(Y|Z) < I(X; Y) + \log(I(X; Y) + 1) + 4$$

• Poisson construction: $Z = \{(T_i, \tilde{Y}_i)\}$ marked PP with intensity measure $\mu \times P_Y$,

$$Y = g(x, Z) = \tilde{Y}_{k(x,Z)}$$
, where $k(x, Z) = \underset{i}{\operatorname{argmin}} T_i \cdot \frac{d P_Y}{d P_{Y|Y}(\cdot|x)} (\tilde{Y}_i)$

Strong functional representation lemma (Li-EG 2018)

Given (X,Y), there exists Z independent of X and function g(x,z) such that Y=g(X,Z), and

$$I(X; Y) \le H(Y|Z) < I(X; Y) + \log(I(X; Y) + 1) + 4$$

• Poisson construction: $Z = \{(T_i, \tilde{Y}_i)\}$ marked PP with intensity measure $\mu \times P_Y$,

$$Y = g(x, Z) = \tilde{Y}_{k(x, Z)}$$
, where $k(x, Z) = \underset{i}{\operatorname{argmin}} T_i \cdot \frac{d P_Y}{d P_{Y|X}(\cdot|x)} (\tilde{Y}_i)$

• $g(x, Z) \sim P_{Y|X}(\cdot|x)$: Consider mapping $(t, y) \mapsto (t \cdot d P_Y / d P_{Y|X}(\cdot|x)(y), y)$

Strong functional representation lemma (Li-EG 2018)

Given (X,Y), there exists Z independent of X and function g(x,z) such that Y=g(X,Z), and

$$I(X; Y) \le H(Y|Z) < I(X; Y) + \log(I(X; Y) + 1) + 4$$

• Poisson construction: $Z = \{(T_i, \tilde{Y}_i)\}$ marked PP with intensity measure $\mu \times P_Y$,

$$Y = g(x, Z) = \tilde{Y}_{k(x, Z)}$$
, where $k(x, Z) = \underset{i}{\operatorname{argmin}} T_i \cdot \frac{d P_Y}{d P_{Y|X}(\cdot|x)} (\tilde{Y}_i)$

• $g(x,Z) \sim \mathsf{P}_{Y|X}(\cdot|x)$: Consider mapping $(t,y) \mapsto (t \cdot d\,\mathsf{P}_Y\,/d\,\mathsf{P}_{Y|X}(\cdot|x)(y),y)$ By the mapping theorem, $\{(T_i \cdot d\,\mathsf{P}_Y\,/d\,\mathsf{P}_{Y|X}(\cdot|x)(\tilde{Y}_i),\,\tilde{Y}_i)\}$ is PP with intensity measure $\mu \times \mathsf{P}_{Y|X}$

Strong functional representation lemma (Li-EG 2018)

Given (X,Y), there exists Z independent of X and function g(x,z) such that Y=g(X,Z), and

$$I(X; Y) \le H(Y|Z) < I(X; Y) + \log(I(X; Y) + 1) + 4$$

• Poisson construction: $Z = \{(T_i, \tilde{Y}_i)\}$ marked PP with intensity measure $\mu \times P_Y$,

$$Y = g(x, Z) = \tilde{Y}_{k(x, Z)}$$
, where $k(x, Z) = \underset{i}{\operatorname{argmin}} T_i \cdot \frac{d P_Y}{d P_{Y|X}(\cdot|x)} (\tilde{Y}_i)$

• $g(x,Z) \sim \mathsf{P}_{Y|X}(\cdot|x)$: Consider mapping $(t,y) \mapsto (t \cdot d\,\mathsf{P}_Y\,/d\,\mathsf{P}_{Y|X}(\cdot|x)(y),y)$ By the mapping theorem, $\{(T_i \cdot d\,\mathsf{P}_Y\,/d\,\mathsf{P}_{Y|X}(\cdot|x)(\tilde{Y}_i),\tilde{Y}_i)\}$ is PP with intensity measure $\mu \times \mathsf{P}_{Y|X}$

Hence,
$$\Theta = \min_{i} T_{i} \cdot \frac{d P_{Y}}{d P_{Y|X}(\cdot|x)} (\tilde{Y}_{i}) \sim \operatorname{Exp}(1), \ \tilde{Y}_{K} | \{X = x\} \sim P_{Y|X}(\cdot|x)$$

- Since Y is a function of Z and K: $H(Y|Z) \le H(K)$
- Proposition (max. H(K) for fixed $E(\log K)$): Let $K \in \mathbb{N}$, then

$$H(K) \le \mathsf{E}(\log K) + \log(\mathsf{E}(\log K) + 1) + 1$$

- Since Y is a function of Z and K: $H(Y|Z) \le H(K)$
- Proposition (max. H(K) for fixed $E(\log K)$): Let $K \in \mathbb{N}$, then

$$H(K) \le \mathsf{E}(\log K) + \log(\mathsf{E}(\log K) + 1) + 1$$

• To bound $E(\log K)$, first consider $E(\log K|X=x)$

Given $\{X = x, \Theta = \theta\}$, $\{(T_i \cdot d P_Y / d P_{Y|X}(\cdot | x)(\tilde{Y}_i), \tilde{Y}_i)\}_{i \neq K}$ is marked PP with intensity measure $\mu_{[\theta,\infty)} \times P_{Y|X}(\cdot | x)$

- Since Y is a function of Z and K: $H(Y|Z) \le H(K)$
- Proposition (max. H(K) for fixed $E(\log K)$): Let $K \in \mathbb{N}$, then

$$H(K) \le \mathsf{E}(\log K) + \log(\mathsf{E}(\log K) + 1) + 1$$

• To bound $E(\log K)$, first consider $E(\log K|X=x)$

Given $\{X = x, \Theta = \theta\}$, $\{(T_i \cdot d P_Y / d P_{Y|X}(\cdot | x)(\tilde{Y}_i), \tilde{Y}_i)\}_{i \neq K}$ is marked PP with intensity measure $\mu_{[\theta,\infty)} \times P_{Y|X}(\cdot | x)$

By mapping theorem for $(t, y) \mapsto (t \cdot d P_{Y|X}/d P_Y(\cdot|x)(y), y), \{(T_i, \tilde{Y}_i)\}_{i \neq K}$ is marked PP

- Since Y is a function of Z and K: $H(Y|Z) \le H(K)$
- Proposition (max. H(K) for fixed $E(\log K)$): Let $K \in \mathbb{N}$, then

$$H(K) \le \mathsf{E}(\log K) + \log(\mathsf{E}(\log K) + 1) + 1$$

• To bound $E(\log K)$, first consider $E(\log K|X=x)$

Given $\{X = x, \Theta = \theta\}$, $\{(T_i \cdot d P_Y / d P_{Y|X}(\cdot | x)(\tilde{Y}_i), \tilde{Y}_i)\}_{i \neq K}$ is marked PP with intensity measure $\mu_{[\theta,\infty)} \times P_{Y|X}(\cdot | x)$

By mapping theorem for $(t,y)\mapsto (t\cdot d\,\mathsf{P}_{Y|X}\,/d\,\mathsf{P}_Y(\cdot|x)(y),y),\,\{(T_i,\tilde{Y}_i)\}_{i\neq K}$ is marked PP

Hence, given $\{X = x, \Theta = \theta, \tilde{Y}_K = \tilde{y}\}, K - 1 \sim \text{Poisson}(\lambda(\tilde{y}))$

- Since Y is a function of Z and K: $H(Y|Z) \le H(K)$
- Proposition (max. H(K) for fixed $E(\log K)$): Let $K \in \mathbb{N}$, then

$$H(K) \le \mathsf{E}(\log K) + \log(\mathsf{E}(\log K) + 1) + 1$$

• To bound $E(\log K)$, first consider $E(\log K|X=x)$

Given $\{X = x, \Theta = \theta\}$, $\{(T_i \cdot d P_Y / d P_{Y|X}(\cdot | x)(\tilde{Y}_i), \tilde{Y}_i)\}_{i \neq K}$ is marked PP with intensity measure $\mu_{[\theta,\infty)} \times P_{Y|X}(\cdot | x)$

By mapping theorem for $(t,y)\mapsto (t\cdot d\,\mathsf{P}_{Y|X}\,/d\,\mathsf{P}_Y(\cdot|x)(y),y),\,\{(T_i,\tilde{Y}_i)\}_{i\neq K}$ is marked PP

Hence, given $\{X = x, \Theta = \theta, \tilde{Y}_K = \tilde{y}\}, K - 1 \sim \text{Poisson}(\lambda(\tilde{y}))$

It's not difficult to show: $\lambda(\tilde{y}) \le \theta \cdot d P_{Y|X}(\cdot|x)/d P_Y(\tilde{y})$

- Since Y is a function of Z and K: $H(Y|Z) \le H(K)$
- Proposition (max. H(K) for fixed $E(\log K)$): Let $K \in \mathbb{N}$, then

$$H(K) \le \mathsf{E}(\log K) + \log(\mathsf{E}(\log K) + 1) + 1$$

• To bound $E(\log K)$, first consider $E(\log K|X=x)$

Given $\{X = x, \Theta = \theta\}$, $\{(T_i \cdot d P_Y / d P_{Y|X}(\cdot | x)(\tilde{Y}_i), \tilde{Y}_i)\}_{i \neq K}$ is marked PP with intensity measure $\mu_{[\theta,\infty)} \times P_{Y|X}(\cdot | x)$

By mapping theorem for $(t,y)\mapsto (t\cdot d\,\mathsf{P}_{Y|X}\,/d\,\mathsf{P}_Y(\cdot|x)(y),y),\,\{(T_i,\tilde{Y}_i)\}_{i\neq K}$ is marked PP

Hence, given $\{X = x, \Theta = \theta, \tilde{Y}_K = \tilde{y}\}, K - 1 \sim \text{Poisson}(\lambda(\tilde{y}))$

It's not difficult to show: $\lambda(\tilde{y}) \le \theta \cdot d P_{Y|X}(\cdot|x)/d P_Y(\tilde{y})$

We can now show: $E(\log K | X = x) \le D(P_{Y|X}(\cdot | x) | | P_Y) + e^{-1} \log e + 1$

- Since Y is a function of Z and K: $H(Y|Z) \le H(K)$
- Proposition (max. H(K) for fixed $E(\log K)$): Let $K \in \mathbb{N}$, then

$$H(K) \le \mathsf{E}(\log K) + \log(\mathsf{E}(\log K) + 1) + 1$$

• To bound $E(\log K)$, first consider $E(\log K|X=x)$

Given $\{X = x, \Theta = \theta\}$, $\{(T_i \cdot d P_Y / d P_{Y|X}(\cdot | x)(\tilde{Y}_i), \tilde{Y}_i)\}_{i \neq K}$ is marked PP with intensity measure $\mu_{[\theta,\infty)} \times P_{Y|X}(.|x)$

By mapping theorem for $(t, y) \mapsto (t \cdot d P_{Y|X}/d P_Y(\cdot|x)(y), y), \{(T_i, \tilde{Y}_i)\}_{i \neq K}$ is marked PP

Hence, given $\{X = x, \Theta = \theta, \tilde{Y}_K = \tilde{y}\}, K - 1 \sim \text{Poisson}(\lambda(\tilde{y}))$

It's not difficult to show: $\lambda(\tilde{y}) \le \theta \cdot d P_{Y|X}(\cdot|x)/d P_Y(\tilde{y})$

We can now show: $E(\log K | X = x) \le D(P_{Y|X}(\cdot | x) | | P_Y) + e^{-1} \log e + 1$

ullet Taking expect. over X and substituting into Proposition complete proof

Applications of SFRL

- Upper bound on rate of one-shot (exact) channel simulation
- One-shot lossy compression
- Minimax learning for distributed inference (Li–Wu–Özgür–EG 2018)

Background on channel simulation

Shannon (1948) channel capacity theorem can be interpreted as:
 DMC with capacity C can simulate noiseless channel with capacity C

Background on channel simulation

Shannon (1948) channel capacity theorem can be interpreted as:
 DMC with capacity C can simulate noiseless channel with capacity C

Bennett–Shor–Smolin–Thapliyal (2002) asked the reverse question:
 Can noiseless channel with capacity C and common randomness simulate any DMC with capacity C?

Background on channel simulation

Shannon (1948) channel capacity theorem can be interpreted as:
 DMC with capacity C can simulate noiseless channel with capacity C

Bennett–Shor–Smolin–Thapliyal (2002) asked the reverse question:
 Can noiseless channel with capacity C and common randomness simulate any DMC with capacity C?

 Their motivation was to answer this question for entanglement-assisted quantum channels

- W unlimited common randomness; X arbitrary process; p(y|x) DMC
- Alice maps every (x^n, w) pair into an index $m(x^n, w) \in [1:2^{nR}]$
- Bob generates $\tilde{Y}^n(m(x^n, W), W) \sim q(y^n|x^n)$

- W unlimited common randomness; X arbitrary process; p(y|x) DMC
- Alice maps every (x^n, w) pair into an index $m(x^n, w) \in [1:2^{nR}]$
- Bob generates $\tilde{Y}^n(m(x^n, W), W) \sim q(y^n|x^n)$
- R is achievable if there exists sequence of simulation schemes such that

$$\lim_{n \to \infty} ||p(x^n)q(y^n|x^n) - p(x^n) \prod_{i=1}^n p_{Y|X}(y_i|x_i)||_{TV} = 0$$

• Optimal (approx.) simulation rate R_{ch-sim}^* is inf. over achievable rates

Theorem (Bennett-Shor-Smolin-Thapliyal 2002)

$$R_{\text{ch-sim}}^* = \max_{p(x)} I(X; Y)$$
 (capacity of DMC)

Hence reverse Shannon channel capacity theorem holds for DMC

Theorem (Bennett-Shor-Smolin-Thapliyal 2002)

$$R_{\text{ch-sim}}^* = \max_{p(x)} I(X; Y)$$
 (capacity of DMC)

- Hence reverse Shannon channel capacity theorem holds for DMC
- They also established partial results for certain quantum channels
- Follow on work (Cuff 2013, Bennett-Devetak-Harrow-Shor-Winter 2014)

• W unlimited common randomness; $X \sim P_X$, $P_{Y|X}$ given channel

- W unlimited common randomness; $X \sim P_X$, $P_{Y|X}$ given channel
- For each w, Alice uses prefix code to map each x into $m(x, w) \in \{0, 1\}^*$
- Bob generates $Y = y(m(x, W), W) \sim P_{Y|X}(.|x)$
- Let L be the length of the index M

- W unlimited common randomness; $X \sim P_X$, $P_{Y|X}$ given channel
- For each w, Alice uses prefix code to map each x into $m(x, w) \in \{0, 1\}^*$
- Bob generates $Y = y(m(x, W), W) \sim P_{Y|X}(.|x)$
- Let L be the length of the index M
- Optimal average simulation rate is $\bar{R}^*_{ch-cim} = \inf_{generators} E(L)$

Theorem (Harsha–Jain–McAllester–Radhakrishnan 2010)

For discrete $X \sim p(x)$, and DMC p(y|x),

$$I(X;Y) \leq \bar{R}^*_{\text{ch-sim}} \leq I(X;Y) + (1+\epsilon)\log(I(X;Y)+1) + c_\epsilon$$

- More generally they showed for any x: $\bar{R}^*_{\text{ch-sim}} \leq C + (1+\epsilon) \log(C+1) + c_{\epsilon}$
- Proof uses rejection sampling and is quite involved

Theorem (Li-EG 2018)

For $X \sim P_X$, and general memoryless channel $P_{Y|X}$,

$$I(X; Y) \le \bar{R}_{ch-sim}^* < I(X; Y) + \log(I(X; Y) + 1) + 5$$

- Proof of upper bound uses SFRL
- Can be extended to arbitrary x case

• By SFRL, there exists W indep. of X such that Y = g(X, W), and $H(Y|W) < I(X;Y) + \log(I(X;Y) + 1) + 4$

• By SFRL, there exists W indep. of X such that Y=g(X,W), and

$$H(Y|W) < I(X;Y) + \log(I(X;Y)+1) + 4$$

- For each w, map y(x, w) into m(x, w) using Huffman code for $p_{Y|W}(y|w)$
- Codes $\{y(x, w), m(x, w)\}$ are provided to Alice and Bob

• By SFRL, there exists W indep. of X such that Y = g(X, W), and

$$H(Y|W) < I(X;Y) + \log(I(X;Y) + 1) + 4$$

- For each w, map y(x, w) into m(x, w) using Huffman code for $p_{Y|W}(y|w)$
- Codes $\{y(x, w), m(x, w)\}$ are provided to Alice and Bob
- Given (x, w), Alice computes y(x, w); given (m, w), Bob recovers y

• By SFRL, there exists W indep. of X such that Y=g(X,W), and

$$H(Y|W) < I(X;Y) + \log(I(X;Y) + 1) + 4$$

- For each w, map y(x, w) into m(x, w) using Huffman code for $p_{Y|W}(y|w)$
- Codes $\{y(x, w), m(x, w)\}$ are provided to Alice and Bob
- Given (x, w), Alice computes y(x, w); given (m, w), Bob recovers y
- Hence, $\bar{R}_{ch-sim}^* \le E(L) < H(Y|W) + 1 < I(X;Y) + \log(I(X;Y) + 1) + 5$

• $X \sim P_X$, $\hat{\mathcal{X}}$ reproduction alphabet, $d(x, \hat{x}) \geq 0$ distortion measure

- $X \sim P_X$, $\hat{\mathcal{X}}$ reproduction alphabet, $d(x, \hat{x}) \geq 0$ distortion measure
- Alice maps each (x, w) into m(x, w); let L be length of M
- Bob maps each (m, w) into estimate $\hat{x}(m, w)$

- $X \sim P_X$, $\hat{\mathcal{X}}$ reproduction alphabet, $d(x, \hat{x}) \geq 0$ distortion measure
- Alice maps each (x, w) into m(x, w); let L be length of M
- Bob maps each (m, w) into estimate $\hat{x}(m, w)$
- (\bar{R}, D) is achievable if there exits code with $\bar{R} = \mathsf{E}(L), \; \mathsf{E}(d(X, \hat{X})) \leq D$
- Avg rate-dist. function $\bar{R}(D)$ is inf over all achievable \bar{R} : $\mathsf{E}(d(X,\hat{X})) \leq D$

• Avg rate-dist. function $\bar{R}(D)$ is inf over all achievable \bar{R} : $\mathsf{E}(d(X,\hat{X})) \leq D$

Theorem (Li-EG 2018)

$$R(D) \le \bar{R}(D) < R(D) + \log(R(D) + 1) + 5,$$

where $R(D) = \inf_{P_{\hat{X}|X}: E(d(X,\hat{X})) \le D} I(X;\hat{X})$ (rate-dist. function for asymptotic case)

• Let \hat{X} attain $I(X; \hat{X}) = R(D)$ and $E(d(X, \hat{X})) \leq D$

- Let \hat{X} attain $I(X; \hat{X}) = R(D)$ and $E(d(X, \hat{X})) \leq D$
- By SFRL, there exists W indep. of X s.t. $\hat{X} = g(X, W)$ and

$$H(\hat{X}|W) < I(X;\hat{X}) + \log(I(X;\hat{X}) + 1) + 4 = R(D) + \log(R(D) + 1) + 4$$
 (*)

• By Carathéadory's theorem, $|\mathcal{W}| \le 2$ suffices to satisfy (*), $\mathsf{E}(d(X,\hat{X})) \le D$

- Let \hat{X} attain $I(X; \hat{X}) = R(D)$ and $E(d(X, \hat{X})) \leq D$
- By SFRL, there exists W indep. of X s.t. $\hat{X} = g(X, W)$ and

$$H(\hat{X}|W) < I(X;\hat{X}) + \log(I(X;\hat{X}) + 1) + 4 = R(D) + \log(R(D) + 1) + 4$$
 (*)

- By Carathéadory's theorem, $|\mathcal{W}| \le 2$ suffices to satisfy (*), $\mathsf{E}(d(X,\hat{X})) \le D$
- For each $w \in \{1, 2\}$, use Huffman code to map \hat{x} into $m(\hat{x}, w) \in \{0, 1\}^*$
- Codes $\{\hat{x}(x, w), m(\hat{x}, w)\}$ are provided to Alice and Bob

- Let \hat{X} attain $I(X; \hat{X}) = R(D)$ and $E(d(X, \hat{X})) \leq D$
- By SFRL, there exists W indep. of X s.t. $\hat{X} = g(X, W)$ and

$$H(\hat{X}|W) < I(X;\hat{X}) + \log(I(X;\hat{X}) + 1) + 4 = R(D) + \log(R(D) + 1) + 4$$
 (*)

- By Carathéadory's theorem, $|\mathcal{W}| \le 2$ suffices to satisfy (*), $\mathsf{E}(d(X,\hat{X})) \le D$
- For each $w \in \{1, 2\}$, use Huffman code to map \hat{x} into $m(\hat{x}, w) \in \{0, 1\}^*$
- Codes $\{\hat{x}(x, w), m(\hat{x}, w)\}$ are provided to Alice and Bob
- Alice maps (x, w) into m
- Bob recovers $\hat{x}(x, w)$

- Let \hat{X} attain $I(X; \hat{X}) = R(D)$ and $E(d(X, \hat{X})) \leq D$
- By SFRL, there exists W indep. of X s.t. $\hat{X} = g(X, W)$ and

$$H(\hat{X}|W) < I(X;\hat{X}) + \log(I(X;\hat{X}) + 1) + 4 = R(D) + \log(R(D) + 1) + 4$$
 (*)

- By Carathéadory's theorem, $|\mathcal{W}| \le 2$ suffices to satisfy (*), $\mathsf{E}(d(X,\hat{X})) \le D$
- For each $w \in \{1, 2\}$, use Huffman code to map \hat{x} into $m(\hat{x}, w) \in \{0, 1\}^*$
- Codes $\{\hat{x}(x, w), m(\hat{x}, w)\}$ are provided to Alice and Bob
- Alice maps (x, w) into m
- Bob recovers $\hat{x}(x, w)$
- Hence, $\bar{R}(D) \le \mathsf{E}(L) < H(\hat{X}|W) + 1 < R(D) + \log(R(D) + 1) + 5$, $\mathsf{E}(d(X,\hat{X})) \le D$

Related work

- Pinkston (1967) studied variable-length finite blocklength lossy compression for i.i.d. source, per-letter distortion
- Zhang-Yang-Wei (1997) established similar order bound to ours for finite blocklength
- Kostina-Polyanskiy-Verdú (2015) studied variable length finite blocklength lossy compression with prob. of distortion constraint
- Our coding scheme resembles Song-Cuff-Poor (2016) likelihood encoder

Applications of SFRL

- Upper bound on rate of one-shot (exact) channel simulation
- One-shot lossy compression
- Minimax learning for distributed inference (Li-Wu-Özgür-EG 2018)

Supervised learning

- Risk function: $l(y, \hat{y})$, P_n empirical pmf of (X, Y), function class \mathcal{F}
- Empirical risk minimization: choose $\tilde{f} = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \mathsf{E}_{P_n}(l(Y, \hat{Y}))$

Minimax learning

$$\{(X_i,Y_i)\}_{i=1}^n \longrightarrow P_n \longrightarrow \Gamma(P_n) \longrightarrow \text{Learner} \longrightarrow f$$

$$Y \to X \longrightarrow \text{Inferrer} \longrightarrow \hat{Y} = \hat{f}(X)$$

- Minimax learning: choose $\hat{f} = \underset{f}{\operatorname{argmin}} \max_{P \in \Gamma(P_n)} \mathsf{E}_P(l(Y, \hat{Y}))$
 - $\Gamma(P_n)$: ambiguity set around P_n , e.g.,
 - ▶ Set of pmfs with same 1st, 2nd moments as P_n (Farnia–Tse 2016)
 - ▶ f-divergence, Wasserstein ball (Namkoong–Duchi 2017, Lee–Raginsky 2017)

Minimax learning

$$\{(X_i,Y_i)\}_{i=1}^n \longrightarrow P_n \longrightarrow \Gamma(P_n) \longrightarrow \text{Learner} \longrightarrow f$$

$$Y \to X \longrightarrow \text{Inferrer} \longrightarrow \hat{Y} = \hat{f}(X)$$

- Minimax learning: choose $\hat{f} = \underset{f}{\operatorname{argmin}} \max_{P \in \Gamma(P_n)} \mathsf{E}_P(l(Y, \hat{Y}))$
 - $\Gamma(P_n)$: ambiguity set around P_n , e.g.,
 - ▶ Set of pmfs with same 1st, 2nd moments as P_n (Farnia–Tse 2016)
 - ► f-divergence, Wasserstein ball (Namkoong–Duchi 2017, Lee–Raginsky 2017)
- If X, Y discrete, Γ convex, closed (Farnia–Tse 2016):
 - First find $p^* = \operatorname*{argmax\,min}_{p \in \Gamma(p_n)} \mathsf{E}_p(l(Y,\hat{Y}))$, use it to find $\hat{f} = \operatorname*{argmin}_{f} \mathsf{E}_{p^*}(l(Y,\hat{Y}))$

Minimax learning

$$\{(X_i,Y_i)\}_{i=1}^n \longrightarrow P_n \longrightarrow \Gamma(P_n) \longrightarrow \text{Learner} \longrightarrow f$$

$$Y \to X \longrightarrow \text{Inferrer} \longrightarrow \hat{Y} = \hat{f}(X)$$

- Minimax learning: choose $\hat{f} = \underset{f}{\operatorname{argmin}} \max_{P \in \Gamma(P_n)} \mathbb{E}_P(l(Y, \hat{Y}))$
 - $\Gamma(P_n)$: ambiguity set around P_n , e.g.,
 - ▶ Set of pmfs with same 1st, 2nd moments as P_n (Farnia–Tse 2016)
 - ► f-divergence, Wasserstein ball (Namkoong–Duchi 2017, Lee–Raginsky 2017)
- If X, Y discrete, Γ convex, closed (Farnia–Tse 2016):
 - First find $p^* = \operatorname*{argmax\ min}_{p \in \Gamma(p_n)} \mathsf{E}_p(l(Y,\hat{Y}))$, use it to find $\hat{f} = \operatorname*{argmin}_{f} \mathsf{E}_{p^*}(l(Y,\hat{Y}))$
 - ▶ Recovers linear/logistic regression for suitable l, Γ

$$\{(X_i,Y_i)\}_{i=1}^n \longrightarrow P_n \longrightarrow \Gamma(P_n) \longrightarrow \text{Learner} \longrightarrow (m,f)$$

$$Y \to X \longrightarrow \text{Mobile} \xrightarrow{M \in \{0,1\}^*} \text{Cloud} \longrightarrow \hat{Y} = f(m)$$

$$\{(X_i,Y_i)\}_{i=1}^n \longrightarrow P_n \longrightarrow \Gamma(P_n) \longrightarrow \text{Learner} \longrightarrow (m,f)$$

$$Y \to X \longrightarrow \text{Mobile} \xrightarrow{M \in \{0,1\}^*} \text{Cloud} \longrightarrow \hat{Y} = f(m)$$

- Assume common randomness W available between cloud/mobile
- Mobile maps every (x, w) into index m(x, w)
- Cloud maps (m, w) into an estimate $\hat{y} = f(m, w)$
- Let T be the length of M

$$\{(X_i,Y_i)\}_{i=1}^n \longrightarrow P_n \longrightarrow \Gamma(P_n) \longrightarrow \text{Learner} \longrightarrow (m,f)$$

$$Y \to X \longrightarrow \text{Mobile} \xrightarrow{M \in \{0,1\}^*} \text{Cloud} \longrightarrow \hat{Y} = f(m)$$

- Assume common randomness W available between cloud/mobile
- Mobile maps every (x, w) into index m(x, w)
- Cloud maps (m, w) into an estimate $\hat{y} = f(m, w)$
- Let T be the length of M
- Minimax risk-rate cost: $L_{\lambda}^* = \inf_{\substack{m,f \ p \in \Gamma}} \left[E_p(l(Y, \hat{Y})) + \lambda E_p(T) \right]$

$$\{(X_i,Y_i)\}_{i=1}^n \longrightarrow P_n \longrightarrow \Gamma(P_n) \longrightarrow \text{Learner} \longrightarrow (m,f)$$

$$Y \to X \longrightarrow \text{Mobile} \xrightarrow{M \in \{0,1\}^*} \text{Cloud} \longrightarrow \hat{Y} = f(m)$$

- Let T be the length of M
- Minimax risk-rate cost: $L_{\lambda}^* = \inf_{m,f} \sup_{P \in \Gamma} \left[E_P(l(Y, \hat{Y})) + \lambda E_P(T) \right]$

Theorem (Li-Wu-Özgür-EG 2018)

Let Γ be convex, then

$$\begin{split} L_{\lambda}^* &\geq \inf_{\hat{P}_{\hat{Y}|X}} \sup_{P \in \Gamma} \left[\, \mathsf{E}_P(l(Y,\hat{Y})) + \lambda I(X;\hat{Y}) \right] \\ L_{\lambda}^* &< \inf_{\hat{P}_{\hat{Y}|X}} \sup_{P \in \Gamma} \left[\, \mathsf{E}_P(l(Y,\hat{Y})) + \lambda (I(X;\hat{Y}) + 2\log(I(X;\hat{Y}) + 1) + 6) \right] \end{split}$$

Proof outline of upper bound

Theorem (Li-Wu-Özgür-EG 2018)

Let Γ be convex, then

$$L_{\lambda}^* < \inf_{\hat{P}_{\hat{\gamma}|X}} \sup_{P \in \Gamma} \left[\, \mathsf{E}_P(l(Y,\hat{Y})) + \lambda(I(X;\hat{Y}) + 2\log(I(X;\hat{Y}) + 1) + 6) \right]$$

• For $\Gamma = \{P\}$, problem reduces to one-shot noisy lossy compression Proof essentially same as for one-shot lossy compression via SFRL,

$$L_{\lambda}^* < \inf_{\hat{P}_{\mathcal{C}_{1,V}}} \left[E(l(Y, \hat{Y})) + \lambda(I(X; \hat{Y}) + \log(I(X; \hat{Y}) + 1) + 5) \right]$$

Proof outline of upper bound

Theorem (Li-Wu-Özgür-EG 2018)

Let Γ be convex, then

$$L_{\lambda}^* < \inf_{\hat{P}_{\hat{Y}|X}} \sup_{P \in \Gamma} \left[\, \mathsf{E}_P(l(Y,\hat{Y})) + \lambda(I(X;\hat{Y}) + 2\log(I(X;\hat{Y}) + 1) + 6) \right]$$

For general Γ, we need refined version of SFRL:

For $P_{\hat{Y}|X}$, $\tilde{P}_{\hat{Y}}$, there exists r.v. W, two functions $k(x, w) \in \mathbb{N}$, $\hat{y}(k, w)$:

$$\begin{split} \hat{y}(k(x,W),W) &\sim \mathsf{P}_{\hat{Y}|X} \\ \mathsf{E}(\log k(x,W)) &\leq D(\mathsf{P}_{\hat{Y}|X}(.|x)||\tilde{\mathsf{P}}_{\hat{Y}}) + 1.6 \end{split}$$

- Encode K using Elias (1975) codes: $E(T) \le E(\log K) + 2\log(E(\log K) + 1) + 1$
- Rest of proof is technical, see details in (Li-Wu-Özgür-EG 2018)

 $\bullet \ \, \mathsf{Minimax} \ \mathsf{risk-rate} \ \mathsf{cost:} \ \, L^*_{\lambda} = \inf_{f,m} \sup_{P \in \Gamma} \left(\, \mathsf{E}_p(l(Y,\hat{Y})) + \lambda \, \mathsf{E}_p(T) \right)$

- Minimax risk-rate cost: $L_{\lambda}^* = \inf_{f,m} \sup_{P \in \Gamma} \left(\mathsf{E}_p(l(Y, \hat{Y})) + \lambda \mathsf{E}_p(T) \right)$
- Minimax risk-information cost: $\bar{L}^*_{\lambda} = \inf_{P^*_{Y|X}} \sup_{P \in \Gamma} \left(\mathsf{E}(l(Y,\hat{Y})) + \lambda I(X;\hat{Y}) \right)$

- $\bullet \ \, \mathsf{Minimax} \ \mathsf{risk-rate} \ \mathsf{cost:} \ \, L^*_{\lambda} = \inf_{f,m} \sup_{P \in \Gamma} \left(\, \mathsf{E}_p(l(Y,\hat{Y})) + \lambda \, \mathsf{E}_p(T) \right)$
- Minimax risk-information cost: $\bar{L}_{\lambda}^{*} = \inf_{P_{\hat{Y}|X}} \sup_{P \in \Gamma} \left(\mathsf{E}(l(Y, \hat{Y})) + \lambda I(X; \hat{Y}) \right)$
- If X, Y, \hat{Y} are finite, Γ convex and closed, by Sion's theorem:

$$\bar{L}_{\lambda}^{*} = \max_{p \in \Gamma} \min_{\hat{P} \hat{Y} | X} \left(\mathsf{E}(l(Y, \hat{Y})) + \lambda I(X; \hat{Y}) \right)$$

- $\bullet \ \, \mathsf{Minimax} \ \mathsf{risk-rate} \ \mathsf{cost:} \ \, L^*_{\lambda} = \inf_{f,m} \sup_{P \in \Gamma} \left(\, \mathsf{E}_p(l(Y,\hat{Y})) + \lambda \, \mathsf{E}_p(T) \right)$
- Minimax risk-information cost: $\bar{L}^*_{\lambda} = \inf_{P^*_{Y|X}} \sup_{P \in \Gamma} \left(\mathsf{E}(l(Y,\hat{Y})) + \lambda I(X;\hat{Y}) \right)$
- If X, Y, \hat{Y} are finite, Γ convex and closed, by Sion's theorem:

$$\bar{L}_{\lambda}^{*} = \max_{p \in \Gamma} \min_{\hat{P}_{\hat{Y}|X}} \left(\mathsf{E}(l(Y, \hat{Y})) + \lambda I(X; \hat{Y}) \right)$$

- To design robust descriptor-estimator pair that works for every $p \in \Gamma$,
 - $\qquad \qquad \text{First find:} \qquad p^* = \operatorname*{argmax}_{p \in \Gamma} \min_{\hat{P} \in IX} \left(\, \mathsf{E}(l(Y, \hat{Y})) + \lambda I(X; \hat{Y}) \right) \\$
 - ► Then find: $p_{\hat{Y}|X}^* = \underset{p_{\hat{Y}|X}}{\operatorname{argmin}} \left(\mathsf{E}_{p^*}(l(Y, \hat{Y}) + \lambda I_{p^*}(X; \hat{Y})) \right)$
- Extends maximum conditional entropy principle in (Farnia-Tse 2016)

• Let
$$\mathbf{X} \in \mathbb{R}^d$$
, $Y, \hat{Y} \in \mathbb{R}$, $l(y, \hat{y}) = (y - \hat{y})^2$, $\mathsf{E}(\mathbf{X}) = \mathbf{0}$, $\mathsf{E}(Y) = 0$

$$\Gamma = \{P_{\mathbf{X},Y} : \mathsf{E}(\mathbf{X}) = \mathbf{0}, \; \mathsf{E}(Y) = 0, \; \Sigma_{\mathbf{X}}, \; C_{\mathbf{X}Y}, \; \mathsf{same as } P_n\}$$

- Let $\mathbf{X} \in \mathbb{R}^d$, $Y, \hat{Y} \in \mathbb{R}$, $l(y, \hat{y}) = (y \hat{y})^2$, $\mathsf{E}(\mathbf{X}) = \mathbf{0}$, $\mathsf{E}(Y) = 0$ $\Gamma = \{P_{\mathbf{X},Y} : \mathsf{E}(\mathbf{X}) = \mathbf{0}, \; \mathsf{E}(Y) = 0, \; \Sigma_{\mathbf{X}}, \; C_{\mathbf{X}Y}, \; \mathsf{same as } P_n\}$
- Minimax solution: $P_{\mathbf{X},Y}^*$ Gaussian with same mean, covariance as P_n ,

$$\begin{split} \hat{\mathbf{Y}} &= \begin{cases} a \cdot C_{\mathbf{X}Y}^t \boldsymbol{\Sigma}_{\mathbf{X}}^{-1} \mathbf{X} + Z & \text{if } a > 0, \\ 0 & \text{otherwise} \end{cases} \\ \tilde{L}_{\lambda}^* &= \begin{cases} \sigma_{\mathbf{Y}}^2 - C_{\mathbf{X}Y}^t \boldsymbol{\Sigma}_{\mathbf{X}}^{-1} C_{\mathbf{X}Y} - \frac{\lambda}{2} \log e(1-a) & \text{if } a > 0, \\ \sigma_{\mathbf{Y}}^2 & \text{otherwise,} \end{cases} \\ a &= 1 - \frac{\lambda \log e}{2C_{\mathbf{X}Y}^t \boldsymbol{\Sigma}_{\mathbf{X}}^{-1} C_{\mathbf{X}Y}}, \quad Z \sim \mathbf{N}(0, a\lambda \log e/2) \text{ independent of } \mathbf{X} \end{split}$$

• Let $\mathbf{X} \in \mathbb{R}^d$, $Y, \hat{Y} \in \mathbb{R}$, $l(y, \hat{y}) = (y - \hat{y})^2$, $\mathsf{E}(\mathbf{X}) = \mathbf{0}$, $\mathsf{E}(Y) = 0$ $\Gamma = \{P_{\mathbf{X},Y} : \mathsf{E}(\mathbf{X}) = \mathbf{0}, \; \mathsf{E}(Y) = 0, \; \Sigma_{\mathbf{X}}, \; C_{\mathbf{X}Y}, \; \mathsf{same as } P_n\}$

• Minimax solution: $P_{\mathbf{X},Y}^*$ Gaussian with same mean, covariance as P_n ,

$$\begin{split} \hat{Y} &= \begin{cases} a \cdot C_{\mathbf{X}Y}^t \Sigma_{\mathbf{X}}^{-1} \mathbf{X} + Z & \text{if } a > 0, \\ 0 & \text{otherwise} \end{cases} \\ \tilde{L}_{\lambda}^* &= \begin{cases} \sigma_Y^2 - C_{\mathbf{X}Y}^t \Sigma_{\mathbf{X}}^{-1} C_{\mathbf{X}Y} - \frac{\lambda}{2} \log e(1-a) & \text{if } a > 0, \\ \sigma_Y^2 & \text{otherwise,} \end{cases} \\ a &= 1 - \frac{\lambda \log e}{2C_{\mathbf{X}Y}^t \Sigma_{\mathbf{X}}^{-1} C_{\mathbf{X}Y}}, \quad Z \sim \mathrm{N}(0, a\lambda \log e/2) \text{ independent of } \mathbf{X} \end{split}$$

• $\lambda = 0$ (no rate constraint) \Rightarrow linear regression (Farnia-Tse 2016)

• Let $\mathbf{X} \in \mathbb{R}^d$, $Y, \hat{Y} \in \mathbb{R}$, $l(y, \hat{y}) = (y - \hat{y})^2$, $\mathsf{E}(\mathbf{X}) = \mathbf{0}$, $\mathsf{E}(Y) = 0$ $\Gamma = \{P_{\mathbf{X},Y} : \mathsf{E}(\mathbf{X}) = \mathbf{0}, \; \mathsf{E}(Y) = 0, \; \Sigma_{\mathbf{X}}, \; C_{\mathbf{X}Y}, \; \mathsf{same as } P_n\}$

• Minimax solution: $P_{\mathbf{X},Y}^*$ Gaussian with same mean, covariance as P_n ,

$$\begin{split} \hat{Y} &= \begin{cases} a \cdot C_{\mathbf{X}Y}^t \Sigma_{\mathbf{X}}^{-1} \mathbf{X} + Z & \text{if } a > 0, \\ 0 & \text{otherwise} \end{cases} \\ \tilde{L}_{\lambda}^* &= \begin{cases} \sigma_Y^2 - C_{\mathbf{X}Y}^t \Sigma_{\mathbf{X}}^{-1} C_{\mathbf{X}Y} - \frac{\lambda}{2} \log e(1-a) & \text{if } a > 0, \\ \sigma_Y^2 & \text{otherwise,} \end{cases} \\ a &= 1 - \frac{\lambda \log e}{2C_{\mathbf{X}Y}^t \Sigma_{\mathbf{X}}^{-1} C_{\mathbf{X}Y}}, \quad Z \sim \mathbf{N}(0, a\lambda \log e/2) \text{ independent of } \mathbf{X} \end{split}$$

- $\lambda = 0$ (no rate constraint) \Rightarrow linear regression (Farnia–Tse 2016)
- Straightforward estimate-compress scheme optimal:
 - Estimate: Compute MMSE estimate of Y given X
 - ▶ Compress: Scale MMSE estimate and add Z to obtain \hat{Y}

$$X \begin{cases} X_1 \sim \mathrm{Unif}(\mathcal{Y}_1) & q_1 \\ \\ X_2 \sim \mathrm{Unif}(\mathcal{Y}_2) & q_2 \end{cases} Y \qquad |\mathcal{Y}_i| = k_i, \ i = 1, 2, \ q_2 = 1 - q_1$$

• Let
$$\mathcal{Y} = \hat{\mathcal{Y}} = \mathcal{Y}_1 \cup \mathcal{Y}_2$$
, $\mathcal{Y}_1 \cap \mathcal{Y}_2 = \emptyset$, $|\mathcal{Y}_1| = k_1$, $|\mathcal{Y}_2| = k_2$; $l(y, \hat{y}) = \mathbb{1}_{\{\hat{y} \neq y\}}$;
 $\Gamma = \{P\}, P: X = (X_1, X_2) \sim \text{Unif}[\mathcal{Y}_1 \times \mathcal{Y}_2], Y = X_1 \text{ w.p. } q_1 \text{ or } X_2 \text{ w.p. } q_2 = 1 - q_1$

$$X \begin{cases} X_1 \sim \text{Unif}(\mathcal{Y}_1) & q_1 \\ X_2 \sim \text{Unif}(\mathcal{Y}_2) & q_2 \end{cases}$$

$$Y \qquad |\mathcal{Y}_i| = k_i, \ i = 1, 2, \ q_2 = 1 - q_1$$

• If $q_1 > q_2$, MAP estimate is $\hat{Y} = X_1$

$$X \begin{cases} X_1 \sim \mathrm{Unif}(\mathcal{Y}_1) & q_1 \\ \\ X_2 \sim \mathrm{Unif}(\mathcal{Y}_2) & q_2 \end{cases} Y \qquad |\mathcal{Y}_i| = k_i, \ i = 1, 2, \ q_2 = 1 - q_1$$

• Minimum risk-information cost: Let $a_1 = 2^{\lambda^{-1}q_1} + k_1 - 1$, $a_2 = 2^{\lambda^{-1}q_2} + k_2 - 1$, $\bar{L}^*_{\lambda} = 1 - \lambda \log \max \{a_1/k_1, a_2/k_2\}$, (*)

$$\text{If } a_1/k_1 > a_2/k_2, \ \hat{Y} = \begin{cases} X_1 & \text{w.p. } a_1^{-1}2^{\lambda^{-1}q_1}, \\ \sim \text{Unif}(\mathcal{Y}_1 \backslash \{x_1\}) & \text{w.p. } a_1^{-1} \end{cases}$$

If $a_1/k_1 \le a_2/k_2$, exchange 1 and 2 in above

$$X \begin{cases} X_1 \sim \mathrm{Unif}(\mathcal{Y}_1) & q_1 \\ \\ X_2 \sim \mathrm{Unif}(\mathcal{Y}_2) & q_2 \end{cases} Y \qquad |\mathcal{Y}_i| = k_i, \ i = 1, 2, \ q_2 = 1 - q_1$$

• Minimum risk-information cost: Let $a_1 = 2^{\lambda^{-1}q_1} + k_1 - 1$, $a_2 = 2^{\lambda^{-1}q_2} + k_2 - 1$,

$$\begin{split} \bar{L}_{\lambda}^* &= 1 - \lambda \log \max \big\{ a_1/k_1, a_2/k_2 \big\}, \text{ (*)} \\ \text{If } a_1/k_1 &> a_2/k_2, \text{ } \hat{Y} = \begin{cases} X_1 & \text{w.p. } a_1^{-1}2^{\lambda^{-1}q_1}, \\ &\sim \text{Unif}(\mathcal{Y}_1 \backslash \{x_1\}) & \text{w.p. } a_1^{-1} \end{cases} \end{split}$$

If $a_1/k_1 \le a_2/k_2$, exchange 1 and 2 in above

- Comparison to estimate-compress: If $q_1 > q_2$, MAP estimate $\hat{Y} = X_1$
 - ▶ Estimate-compress: Set \hat{Y} to compressed X_1 or pick random $y \in \mathcal{Y}_2$,

$$\bar{L}_{\lambda} = 1 - \lambda \log \max \{a_1/k_1, 2^{\lambda^{-1}q_2k_2^{-1}}\}$$
 (**)

$$X \begin{cases} X_1 \sim \mathrm{Unif}(\mathcal{Y}_1) & q_1 \\ \\ X_2 \sim \mathrm{Unif}(\mathcal{Y}_2) & q_2 \end{cases} Y \qquad |\mathcal{Y}_i| = k_i, \ i = 1, 2, \ q_2 = 1 - q_1$$

• Minimum risk-information cost: Let $a_1=2^{\lambda^{-1}q_1}+k_1-1$, $a_2=2^{\lambda^{-1}q_2}+k_2-1$,

$$\begin{split} \bar{L}_{\lambda}^* &= 1 - \lambda \log \max \big\{ a_1/k_1, a_2/k_2 \big\}, \text{ (*)} \\ \text{If } a_1/k_1 &> a_2/k_2, \text{ } \hat{Y} = \begin{cases} X_1 & \text{w.p. } a_1^{-1}2^{\lambda^{-1}q_1}, \\ &\sim \text{Unif}(\mathcal{Y}_1 \backslash \{x_1\}) & \text{w.p. } a_1^{-1} \end{cases} \end{split}$$

If $a_1/k_1 \le a_2/k_2$, exchange 1 and 2 in above

- Comparison to estimate-compress: If $q_1 > q_2$, MAP estimate $\hat{Y} = X_1$
 - ▶ Estimate-compress: Set \hat{Y} to compressed X_1 or pick random $y \in \mathcal{Y}_2$,

$$\bar{L}_{\lambda} = 1 - \lambda \log \max \{a_1/k_1, 2^{\lambda^{-1}q_2k_2^{-1}}\}$$
 (**)

▶ If $k_1 \gg k_2$, optimal scheme is to pick random $y \in \mathcal{Y}_2$ and (**) can be >> (*)

Summary

- Strong functional representation lemma (SFRL)
 - ▶ H(Y|Z) is between I and $I(X;Y) + \log I(X;Y)$
 - ▶ Poisson construction of *Z*, *g*

Summary

- Strong functional representation lemma (SFRL)
 - ▶ H(Y|Z) is between I and $I(X;Y) + \log I(X;Y)$
 - ▶ Poisson construction of *Z*, *g*
- Applications of SFRL:
 - ► Channel simulation with common randomness
 - One-shot lossy compression
 - Minimax learning for distributed inference
 Estimate—compress is not optimal in general

Summary

- Strong functional representation lemma (SFRL)
 - ▶ H(Y|Z) is between I and $I(X;Y) + \log I(X;Y)$
 - ▶ Poisson construction of *Z*, *g*
- Applications of SFRL:
 - ▶ Channel simulation with common randomness
 - One-shot lossy compression
 - Minimax learning for distributed inference
 Estimate—compress is not optimal in general
 - Other applications:

Multiple description coding, Gray-Wyner system, Gelfand-Pinsker

Thank you!

References

- Bennett, C. H., Devetak, I., Harrow, A. W., Shor, P. W., and Winter, A. (2014). The quantum reverse shannon theorem and resource tradeoffs for simulating quantum channels. *IEEE Trans. Info. Theory*, 60(5), 2926–2959.
- Bennett, C. H., Shor, P. W., Smolin, J., and Thapliyal, A. V. (2002). Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem. *IEEE Trans. Info. Theory*, 48(10), 2637–2655.
- Braverman, M. and Garg, A. (2014). Public vs private coin in bounded-round information. In *International Colloquium on Automata, Languages, and Programming*, Springer, pp. 502–513.
- Cuff, P. (2013). Distributed channel synthesis. IEEE Trans. Info. Theory, 59(11), 7071–7096.
- El Gamal, A. and Kim, Y.-H. (2011). *Network Information Theory*. Cambridge, Cambridge.
- Elias, P. (1975). Universal codeword sets and representations of the integers. *IEEE Trans. Inf. Theory*, 21(2), 194–203.
- Farnia, F. and Tse, D. (2016). A minimax approach to supervised learning. In *30th Conference on Neural Information Processing Systems*, pp. 4240–4248.

References (cont.)

- Hajek, B. E. and Pursley, M. B. (1979). Evaluation of an achievable rate region for the broadcast channel. *IEEE Trans. Inf. Theory*, 25(1), 36–46.
- Harsha, P., Jain, R., McAllester, D., and Radhakrishnan, J. (2010). The communication complexity of correlation. *IEEE Trans. Info. Theory*, 56(1), 438–449.
- Kocaoglu, M., Dimakis, A., Vishwanath, S., and Hassibi, B. (2017). Entropic causality and greedy minimum entropy coupling. In *Proc. IEEE Symp. Info. Theory*, pp. 1465–1469.
- Kostina, V., Polyanskiy, Y., and Verdú, S. (2015). Variable-length compression allowing errors. *IEEE Trans. Inf. Theory*, 61(8), 4316–4330.
- Lee, J. and Raginsky, M. (2017). Minimax statistical learning and domain adaptation with Wasserstein distances. arXiv preprint arXiv:1705.07815.
- Li, C. T. and El Gamal, A. (2018). Strong functional representation lemma and applications to coding theorems. *IEEE Transactions on Information Theory*, 64(11), 6967 6978.
- Li, C. T., Wu, X., Özgür, A., and El Gamal, A. (2018). Minmax learning for remote prediction. In *IEEE International Symposium on Information Theory*, pp. 541–545.

References (cont.)

- Namkoong, H. and Duchi, J. C. (2017). Variance-based regularization with convex objectives. In *Advances in Neural Information Processing Systems*, pp. 2975–2984.
- Pinkston, J. (1967). Encoding Independent Sample Information Sources. Research Laboratory of Electronics, Massachusetts Inst. of Technology.
- Shannon, C. E. (1948). A mathematical theory of communication. *Bell Syst. Tech. J.*, 27(3), 379–423, 27(4), 623–656.
- Song, E., Cuff, P., and Poor, H. (2016). The likelihood encoder for lossy compression. *IEEE Trans. Inf. Theory*, 62(4), 1836–1849.
- Willems, F. M. J. and van der Meulen, E. C. (1985). The discrete memoryless multiple-access channel with cribbing encoders. *IEEE Trans. Inf. Theory*, 31(3), 313–327.
- Zhang, Z., Yang, E., and Wei, V. (1997). The redundancy of source coding with a fidelity criterion. 1. known statistics. *IEEE Trans. Inf. Theory*, 43(1), 71–91.