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Abstract— A 3-node lossy source coding problem for a 2-DMS
(X1, X2) is considered. Source nodes 1 and 2 observe X1 and
X2, respectively, and each wishes to reconstruct the other source
with a prescribed distortion. To achieve these goals, nodes 1 and
2 send descriptions of their sources to relay node 3. The relay
node then broadcasts a joint description to the source nodes.
A cutset outer bound and a compress–linear code inner bound
are established and shown to coincide in several special cases.
A compute–compress inner bound is then presented and shown
to outperform the compress–linear code in some cases. An outer
bound based on Kaspi’s converse for the two-way source coding
problem is shown to be strictly tighter than the cutset outer
bound.

I. INTRODUCTION

Consider the two-way source coding through a relay prob-

lem depicted in Figure 1. Source node j = 1, 2 observes a

discrete memoryless source (DMS) Xj and sends a description

of its source to relay node 3. The relay node then broadcasts

a message based on what it has received from nodes 1 and 2

so that node 1 can recover X2 with distortion D2 and node

2 can recover X1 with distortion D1. When the sources are

independent and maximally compressed, i.e., node j = 1, 2
observes message Mj uniformly distributed over [1 : 2nRj ]
and wishes to recover the other message losslessly, the optimal

coding scheme involves linear network coding [1], [2]. Node

j = 1, 2 transmits its message Mj at rate Rj . The relay then

expresses each message as a binary sequence and broadcasts

the modulo-2 sum of the two sequences to nodes 1 and

2. Upon receiving the modulo-2 sum, node j recovers the

message of the other node by performing modulo-2 sum on the

binary expression of its message and the received sequence.

The required broadcast rate is R3 ≥ max{R1, R2}, which

coincides with the cutset lower bound.

In this paper we investigate the lossy two-way source coding

through a relay problem. Unlike the lossless case, the rate

distortion region is not known in general. We establish a cutset

outer bound and a compress–linear code inner bound on the

rate distortion region that coincide in some special cases. For

example, when the sources are independent, cascading point-

to-point lossy source coding and the above linear network

coding scheme is optimal. If the sources are Gaussian, the

optimal scheme is to replace point-to-point source coding with

Wyner–Ziv coding [3]. We show that neither bound is tight in

general. We then show that the relay broadcast rate can be

strictly improved via a compute–compress scheme whereby
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Fig. 1. Two-way source coding through a relay.

the relay first computes a function of the sources losslessly

and then broadcasts a description of the function to the source

nodes.

Several variations on the two-way source coding through

a relay setting have been investigated. For example, in dis-

tributed lossy source coding, the broadcast rate R3 = 0 and

the goal is to recover both sources only at node 3. The lossless

case is solved by the Slepian–Wolf coding [4], but the lossy

case [5] remains open. Another variation is the cascade source

coding [6], [7] where node 3 observers a DMS X3, the rate

R2 = 0, and the goal is to recover the source X1 or a

function of X1 and X3 at node 2. The rate–distortion region

for this case is not known in general. In these variations,

there is no broadcast constraint on the relay node, which

is motivated by wireless and satellite communications [2],

[8]. The complementary delivery problem in [9] is similar

to our setting except that node 3 has access to the sources

X1 and X2, and thus R1 = R2 = 0. There is no longer

a tradeoff between transmission rates and the rate–distortion

function is known. If there is no relay and the two source

nodes interactively communicate messages in multiple rounds,

the rate–distortion region is known [10]. A channel coding

setting for independent and maximally compressed sources are

considered in [11]. Nodes 1 and 2 transmit messages to the

relay through a discrete memoryless multiple access channel,

and the relay sends a message to nodes 1 and 2 through a

discrete memoryless broadcast channel. It is shown that joint

network coding and relaying achieves higher capacity than

traditional routing under some channel conditions.

In the next section, we formally define the problem. In Sec-

tion III, an cutset outer bound is established. The compress–

linear code inner bound is presented in Section IV and is

shown to be tight in some special cases. The compute–

compress inner bound is presented in Section V. In Sec-

tion VI, we tighten the cutset outer bound via Kaspi’s converse

technique [10] for the two-way source coding problem. The

notation and basic definitions follow [12].
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II. PROBLEM FORMULATION

A (2nR1 , 2nR2 , 2nR3 , n) code for the two-way source cod-

ing through a relay problem with 2-DMS (X1, X2) and

distortion measures d1 and d2 consists of:

1) Two source encoders: Encoder j = 1, 2 assigns an index

mj(x
n
j ) ∈ [1 : 2nRj ) to each source sequence xn

j ∈ Xn
j .

2) A relay encoder that assigns an index m3(m1,m2) ∈
[1 : 2nR3) to each index pair (m1,m2) ∈ [1 : 2nR1) ×
[1 : 2nR2).

3) Two decoders: Decoder j = 1, 2 assigns an estimate

x̂n
3−j(m3, x

n
j ) ∈ X̂n

3−j to each pair (m3, x
n
j ) ∈ [1 :

2nR3)×Xn
j .

A rate triple (R1, R2, R3) is said to be achievable with

distortion pair (D1, D2) if there exists a sequence of

(2nR1 , 2nR2 , 2nR3 , n) codes such that

lim sup
n→∞

1

n

n∑

i=1

E
(
dj(Xj , X̂j)

)
≤ Dj for j = 1, 2.

The rate distortion region R(D1, D2) is the closure of rate

triples (R1, R2, R3) that are achievable with distortion pair

(D1, D2).
We need the following definitions for later use. The rate

distortion function for source X1 is

R1(D) = min
p(x̂1|x1):E(d1(X1,X̂1))≤D

I(X1; X̂1).

When the side information X2 is available at both the encoder

and the decoder, the conditional rate distortion function for

source X1 is

R1|2(D) = min
p(x̂1|x1,x2):E(d1(X1,X̂1))≤D

I(X1; X̂1|X2).

When the side information X2 is available only at the decoder,

the Wyner–Ziv rate distortion function [3] for source X1 is

RWZ
1|2(D) = min

p(u|x1),x̂1(u,x2):E(d1(X1,X̂1))≤D
I(X1;U |X2).

The above three rate distortion functions satisfy R1(D) ≥
RWZ

1|2(D) ≥ R1|2(D). Similarly, we can define R2(D),

R2|1(D), and RWZ
2|1(D) for source X2 and side information

X1.

III. CUTSET OUTER BOUND

Consider the cut between node 1 and the “super-node”

consisting of nodes 2 and 3. By the Wyner–Ziv theorem [3],

the transmission rate R1 is lower bounded by RWZ
1|2(D1). To

lower bound the broadcast rate R3 of the relay, we consider a

larger set of relay encoders m̃3(x
n
1 , x

n
2 ). Note that every relay

encoder m3(m1(x
n
1 ),m2(x

n
2 )) = m̃(xn

1 , x
n
2 ) for some m̃. We

again consider the cut between node 1 and the super-node.

Now the side information Xn
1 is available at both the encoder

and the decoder. Thus, R3 ≥ R2|1(D2). Similarly, we can

establish cutset bounds for the cuts between node 2 and the

remaining two nodes. Combining these bounds, we obtain the

following cutset outer bound.

Theorem 1: Any achievable rate triple (R1, R2, R3) for

distortion pair (D1, D2) must satisfy the conditions

R1 ≥ RWZ
1|2(D1),

R2 ≥ RWZ
2|1(D2),

R3 ≥ max{R1|2(D1), R2|1(D2)}.
IV. COMPRESS–LINEAR CODE INNER BOUND

We establish the compress–linear code inner bound, where

each source node sends a description of its source using

Wyner–Ziv coding and the relay performs linear network

coding. We show that this inner bound coincides with the

cutset outer bound in several special cases.

A. Compress–linear code inner bound

We first consider a simple achievability scheme that uses

routing at the relay. Nodes 1 and 2 use Wyner–Ziv coding

at rates RWZ
1|2(D1) and RWZ

2|1(D2), respectively, to send de-

scriptions of their own sources to the relay. The relay then

broadcasts the received indices (M1,M2). Clearly by the

Wyner–Ziv theorem the distortion constraints are satisfied. The

routing inner bound is the set of rate triples (R1, R2, R3)
satisfying R1 ≥ RWZ

1|2(D1), R2 ≥ RWZ
2|1(D2) and R3 ≥

RWZ
1|2(D1) + RWZ

2|1(D2). In the following theorem, we show

that the relay broadcast rate in the routing inner bound can

be reduced by exploiting the broadcast capability of the relay

based on linear network coding.

Theorem 2: The compress–linear code inner bound on the

rate distortion region R(D1, D2) consists of the set of rate

triples (R1, R2, R3) such that

R1 ≥ RWZ
1|2(D1),

R2 ≥ RWZ
2|1(D2),

R3 ≥ max{RWZ
1|2(D1), R

WZ
2|1(D2)}.

Proof: Node j = 1, 2 encodes source Xn
j into an index

Mj using Wyner–Ziv coding at rate rj = RWZ
j|3−j(Dj). Let

U
rj
j be the rj-bit binary expression of index Mj . Without

loss of generality, assume that r1 ≥ r2. Upon receiving both

indices M1 and M2, the relay appends (r1 − r2) zeros to

Ur2
2 to obtain an r1-bit binary sequence Ũr1

2 . Then the relay

broadcasts the index M3 corresponding to Ur1
3 = Ur1

1 ⊕ Ũr1
2

at rate r1. Nodes 1 and 2 first recover M2 and M1 respectively

by computing Ur1
1 ⊕Ur1

3 and Ũr1
2 ⊕Ur1

3 and then use Wyner–

Ziv decoding. Therefore, the required relay broadcast rate is

max{r1, r2} = max{RWZ
1|2(D1), R

WZ
2|1(D2)}.

Note that the broadcast rate of the routing inner bound

can be reduced by a factor of 2 in the worst case. In the

following subsection, we show that the compress–linear code

inner bound is tight for some special cases. In Section V, we

show that the compress–linear code inner bound is not tight

in general.

B. Special Cases

We consider four special cases where the compress–linear

code inner bound coincides with the cutset outer bound.
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1) Recovering both sources losslessly: Suppose that nodes

1 and 2 wish to recover the source of the other node losslessly,

that is, distortion measures d1 and d2 are Hamming distortions

and D1 = D2 = 0. Then the Wyner–Ziv rate distortion

function and the conditional rate distortion function are equal,

and the compress–code inner bound and the cutset outer bound

become

R1 ≥ H(X1|X2),

R2 ≥ H(X2|X1),

R3 ≥ max{H(X1|X2), H(X2|X1)}.
The rate region for a generalization of this lossless example

to a network with three source nodes is investigated in [8].

2) Independent sources: If the sources X1 and X2 are inde-

pendent, then the side-information cannot reduce compression

rates. Thus, nodes 1 and 2 can simply perform point-to-point

lossy source coding independently, and the relay uses linear

network coding. This yields the rate distortion region

R1 ≥ R1(D1),

R2 ≥ R2(D2),

R3 ≥ max{R1(D1), R2(D2)}.
Note that the two-way source coding through a relay ex-

ample in [2] is a special case of the above two cases, where

the sources are independent and maximally compressed and

nodes 1 and 2 wish to exchange their sources losslessly.

3) 2-WGN sources: When the sources are two correlated

white Gaussian noise processes (2-WGN) with average powers

P1 and P2, respectively, and correlation coefficient ρ, the rate

distortion functions for side-information only at the decoder

and for side-information at both the encoder and the decoder

are the same. Thus, the compress–linear code inner bound and

the cutset outer bound coincide and are equal to

R1 ≥ R
(
P1(1− ρ2)/D1

)
,

R2 ≥ R
(
P2(1− ρ2)/D2

)
,

R3 ≥ max
{
R
(
P1(1− ρ2)/D1

)
,R

(
P2(1− ρ2)/D2

)}
,

where R(x) = max{(1/2) log x, 0}.

4) Recovering X2 losslessly: In this case, the distortion

measure d2 is Hamming distortion and D2 = 0. The

compress–linear code inner bound reduces to

R1 ≥ RWZ
1|2(D1),

R2 ≥ H(X2|X1),

R3 ≥ max{RWZ
1|2(D1), H(X2|X1)},

and the cutset outer bound reduces to

R1 ≥ RWZ
1|2(D1),

R2 ≥ H(X2|X1),

R3 ≥ max{R1|2(D1), H(X2|X1)}.
These two bounds are not tight in general. However, they

coincide if H(X2|X1) ≥ RWZ
1|2(D1) or X2 is a function of

X1. The former follows by RWZ
1|2(D1) ≥ R1|2(D1), and the

latter follows by the fact that X2 becomes side-information at

both the encoder node 1 and the decoder node 2 and thus the

Wyner–Ziv rate distortion function RWZ
1|2(D1) is replaced with

the conditional rate distortion function R1|2(D1).

V. COMPUTE–COMPRESS INNER BOUND

In previous subsection, we showed that the compress–linear

code inner bound coincides with the cutset outer bound in

some special cases. However, the relay broadcast rate of the

compress–linear code bound is in general higher than the

cutset outer bound on the broadcast rate. In the following

example, we consider a compute–compress inner bound of

which the relay broadcast rate is the same as the cutset bound.

Example 1: Let (X1, X2) be doubly symmetric binary

sources (DSBS) with parameter 0 < p < 1/2, that is,

X1 = X2 ⊕ Z where X2 ∼ Bern(1/2) and Z ∼ Bern(p) are

independent. The distortion measures d1 and d2 are Hamming

distortions. Node j = 1, 2 first sends a description of its source

Xj to the relay such that the relay can compute the modulo-

two sum V (X1, X2) = X1⊕X2 losslessly. The relay then uses

point-to-point rate distortion codes to send a description of the

modulo-2 sum to both nodes. Using random linear codes [13],

(R1, R2) is achievable provided

R1 ≥ H(V (X1, X2)|X2) = H(p), (1)

R2 ≥ H(V (X1, X2)|X1) = H(p), (2)

where H(p) = −p log p− (1− p) log(1− p), and the required

broadcast rate is

R3 ≥ max{R1|2(D1), R1|2(D2)}
= max{H(p)−H(D1), H(p)−H(D2)}.

Note that the constraint on the broadcast rate here is the

same as the cutset bound. In this example, the compute–

compress inner bound and the compress–linear code inner

bound do not coincide with each other since the rate triple(
RWZ

1|2(D1), R
WZ
1|2(D2),max{RWZ

1|2(D1), R
WZ
1|2(D2)}

)
lies only

in the compress–linear code inner bound, and the rate triple(
H(p), H(p),max{R1|2(D1), R1|2(D2)}

)
lies only in the

compute–compress inner bound. By time sharing between

these two inner bounds, we can obtain an inner bound that

is larger than each bound.

In general, the optimal rate region for multiterminal lossless

computing is not known, and the rate region similar to (1)

and (2) is an outer bound. If the function to be computed

satisfies certain conditions, the Slepian–Wolf rate region is

optimal [14]. In the following theorem, we present a general

compute–compress inner bound. For some special cases such

as the DSBS example above, the required rates for the compute

phase can be reduced.

Theorem 3: The compute–compress inner bound on the rate

distortion region R(D1, D2) consists of the set of rate triple
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(R1, R2, R3) such that

R1 ≥ I(X1;U1|X2, Q),

R2 ≥ I(X2;U2|X1, Q),

R1 +R2 ≥ I(X1, X2;U1, U2|Q),

R3 ≥ I(V ;W |X1, Q),

R3 ≥ I(V ;W |X2, Q)

for some p(q)p(u1|x1, q)p(u2|x2, q)p(w|v, q) and

functions v(x1, x2), x̂1(w, x2), and x̂2(w, x1) such that

H(V (X1, X2)|U1, U2) = 0 and

E
(
d1(X1, X̂1(W,X2))

)
≤ D1,

E
(
d2(X2, X̂2(W,X1))

)
≤ D2.

Proof outline: Nodes 1 and 2 use Berger–Tung coding

to encode the sources so that the relay can recover (U1, U2).
Since H(V (X1, X2)|U1, U2) = 0, the relay can compute the

function V (X1, X2) based on (U1, U2). The relay then uses

Wyner–Ziv coding by first covering V by W and then sending

a description of W via binning.

VI. GENERAL OUTER BOUND

In Section III, we established the cutset outer bound by

allowing the relay encoder to have access to Xn
1 and Xn

2 ,

i.e., its index is a function of (Xn
1 , X

n
2 ) instead of (M1,M2).

Sending Xn
1 and Xn

2 to the relay, however, may require much

higher rates than the Wyner–Ziv coding rates in the cutset

bound. Thus, as we will show the cutset outer bound can be

strictly loose. In the following, we establish a tighter outer

bound.

Theorem 4: Any rate triple (R1, R2, R3) achievable with

distortion pair (D1, D2) must satisfy

R1 ≥ I(X1;U1|X2),

R2 ≥ I(X2;U2|X1),

R3 ≥ I(X1;V |X2, U2),

R3 ≥ I(X2;V |X1, U1)

for some p(u1, u2|x1, x2)p(v|u1, u2), x̂1(v, x2, u2), and

x̂2(v, x1, u1) such that U1 → X1 → X2, U2 → X2 → X1,

V → (X1, U2) → X2, V → (X2, U1) → X1, and

E
(
d1(X1, X̂1(V,X2, U2))

)
≤ D1,

E
(
d2(X2, X̂2(V,X1, U1))

)
≤ D2.

The proof is based on the converse in [10] and is given

in the Appendix. Now we revisit Example 1. Suppose that

distortion D2 = 1, that is, node 1 does not need to recover

source X2. The cutset outer bound for distortion pair (D1, 1)
is equal to

R1 ≥ RWZ
1|2(D1),

R3 ≥ R1|2(D1),

and the outer bound in Theorem 4 is equal to

R1 ≥ I(X1;U1|X2),

R2 ≥ I(X2;U2|X1),

R3 ≥ I(X1;V |X2, U2),

for some p(u1, u2, v|x1, x2) = p(u1, u2|x1, x2)p(v|u1, u2)
and x̂1(v, x2, u2) such that

E
(
d1(X1, X̂1(V,X2, U2))

)
≤ D1.

Now consider the rate distortion region when R2 = 0.

For the outer bound in Theorem 4, U2 needs to satisfy

I(X2;U2|X1) = 0, i.e., U2 → X1 → X2. But since

U2 → X2 → X1 also form a Markov chain, p(u2|x1, x2) =
p(u2|x1) = p(u2|x2). Furthermore, p(x1, x2) > 0 for all

(x1, x2), and thus for any (x1, x2) �= (x̃1, x̃2),

p(u2|x1, x2) = p(u2|x1) = p(u2|x1, x̃2)

= p(u2|x̃2) = p(u2|x̃1, x̃2),

that is, U2 is independent of (X1, X2). This implies that the

bound on R3 can be expressed as

R3 ≥ I(X1;V |X2, U2) = I(X1;V,U2|X2) ≥ RWZ
1|2(D1).

Furthermore, by the data processing inequality, the bound on

R1 becomes

R1 ≥ I(X1;U1|X2) ≥ I(X2;V,U2|X2) ≥ RWZ
1|2(D1).

Therefore, the rate triple (RWZ
1|2(D1), 0, R1|2(D1)) in the cutset

outer bound is not achievable, and the cutset bound is strictly

loose in this DSBS example.

VII. CONCLUSION

We established inner and outer bounds on the rate distortion

region for the two-way source coding through a relay problem

that coincide in some special cases. In the compress–linear

code achievability scheme, the source node communication

rates coincide with the cutset bound, but the relay communi-

cation rate is higher. The compute–compress scheme achieves

lower relay communication rate by increasing the source node

rates beyond the cutset bound. The rate distortion region is not

known in general and there are several interesting directions

to improve the inner bounds. Are there nontrivial cases where

the compute–compress code is optimal? How do we combine

the two achievability schemes beyond time sharing? It would

also be interesting to investigate inner bounds for the multi-

round version of the problem. The outer bound can be readily

extended to this case.
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APPENDIX

Proof of Theorem 4: We first bound the transmission rate

of R1 by the following chain of inequalities.

nR1 ≥ H(M1) ≥ H(M1|Xn
2 ) = I(Xn

1 ;M1|Xn
2 )

=

n∑

i=1

I(X1i;M1, X
i−1
1 , Xi−1

2 , Xn
2,i+1|X2i)

≥
n∑

i=1

I(X1i;U1i|X2i),

where U1i = (M1, X
i−1
1 , Xn

2,i+1). Similarly, nR2 ≥∑n
i=1 I(X2i;U2i|X1i), where U2i = (M2, X

n
1,i+1, X

i−1
2 ).

Next we bound the relay broadcast rate.

nR3 ≥ H(M3) ≥ H(M3|M1, X
n
1 ) = I(Xn

2 ;M3|M1, X
n
1 )

=
n∑

i=1

I(X2i;M3, X
n
1,i+1|M1, X

i−1
1 , X1i, X

n
2,i+1)

≥
n∑

i=1

I(X2i;Vi|X1i, U1i),

where Vi = M3. Similarly, nR3 ≥ ∑n
i=1 I(X1i;Vi|X2i, U2i).

Now we claim that for every i ∈ [1 : n], (i)

E (d1(X1i, x̂
∗
1(i, Vi, X2i, U2i))) ≤ E (d1(X1i, x̂1i(M3, X

n
2 )) ,

E (d2(X2i, x̂
∗
2(i, Vi, X1i, U1i))) ≤ E (d2(X2i, x̂2i(M3, X

n
1 ))

for some functions x̂∗1 and x̂∗2, and (ii) Vi → (U1i, U2i) →
(X1i, X2i), Vi → (U1i, X2i) → X1i, and Vi → (U2i, X1i) →
X2i. To prove these two claims, we use the technique in [15]

to verify Markovity. Consider the factorization of distribution

p(xn
1 , x

n
2 ,m1,m2,m3) = p(xi−1

1 , xi−1
2 )p(x1i, x2i)

· p(xn
1,i+1, x

n
2,i+1)p(m1|xn

1 )p(m2|xn
2 )p(m3|m1,m2).

and the corresponding undirected graph G = (V, E) in Fig-

ure 2, where V is the set of vertices and an edge (V1, V2) ∈ E
if v1 and v2 are in some common factor. We can verify the

Markov chain Vi → (U1i, U2i) → (X1i, X2i) by showing

that every path in the graph from Vi to (X1i, X2i) must pass

through (U1i, U2i). Similarly, we can check the other Markov

chains in the second claim and also show that Xn
2,i+1 →

(X2i, U2i, Vi) → X1i, which we will need to prove the first

claim in the following. Consider the expected distortion

E (d1(X1i, x̂1i(M3, X
n
2 ))

=
∑

p(xn
1i, x

n
2 ,m2,m3)d1(x1i, x̂1i(m3, x

n
2 ))

=
∑

p(xn
2i, u2i, vi)p(x1i|xn

2i, u2i, vi)

· d1(x1i, x̂
′
1i(x

n
2i, u2i, vi))

=
∑

p(xn
2i, u2i, vi)p(x1i|x2i, u2i, vi)

· d1(x1i, x̂
′
1i(x

n
2i, u2i, vi)),

where the second equality follows by defining

x̂′1i(x
n
2i, u2i, vi) = x̂1i(m3, x

n
2 ) for all xn

1,i+1, and the last step

Xi−1
1 X1i Xn

1,i+1 Xn
2,i+1 X2i Xi−1

2

M1 M3 M2

Fig. 2. The graph of the distribution p(xn
1 , x

n
2 ,m1,m2,m3).

follows by the Markov chain Xn
2,i+1 → (X2i, U2i, Vi) → X1i.

Let x̂∗1(i, v, x2, u2) = x̂′1i(x2i, x
n∗
2,i+1, u2i, vi), where

xn∗
2,i+1(x

n
2i, u2i, vi) = argmin

xn
2,i+1

∑

x1i

p(x1i|x2i, u2i, vi)

· d1(x1i, x̂
′
1i(x

n
2i, u2i, vi)).

Then

E (d1(X1i, x̂
∗
1(i, Vi, X2i, U2i))) ≤ E (d1(X1i, x̂1i(M3, X

n
2 )) .

Similarly, there exists some function x̂∗2(i, v, x1, u1) such that

E (d2(X2i, x̂
∗
2(i, Vi, X1i, U1i))) ≤ E (d2(X2i, x̂2i(M3, X

n
1 )) .
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