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Wiretap Channel With Causal State Information

Yeow-Khiang Chia and Abbas El Gamal, Fellow, IEEE

Abstract—A lower bound on the secrecy capacity of the wiretap
channel with state information available causally at both the
encoder and the decoder is established. The lower bound is shown
to be strictly larger than that for the noncausal case by Liu
and Chen. Achievability is proved using block Markov coding,
Shannon strategy, and key generation from common state infor-
mation. The state sequence available at the end of each block is
used to generate a key to enhance the transmission rate of the
confidential message in the following block. An upper bound on
the secrecy capacity when the state is available noncausally at the
encoder and the decoder is established and is shown to coincide
with the aforementioned lower bound for several classes of wiretap
channels with state.

Index Terms—Channels with state, secrecy capacity, wiretap
channel.

I. INTRODUCTION

ONSIDER the two-receiver wiretap channel with state

depicted in Fig. 1. The sender X wishes to communicate
a message reliably to the legitimate receiver Y while keeping
it asymptotically secret from the eavesdropper Z. The secrecy
capacity for this channel can be defined under various scenarios
of state information availability at the encoder and the decoder.
When the state information is not available at either party, the
problem reduces to the classical wiretap channel for the channel
averaged over the state and the secrecy capacity is known [1],
[2]. When the state is available only at the decoder, the problem
reduces to the wiretap channel with augmented receiver (Y, ).
The interesting cases to consider, therefore, are when the state
information is available at the encoder and may or may not be
available at the decoder. This raises the question of how the
encoder and the decoder can make use of the state informa-
tion to increase the secrecy rate. This model is a generaliza-
tion of the wiretap channel with shared secret key in [3] and
can be used also as a base model for secret communication over
fast-fading channels in which the sender and the receiver have
some means for measuring the channel statistics but the eaves-
dropper does not. In [4], Chen and Vinck established a lower
bound on the secrecy capacity when the state information is
available noncausally only at the encoder. The lower bound is
established using a combination of Gelfand—Pinsker coding and
Wyner wiretap coding. Subsequently, Liu and Chen [5] used
the same techniques to establish a lower bound on the secrecy
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Fig. [. Wiretap channel with state.

capacity when the state information is available noncausally at
both the encoder and the decoder. In a related direction, Khisti
et al. [6] considered the problem of secret key agreement first
studied in [7] and [8] for the wiretap channel with state and
established the secret key capacity when the state is available
causally or noncausally at the encoder and the decoder. The key
is generated in two parts: the first using a wiretap channel code
while treating the state sequence as a time-sharing sequence,
and the second is generated from the state itself.

In this paper, we consider the wiretap channel with state in-
formation available causally at the encoder and the decoder.
We establish a lower bound on the secrecy capacity, which is
strictly larger than the lower bound for the noncausal case in [5].
Our achievability scheme, however, is quite different from the
scheme in [5]. We use block Markov coding, Shannon strategy
for channels with state [9], and secret key agreement from state
information, which builds on the work in [6]. However, unlike
[6], we are not directly interested in the size of the secret key,
but rather in using the secret key generated from the state se-
quence in one transmission block to increase the secrecy rate
in the following block. This block Markov scheme causes addi-
tional information leakage through the correlation between the
secret key generated in a block and the received sequences at the
eavesdropper in subsequent blocks. We show that this leakage
is asymptotically negligible. Although a similar block Markov
coding scheme was used in [10] to establish the secrecy capacity
of the degraded wiretap channel with rate limited secure feed-
back, in their setup no information about the key is leaked to the
eavesdropper because the feedback link is assumed to be secure.
We also establish an upper bound on the secrecy capacity of the
wiretap channel with state information available noncausally at
the encoder and decoder. We show that the upper bound coin-
cides with the aforementioned lower bound for several classes
of channels. Thus, the secrecy capacity for these classes do not
depend on whether the state information is known causally or
noncausally at the encoder.

The rest of this paper is organized as follows. In Section II,
we provide the needed definitions. In Section III, we summa-
rize and discuss the main results in this paper. The proofs of
the lower and upper bounds are detailed in Sections IV and V,
respectively.
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II. PROBLEM DEFINITION

Consider a discrete memoryless wiretap channel (DM-WTC)
with discrete memoryless state (X x S, p(y, 2|z, 8)p(s),V, Z)
that consists of a finite input alphabet &', finite output alpha-
bets ), Z, a finite state alphabet S, a collection of conditional
probability mass functions (pmf5s) p(y, z|z,s) on Y x Z,and a
pmf p(s) on the state alphabet S. The sender X wishes to send
a confidential message M € [1 : 2"E] to the receiver Y while
keeping it secret from the eavesdropper Z with either causal or
noncausal state information available at both the encoder and
decoder.

A (2", n) code for the DM-WTC with causal state informa-
tion at the encoder and decoder consists of the following: a mes-
sage set [1 : 2"F]; an encoder that generates a symbol X;(m)
according to a conditional pmf p(z;|m, s*,z*~1) fori € [1 : n];
and a decoder that assigns an estimate M or an error message
to each received sequence pair (y™, s™). We assume that the
message M is uniformly distributed over the message set. The
probability of error is defined as P{™ = P{M # MY}. The in-
Jformation leakage rate at the eavesdropper Z, which measures
the amount of information about M that leaks out to the eaves-
dropper, is defined as Ry, = %I(M; Z™). A secrecy rate I is
said to be achievable if there exists a sequence of codes with
PM™ - 0and Ry — 0asn — oo. The secrecy capacity
Cs_csr is the supremum of the set of achievable rates.

We also consider the case when the state information is avail-
able noncausally at the encoder. The only change in the afore-
mentioned definitions is that the encoder now generates a code-
word X™(m) according to a conditional pmf p(z"|m, s"), i.e.,
a random mapping that depends on the entire state sequence in-
stead of just the past and present state sequence. The secrecy
capacity for this scenario is denoted by Cs_ncst.

The notation used in this paper will follow that in [11].

III. SUMMARY OF MAIN RESULTS
We present the results in this paper. The proofs of these results
are given in the following two sections and in the Appendix.
A. Lower Bound

The main result in this paper is the following lower bound
on the secrecy capacity of the DM-WTC with state information
available causally at both the encoder and decoder.

Theorem 1. The secrecy capacity of the DM-WTC with state
information available causally at the encoder and decoder is
lower bounded as

Cs—cs1
> max { maxmin {I(U;Y, ) - 1(U; 2,5)
+H(S|2),1(U;Y,5)},
n}%xmin{H(S|Z,V),I(V;Y|S)}} 0

where Pj is of the form p(u), v(u, s}, p(z|v, 8) and Pj is of the
form p(v)p(z|v, 5).
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Note that if § = @, the aforementioned lower bound re-
duces to the secrecy capacity for the wiretap channel. Clearly,
this lower bound also holds when noncausal state information
is available at the encoder, since we can always treat the non-
causal state information as causal state information. Define

Rs_cs1-1
= min {I(U;Y,S) - I(U; Z,S)

= max
p(u),v(u,8),p(e|v,8)
LH(S\2),1(U;Y, $)}
max min{H(S|Z,V),I(V;Y|5)}. (2)

Re_cg1_0=
5—CSI-2 2(0)p(a],5)

Then, (1) can be expressed as

Cs_cs1 > max{Rs_csi-1, Rs_csi-2-}

The proof of this theorem is detailed in Section I'V.

Remark 3.1: Using the functional representation lemma [12],
Rg_cs1-1 can be equivalently written as

Rs—csi-1
= ax min{I(V;Y|S) — I(V; Z|S)

= m
p(v|)p(zlv.s)
+H(8]2), I(V;Y|S)}. ()

Unless otherwise stated, this equivalent characterization for
Rg_csi—1 will be assumed for the rest of this section to derive
other results. From Section IV onward, we revert back to the
original characterization in (2).

In [5], the authors established the following lower bound for
the noncausal case:

Cs_Ncst

>  max (I(U;Y,8)~max{I(U; 2),1(U;5)})
p(u|s)p(z|u,s)

= max min{l(U;Y|S)- I(U;Z|9)

- p(uls)p(xiu,s)

+I(S;U|2),I(U;Y|S)} . @

From (3), Rs_csi—1 is clearly at least as large as this lower
bound. Hence, our lower bound (1) is at least as large as this
lower bound (4). We now show that the lower bound (4) is as
large as Rg_csr—1-

Fix V € [0: {V| - 1], p(v|s), and p(z|v, 8) in Rg_cg1—1- Let
U € [0: |V]|S| - 1] in bound (4). Define the conditional pmfs:
for u = v + s|V|, let p(u|s) = p(v|s), p(zlu,s) = p(z|v,s),
and let p(u|s) = p(z]u, s) = 0 otherwise. Under this mapping,
it is easy to see that H(S|Z, U) = 0 and the other terms in (4)
reduce to those in Rg_cs1—1.

The following shows that our lower bound (1) can be strictly
larger than (4).

Example: Consider the channel in Fig. 2, where
X,Y,2,8 € {01}, p(y,2lz,8) = p(y2lz), and the
conditional pmf defined in the figure. The state S with entropy
H(S)=1- H(0.1) is observed by both X and Y.

By setting V = X independent of S and P{X = 1} =
P{X = 0} = 0.5 in Rg_cs1—2, we obtain Hg_cs1—2 > 1 —
H(0.1).
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We now show that Rg._cgi—1 is strictly smaller than 1 —
H(0.1). First, note that

I(V;Y|S) = H(Y|S) - H(Y|V, S)
< H(Y) - H(Y|X)
=I(X;Y) < 1- H(0.1).

However, for Rs—csi—1 > 1 — H(0.1), we must have
I(V;Y]S) > 1 — H(0.1). Hence, we must have I(V;Y|S5) =
1 — H(0.1). Next, consider

I(V;Y|S) = H(Y|S) - H(Y|V, )

(2)
1-H(Y|V,5)

®
=1- H(0.1).

Step (a) holds with equality iff p(yls) = 0.5 for all
y,s € {0,1}. From the structure of the channel, this im-
plies that p(z|s) = 0.5 for all z,s € {0,1}. Step (b) holds
with equality iff H(Y|X,V,S) = H(Y|V, S), or equivalently
I(X;Y|V,8) = 0. This implies that given V, 5, X and ¥
are independent, p(z,ylv,s) = p(z|v, s)p(y|v, s). But since
p(z,ylv,s) = p(zlv,s)p(ylz), either 1) p(zlv,s) = 0 or
2) p(y|v,8) = p(y|lz) must hold. Now, consider the pair
x = 1,y = 1. Then, we must have either 1) p(z = 1|v,s) =0
or2)p(y = 1lv,8) = ply =1z =1) =09.In1), X isa
function of V and S. In 2), we have

p(y = 1|v, s) = p(z = 1|v, s)p(y = 1|z = 1)
+(1 = p(z = 1|v, s))p(y = 1|z = 0)
= 0.9p(z = 1|v,3) + 0.1
—0.ip(z = 1|v, )
= 0.8p(z = 1|v, s) + 0.1.

Since p(y = 1|v,s) = 0.9, we have 0.8p(z = 1|v,s) + 0.1 =
0.9, which implies that p(x = 1|v,s) = 1. Here again X isa
function of ¥V and S. Hence, in both cases 1) and 2), X must
be a function of V' and S, which implies that Z = X is also a
function of V and S. Using the fact that p(z|s) = p(z|s) = 0.5
for all x, s, we have

I(V;2|8) = H(Z|8) — H(Z|V, )
= H(X|S)
=1.

The first expression in Rg_¢gr—1 is, then, upper bounded by

I(V;Y|S) - I(V; Z|S) + H(S|Z)
< I(V;Y|8) - I(V; Z|S) + H(S)
=1-H(0.1) - 1+1- H(0.1)
=1-2H(0.1) < 1— H(0.1).
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Fig. 3. Encoding in block j.

This shows that Rg_csi—1 < Rs—csi—2.

The proot of Theorem 1 is detailed in Section IV. To illustrate
the main ideas, we outline the proof for the characterization of
Rs_csr_1 in (2) for the case when I(U; Y, 8) - I(U; Z, S) >
0. Our coding scheme involves the transmission of b — 1 in-
dependent messages over b n-transmission blocks. We split
each message M;, j € [2 : b], into two independent messages
Mo € [L: 2"F0] and Mj; € [1: 2""1] with Ry + Ry = R.
Codebook generation consists of two steps. The first is the gen-
eration of the message codebook. We randomly generate se-
quences ¥"(1), 1 € [1 : 2”I(U;Y’S)], and partition the set of
indices [1 : 2"/ (Ui¥s9)] into 2"Fo equal size bins. The indices
in each bin are further partitioned into 2% equal size sub-bins
C(mg, m1). The second step is to generate the key codebook.
We randomly bin the set of state sequences s™ into 2"%% bins
B(k). The key K;_1 used in block j is the bin index of the state
sequence S(j — 1) in block j — 1.

To send message M, Mj, is encrypted using the key K;_1
to obtain M}; = Mj; ® K;—1. A codeword ™ (L) is selected
uniformly at random from sub-bin C(M;o, M;1 & K;_1) and
transmitted using Shannon’s strategy as depicted in Fig. 3. The
decoder uses joint typicality decoding together with its knowl-
edge of the key to decode message M at the end of block j. Fi-
nally, at the end of block j, the encoder and the decoder declare
the bin index K of the state sequence s(j) as the key to be used
in block 7+ 1. To show that the messages can be kept asymptot-
ically secret from the eavesdropper, note that Mjq is transmitted
using Wyter wiretap coding. Hence, it can be kept secret from
the eave;sdropper provided I(U;Y,S) — I(U; Z,5) > 0. The
key part of the proof is to show that the second part of the mes-
sage My, which is encrypted with the key K1, can be kept
secret from the eavesdropper. This involves showing that the
eavesdropper has negligible information about K;_,. However,
the fact that K;_; is generated from the state sequence in block
4 —1 and used in block j results in correlation between it and all
received sequences at the eavesdropper from subsequent blocks.
We show that if Rx < H(S|Z), then the eavesdropper has neg-
ligible information about K;_1 given all its received sequences.
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B. Upper Bound

We establish the following upper bound on the secrecy ca-
pacity of the wiretap channel with noncausal state information
available at both the encoder and decoder (which holds also for
the causal case).

Theorem 2: The following is an upper bound to the secrecy
capacity of the DM-WTC with state noncausally available at the
encoder and decoder:

Cs_ncst < min {I(V4;Y|U, 8) — I(V1; Z|U, S)
+H(S|2,U0),I(V2;Y|S)}

for some U, Vj, and Vo such that p(u,vi,vs,z|s) =
p(u|s)p(vi|u, 8)p(va|vy, s)p(x|ve, 8). The cardinality of
the auxiliary random variables can be upper bounded
by | < |S[(|1x] + 1), pi| < |IS|(1X] + 1) and
Vol < W1|lU|S1|X].

The proof of this theorem is given in Section V.

C. Secrecy Capacity Results

We show that the upper bound in Theorem 2 coincides with
the lower bound in Theorem 1 for the following cases.

1) Class of Less Noisy Channels: We show that Theorems
1 and 2 are also tight when I(U;Y|S) > I(U; Z|S) for every
U such that (U, S) — (X, §) — (Y, Z) form a Markov chain,
i.e., when Y is less noisy than Z (see [13]) for every state s € S
[13].

Theorem 3: The secrecy capacity for the DM-WTC with the
state information available causally or noncausally at the en-
coder and decoder when Y is less noisy than Z is

Cs—cst = Cs_nost
= n(laTx)min{I(X;Y|S) —I(X;Z|S)
p(z|s

+H(S|2),1(X;Y|S)} .

Consider the special case when p(y, 2|z, s) = p(y, z|z) and Z
is a degraded version of Y'; then, Theorem 3 specializes to the
secrecy capacity for the wiretap channel with a key [3)

Cs_cst = Cs_nes1
= m(aicmin {IX;Y)-I(X;2)
p(z

+H(S),I(X;Y)}.

Achievability for Theorem 3 follows directly from Theorem
1 by setting V = X and observing Rg_csi—1 2> Rs_csi—2
since Y is less noisy than Z. Hence, the achievability scheme
for Rs_csi—1 is optimal for this class of channels. To establish
the converse, we use the less noisy assumption to strengthen the
first inequality in Theorem 2 as follows:

I(Wy;Y|U, ) — I(V4; Z|U, S) + H(S|2,U)
< I(Vy; YU, 8) - I(V4; 21U, 8) + H(8|2)
(@)
< I(Vi;Y1S) - I(W; Z19) + H(S|Z)

®
< I(X;Y|S) - I(X; Z|S) + H(S|2)
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where (a)and(b) follow from the less noisy assumption. The
proof of the second inequality follows by the data processing
inequality, which yields I(V2;Y|S) < I(X;Y|S).

2) Channel is Independent of State and Eavesdropper Is
Less Noisy Than Receiver: Next, consider the case where
o(y, 2|z, 8) = p(y, z|x) and the eavesdropper Z is less noisy
than Y, that is, I(U;Z) > I(U;Y) for every U such that
U — X — (Y, Z). Then, the capacity of this special class of
channels is

Cs-.cs1 = Os—nes1 = I;l(%cmin{H(S),I(X; )}

Achievability follows by setting V' = X independent of S. We
note that the scheme here is basically a “one-time pad” scheme
where the message that is transmitted is scrambled with a key
generated from the state sequence. Here, the secrecy capacity
is achieved by Rs._csi~2, and hence, Rs_csi—2 > Rs—csi—1-
The example we gave to illustrate the fact that Rg_cg1—2 can be
larger than Rg_csi—1 is a special case of this class of channels.
The converse follows from Theorem 2 and the observation that
since Z is less noisy than Y and p(y, 2|z, s) = p(y, z|z)

IW; YU, 8) - I(Vy; Z|U, S) + H(S|2,U)
< H(812,U)
< H(S)

and I(Vo;Y|S) <€ I(X;Y).

3) Specific Mutual Information Constraints: Following the
lines of [4], we can show that Theorems 1 and 2 are tight for
the following two special cases. The achievability scheme for
Rs_csr-1 is optimal for both special cases.

1) If there exists a \% such that
' MaXp(v|s)p(x|v,s) (I(V) YlS) - I(V1 Z|S) + H(SIZ))=
nwv%y|s)y - I(V%Z|S) + H(S5|Z) and
I(V*Y|8) - I(V*;2|8) + H(S|Z) < I(V*Y]S),
then the secrecy capacity is Cs—csi = Cs—_Nost =
I(V+Y|S) - I(V* Z|S) + H(S|Z).
2) If there exists a v’ such that
MaXy(v|s)p(x|v,s) I(V’ YIS) - I(V,; Yls) and

IVY|S) < I(V5YI|S) — I(V';Z|S) + H(S|2),
then the secrecy capacity is Cs_cs1 =
Iv,v|s).

Cs_ncs1 =

IV. PROOF OF THEOREM 1
We prove achievability of Rs_csi—1 and Rs_cgsi—2 sepa-
rately. The proof for Rg_cg1—1 is split into Cases 1 and 2 while
Rs_¢si-2 is proved in Case 3.

Case 1: Rg_cs1—1 With I(U; Y, S) > I(U; Z, S)

Codebook Generation: Split message M into two inde-
pendent messages Mjo € [L : 2"%0] and M;; € [1 : 2"
thus, R = Ry + R;. Let R > R. The codebook generation con-
sists of two parts.

Message Codeword Generation: Randomly and indepen-
dently generate sequences u™(l), I € [1 : 2"}, each according
to [1;_; pr(u;) and partition the set of indices [1 : 2"%] into
27 equal-size bins C(mg), mo € {1 : 2"%]. Further par-
tition the indices within each bin C(my) into 2" equal size
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sub-bins, C(mg, m1), m1 € [1 : 2"%1]. Hence, I € C(mo, my)
if and only if (mg + my — 1 — 1)2MA~Ro=R1) L 1< | <
(mo +m1)2"(R Ro—HRa)

Key Codebook Generation: Randomly and uniformly par-
tition the set of s™ sequences into 2% bins B(k), k € [1 :
2nRK]'

Both codebooks are revealed to all parties.

Encoding: We send b — 1 messages over b n-transmission
blocks. In the first block, we randomly select an index L €
C(m10,m1). The encoder, then, computes v; = v(u;(L), 8;)
and transmits a randomly generated symbol X; ~ p(x;]s;, v;)
fori € [1 : n]. At the end of the first block, the encoder and the
decoder declare k; € [1 : 277« such that s(1) € B(k;) as the
key to be used in block 2.

Encoding in block j € [2 : b] proceeds as follows. To send
ESSass iy, = (mjo, m;1) and given key k;_1, the encoder
computes m/; 31 = Mj1 @ k:J 1. To ensure secrecy, we must have
Ry, < Ry [14] The encoder then randomly selects an index L
such that L € C(mjo, mj; ). It then computes v; = v(u;(L), 8;)
and transmits a randomly generated symbol X; ~ p(z;|s;, v;)
fori € [(j — 1)n+1: gn).

Decoding and Analysis of the Probability of Error: At the
end of block j, the decoder declares that [is sent if it is the
unique index such that (u™ (1), Y (), 8(j)) € T<™, otherwise
it declares an error. [t then finds the index pair (m,o, 1) such
that { € C(rjo, 17 31) Finally, it recovers 7721 by computing
mJl - (m]1 = s 1)mod onRy -

To analyze the probability of error, let €’ > ¢’ > ¢ > 0 and
define the following events for every j € {2 : b]

E(j) = {M; # My}

&) ={{U"(L),8(7) ¢ T}

&(7) = {(U™(L),8(7), Y(5)) ¢ T}

E3(5) = {(U™(),8(5), Y(5)) € T for some [ # L}.

The probability of error is upper bounded as

b
P(£) = P{UjE()} < zP(é'(j))-

Each probability of error term can be upper bounded as

P(E(7)) < P(&1(5)) + P(&205) N €5(4))
+ P(€3(5) N €3(4))-

Now, P(£1(j)) — 0 asn — oo by the law of large num-
bers (LLN) since P{(U™(L) € T("))} — lasn — oo and
S(j) ~ Iiips(si) = Ty ps(v(8ilus) by independence.
The term P(€2(j) N E§(5)) — 0 as n — oo by LLN since
(U™(L),8(j) € T} and Y™ ~ TI7, pY|U, S(ys|ui, s:). For
the last term, consider

P(&s(7) NES() = D pP(Es(i) N ES(DIL = 1).
[}

Note that L is independent of the transmission codebook
sequences (u™(I),l € [1 Z"R]) and the current state
sequence S(j). Therefore, by the packing lemma [11, Lec-
ture 3], P(&() N EEGHIL = 1) — Oasn — oo if
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R < I(U; Y,S) — 6(¢”). Hence, P(£3(5) N €5(4)) — O as
n — o if R < I(U;Y, S) — §(”).

Analysis of the Information Leakage Rate: LetZ(j) denote
the eavesdropper’s received sequence in block j € [1 : b] and
Z7 = (Z(1),...,Z(j)). We will need the following two results.

Proposition 1: If Rg < H(S|Z) — 46(¢) and R >
I(U; Z, 8)+6(¢), then the following holds forevery j € [1 : b].
1) H(K]|C) > n(RK - (5(6))
2) I(K;; Z(5)|C) < n(8'(e) + 8"(¢)).
3) I{K;; Z°|C) < nd"(e), where §'(e) — 0, §”(¢) — 0, and
6"(e) > 0ase — 0.
The proof of this proposition is given in Appendix A.

Lemma 1: Let (U, V,Z) ~ p(u,v,2), R > 0, and
€ > 0. Let U™ be a random sequence distributed according
to [[,pu(w). Let V*(), 1 € [L : 2"F|, be a set of
random sequences that are conditionally independent given
U™ and each distributed according to [Ti_; pviu(vilu:).
Define C = {U",V*()}. Let L € [1 : 2"F] be a random
index distributed according to an arbitrary pmf. Then, if
P{U™V™(L),Z2") € T} — lasn — oo and
R > I(V;Z|U) + 6(c), there exists a §'(¢) > 0, where
8'(e) — 0 as e — 0, such that, for n sufficiently large,
H(L|Z™,U™,C) < n(R - I(V; Z|U)) + né'(e).

This lemma is proved in [15].

We are now ready to upper bound the leakage rate averaged
over codes. Consider

I(My, M, ..., My; Z%[C)
b
=3 1(M;; 2 e, MY, )
3=2

(@ &
< Y I(M;;2°(C,8(35), M2,,)

b
QS 1 i, S(5))

=2

where (a) follows by the independence of M; and
(8(5), M; +1) and (b) follows by the Markov Chain relation-
ship (Z5,,,M},,,C) — (Z7,8(4),C) — (M;,C). Hence, it
suffices to upper bound each individual term I(Mj; Z7|C, S(4)).
Consider

I(M;;2°|C,S(3))
—I(MJO; jlvzjlc S(J))
= I(Mjo, M;1;Z771|C, 8(5))
+I(Mj07M]'1§z(j)lc7s(j),zj_l)‘

Note that the first term is equal to zero by the independence of
M; and past transmissions, the codebook, and state sequence.
For the second term, we have

I(Mjo, Mj1; Z(5)IC, S(5), Z"."l)
= I(M;o; Z(7)IC,8(). Z7")
+ I(M;1; Z(5)IC, Mjo, S(5), Z-"”l),
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We now bound each term separately. Consider the first term

I(M;0;Z)IC, $(7), 26°1)
= I(Mjo, L; Z(35)IC, S(5), Zj_l)
- I(L; Z(j)|C, Mo, S(j)1 Zj—l)
< IU™52(7)|C, 8(7), Z5Y)
- H(L|C, M;o,8(7), Zj—l)
+ HLIC, Z(7), Myo, 5()

< Z(H(z,-(j)lc, Si(4)) — H(Z:(5)IC, Us, S:(4)))

=1
— H(L|C, M;o,S8(5), Z771)
+ H(LIC, Z(5), Mo, 8(j))

(@ .
< ni(U; 2|8) — H(LIC, Mo, S(), 29 )
+ H(Llcv Z(J)1 MJ'U; S(J))

< nI(U; 218) - A(TIC, Mo, S(G), 20Y)
+n(R - Ry — I(U; Z,8) + §'(€))
© W& — Ro) — H(LIC, Myo, S(), Z31) + né(€)
=n(R - Ro) — H(Mj;1 & K;_1|C, Mjo,8(j), 2" %)
— H(L|C, M;0,S8(5), Z7~Y, Mj1 ® Kj_1) + n6'(€)
< n(R - Rp)
— H(Mj;1 @ K;_1|C. Mjo,S(5), Kj-1,2°71)
—n(R - Ry — Rg) + n8'(¢)
D nRy — H(Mj1 ® K;_1|C, Mjo, S(7), Kj_1)
+ né’(€)
=nRx — H(M;1|C, Mjo,8(j), Kj-1) + nd'(¢)
= nb'(e)

where (a) follows from the fact that H(Z;(5)|C,S;(j)) <
H(Z:(j)|8:(5)) = H(Z|S) and H(Z:(j)IC,U;,8:(j)) =
H(Z|U, S). Step (b) follows by Lemma 1 which requires that
1) P{(U™L),8(j), Z(5)) € T} = Lasn — oo, and 2)
R — Ry > I{(U; Z,S) + é(¢); 1) can be established using the
same steps as in the analysis of probability of error. Step (c)
follows by the independence of U and S. Step (d) follows by
the Markov Chain relationship

(Zj_l,Mjo,S(j)) N (Kj__l,Mjo,S(j))
— (Mjl ® K1, Mjo, S(J))

The last step follows by the fact that Mj; is independent
of (C,Mj,S(j),K;—1) and uniformly distributed over
[1:2nRx),
Next, consider the second term
I(M;1; Z(5)IC, Mjo, 8(5), Z° 1)
S I(Mjl,L;Z(j)IC,Mjo,S(j),ZJ_l)
. I(L)Z(J)IC7MJO)M,115S(.II)JZJ_I)
< I(U™ Z(5)IC, Mo, S(3), Z771)
_H(LICanO’Mth(j)JZJ—l)
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+ H(L|C, M;o, Mj1,S(j), Z7)

(a) . .
< nI(U; 2|S) — H(L|C, Mjo, M;1,8(j), Z7 1)
+ H(LIC, MjO’ Mj]-’ S(J)v ZJ)

< nI(w; 215) — H(EIC, Mo, M52, 55), )
+n(R — Ry) — nI(U; Z, 8) +né'(e)
= n(R — Ry)
— H(L|C, Mjo, M;j1,8(5), Z° ") + né'(€)
where (a) follows from the same steps used in bounding
I(M;0; Z(5)|C,S(j), Z7 1) and (b) follows from Lemma 1,

which requires the same condition R~ Ry > I(U; Z, S) +6(e).
Next consider

H(LIC, Mjo, Mj1,8(4), Z7)
= H(Mj1 ® K;1|C, Mjo, Mj1,8(j), Z7 )
+ H(L|C, Mjo, Mj1, Mj1 & K;1,8(j), Z™")
= H(K;1|C, Mjo, M;1,S(j), Z77*)
+ 'n(fZ — Ry — RK)
= H(K;-1|C,Z" ') + n(R — Ro — Rk).

From Proposition 1, H(K;_1|C,Zi~1) > n(Rx — é(¢) —
8" (e)), which implies that

I(Mj1; Z(5)IC, Mjo, S(7), Z77*) < n(8(€) + 8'(€))
+né"(e).
This completes the analysis of the information leakage rate.
Rate Analysis: From the analysis of probability of error

and information leakage rate, we see that the rate constraints
are

R < I(U;Y, 8) - 6(e)
R— Ry > I(U; Z,8) + 6(e)
Ry < H(S|Z) — 44(¢)
Ro+Ri <R
R, < Ry
R=Ry+ R
R>0,Ry>0,R; >0,Rg >0.
Using Fourier—Motzkin elimination (e.g., see Lecture 6 in [11]),
we obtain
min {I(U;Y,8) - I(U; Z, S)
+H(S|2), 1(U;Y, S)}
min {I(V;Y|S) - I(V; Z|S)
+H(S8|2),I(V;Y|8)}

< max
p(w),v(w,3),p(z|s,v)

(@)
= max
p(w),0(u,8),p(ols,v)

where (a) follows by the independence of U and S and the fact
that V is a function of U and S.

Case 2: Rg_csi—1 With I(U;Y,S) < I(U; Z,S): In this
case, only part of the key generated from the previous block is
vsed to encrypt the message transmitted to the eavesdropper.
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The other part of the key is used to generate additional un-
certainty about the message sent at the eavesdropper to ensure
that a sufficiently large secret key rate is achieved in the cur-
rent block. Note that we only need to consider the case where
H(S|Z)- (I(U;Z,8) - I(U;Y,8)) > 0.

Codebook Generation. Codebook generation again con-
sists of two parts.

Message Codebook Generation: Let R > Ry and
R< R—Ry. Randomly and independently generate sequences
u™(I), I € [1 : 2"%], each according to I];_, pu(u;) and
partition the set of indices [1 : 2"F] into 2"F¢ equal-size bins
C(m4), mg € [1 : 2"Re]. We further partition the set of indices
in each bin C(my) into sub-bins, C(mq, m), m € [L : 278,

Key Codebook Generation: We randomly bin the set of
s™ € S™ sequences into 2"%x bins B(k), k € [1 : 2"Rk],

Encoding: We send b — 1 messages over b n-transmis-
sion blocks. In the first block, we randomly select an index L.
The encoder then computes v; = v(u;(L),s:), ¢ € [1 : n],
and transmits a randomly generates sequence X™ according to
[Ti=1 Px|s,v(xi]si,v:). At the end of the first block, the en-
coder and decoder declare k; € [1 : 2"8«] such that s(1) €
B(k1) as the key to be used in block 2.

Encoding in block § € [2 : b] is as follows. We split the key
k;_1 into two independent parts, K,;_1,4 and K;_1,m, at rates
R, and R, respectively. To send message m;, the encoder com-
putes m' = m;Bk(;j—1)m. Thisrequires that Rx > R+Ry. The
encoder then randomly selects an index L € C(k¢;—1)q,m’). At
time i € [(j — )n + 1 : jn], it computes v; = (u;(L), $;),
i € [1 : n], and transmits a randomly generated sequence X™
according to [Ti; px;s,v(:]9s, vi).

Decoding and Analysis of the Probability of Error: At the
end of block j, the decoder declares that [ is sent if it is the
unique index such that (u™({), Y(4),S(5)) € 7™ and €
C(k(j—1)a). Otherwise, it declares an error. It then finds the
index 77/ such that u™({) € C(k(;j—1)d, ). Finally, it recovers
m; by computing 1; = (' — k(j_1)m)mod 2~&. Following
similar steps to the analysis for Case 1, it can be shown that
P, —0asn — oo if R — Ry < I(U;Y, S) - 6(e).

Analysis of the Information Leakage Rate: Following the
same steps as for Case 1, we can show that it suffices to upper
bound the terms I(M;; Z(5)|C,S(5),2Z?~1) for j € [2 : ).
Define M} = M; ® K(;_1)m and consider

I(Mj; Z(5)IC,8(5), 27 71)

= H(M;) - H(M;(C,S(j), Z%)

< H(Mj) — H(M;|C,S(5), K(j_1)a» M}, Z7)

= H(M;) — H(M;|C, K (j_1ya, M}, Z771)

= H(M;) - H(M;|C,Z°™*, K(;_1)a)
— H(M}|C,Z7 7", K(j_1ya, M)
+ H(Mj|C,Z7 7 K(j_1)a)

=nR - H(M;)+ HMj|C,Z7 ™", K(;_1)a)
- HMIC, 277, K10, M;)

<nR— H(K;-1ym|C, 2771, K(j_1)a).
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Next, we show that

I(K(J—l)m; Z5"1|C, K(j—l)d) S n6"'(e)
' H(K(j_1ym|C, K(j_1ya) = n(Rx — Ra — §(¢))

®)
©

which implies

I(M;5; Z(5)IC,8(3), ™) < nR - n(Rk — Ra)
+ n(6"(€) + 6(¢)).

Hence, the rate of information leakage tends to zero as n — oo
if R < Rg — Rg4. To prove (5) and (6), we need the following.
Proposition 2: If R > I(U;Z,8) + 6(¢) and R <
H(S|Z) — 46(€), then for all j € {1 : b]
1) H(KJ|C) Z n(RK . 5(6)),
2) I(K; Z(5)[C) < n(8(e) + &'(e) + 8"(e));
3) I(K;;Z%|C) < né"(e), where §'(€) — 0, 6”(e) — 0, and
§"(e) —» 0ase — 0.
The proof of this proposition is given in Appendix B.
Part 3 of Proposition 2 implies (5) since

I(K;-1;Z771(C)
= I(K(j-1)a, K(j-1ym; 27 [C)
= I(K(j-1ya; Z77C) + I(K (j—1ym; Z771|C, K (j-1)a)-

Part 1 of Proposition 2 implies (6) since H(K(;_1)|C) =
H(K(;_1)ym, K(;-1)a|C) > n(Rg — 6(¢)), which implies that
H(K(,-_l)m|c, K(j—l)d) > n{Rg — Rq — 8(¢)).

Rate Analysis: The following rate constraints are neces-
sary for Case 2:

R > I(U; Z,5) + 8(¢)
R — Ry < I(U;Y, 8) - §(¢)
R< R—Rd
Ry < H(S|Z) — 46(¢)
R< Rk —Ry4
R>0,Rxk >0,R;>0,R>0.

Using Fourier—Motzkin elimination, we obtain
min {I(U;Y,S) - I(U; Z, S)

+H(S)2),1(U; Y, 8)}
= min {I(V;Y|S) — I(V; Z|S)

= max
B(2),(w,8) p(e5,)
+H(8|2), I(V;Y|S)} -

max
p(u),v(u,9),p(z(s,v)

Case 3: Rg_csi-a: Achievability of Rg_csi—2 uses the
same techniques as Case 2 for Rg_csi—1. However, here the
key generated in a block is used only to encrypt the message in
the following block. The eavesdropper may be able to decode
the message transmitted in a block, which would reduce the
key rate generated at the end of that block. This is compensated
for by the fact that the entire key is used for encryption. The



CHIA AND GAMAL: WIRETAP CHANNEL WITH CAUSAL STATE INFORMATION

codebook generation, encoding, and analysis of probability of
error and equivocation are, therefore, similar to that in Case 2.
As an outline, in each block, we generate a key K; of
size 2"H(SIV:2) I the next block, we encrypt the message
M4 using K; to obtain Mj,; = Mji1 @ K. A codeword
V(M) is then selected from a codebook 0[' size less than
ond (fos) This codeword is then transmitted by generating
X; according to px(V;, S;) for ¢ € [1 : n]. The decoder first
decodes M, using (Y(j + 1),8(j + 1)) and then decrypts

the message using M1 = (M}, —

j KJ)mod onRg -

Remark 4.1: An important difference between the schemes
for achieving Rg_cs1-1 and Rs—_cgi—2 is that the transmitted
codeword in the scheme for Rs_cgr-1 can be kept secret from
the eavesdropper through a combination of Wyner wiretap
coding and encryption of the codebook using the secret key.
This fact was made clear in Case 2 of the proof, where part of
the key was explicitly used to encrypt the codebook instead
of the message. On the other hand, no effort was made to
keep the transmitted codeword secret from the eavesdropper
in the scheme for Rg_cgr—2. Hence, one cannot assume that
the eavesdropper has no information about the codeword sent.
As such, we did not use the Shannon strategy as in Fig. 1 in
the encoding part for Rs_cgi—a. If we had used the Shannon
strategy, we would have obtained the expression

S—csi—2 = max  {H(S8|2,U),1(U;Y,S)}
p(u),v(u,s),p(zjs,v) . . -

=  max  {H(S|Z,U),I(V;Y|S)}.

p(u),v{u,s),p(z|s,v)

The first term in Rg_ gqp_o, H(S|Z, U), is the rate of the secret
key rate generated assuming that the eavesdropper knows the
transmitted codeword. As a result of this term, R§_qgr_s 18
simply a special case of our original Rg_cg1—2 expression,
where we maximized the rate over p(v) (V independent of
S). This is in contrast to the equivalent characterization of
Rs_csi—1 in (3), where we were able to perform the maxi-
mization of the rate over p(v|s).
We now turn to the proof of achievability of Rs_csr—2-

Codebook Generation: Codebook generation again con-
sists of two parts.

Message Codebook Generation: Randomly and indepen-
dently generate sequences v™(1), I € {1 : 2"&], each according
to T2, pv (vs).

Key Codebook Generation: Set Rg = R. Randomly bin
the set of s™ € 8™ sequences into Z"R" bins B(k), k € [1:
2nRK]

Encoding: We send b — 1 messages over b n-transmission
blocks. In the first block, we randomly select an index L € [1 :
2"R), The encoder then selects v™(L) and transmits a randomly
generated sequence X™ according to [T, pxs,v (%:]8:, vs).-
At the end of the first block, the encoder and the decoder declare
the index ky € [1: 277%] such that s(1) € B(ky) as the key to
be used in block 2.

Encoding in block j € [2 : b] is as follows. To send message
m;, the encoder computes the encrypted message m = m; ' [
k;_1. It then selects the sequence 'v”(m’ ). Attime 5 € [(j —
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1)n + 1 : gn], it transmits a randomly generated sequence X™
according to [T} ; pxis,v (%ilsi, vi).

Decoding and Analysis of the Probability of Error: At the
end of block 7, the decoder declares that #/ is sent 1f it is the
unique index such that (v™(’), Y(j), S(])) e T™. Other-
wise, it declares an error. It then recovers 7i; by computing
m; = (M — kj—1)mod anfx - Following similar steps to the
analysis for Case 1, it can be shown that the probability of error
tends to zero asn — oo if R < I(V;Y, 8) — 6(e).

Analysis of the Information Leakage Rate: Following the
same steps as for Case 1, we can show that it suffices to upper
bound the terms I(M;; Z(5)|C, S(§),2Z7~) for j € [2 : ¥].
Consider

I(M;; Z(5)IC, 8(5), 2771

= H(M;) - H(M;|C,S(5), 2%)

< H(M;) — H(M;|C,8(5), M; © K1, Zj)

= H(M;) - H(M;|C, M; © Kj_1,277")

= H(M;) - H(M; ® K;_1, M;|C,Z771)
+H(M; ® K;_4|C,Z771)

< nR- H(M;|C,2771)
- H(M; ® K;_1|C, 2771, M;) + nR

=nR~ H(K;_1|C,Z77").

Next, we show that

(7
®

I(K;_1;Z77YC) < né"(e)
H(K]'_1|C) > 'n(RK - 6(6))

which would imply
I(M;; Z(5)IC, 8(5), Z77 1) < n(8"(€) + b(e)).

To prove (7) and (8), we will use the following.

Proposition 3: If Rg < H(S8|Z,V) — 468(¢), then for all
jel:9
1) H(K;|C) > n(Rk — 6(c));
2) I(K; 2()[C) < nb'(e);
3) I(K;; Z%|C) < né"(e), where §'(¢) — 0 and §"(e) — 0
ase — 0.
The proof of this proposition is given in Appendix C. It is clear
that (7) and (8) are implied by Proposition 3, which completes
the analysis of information leakage rate.
Rate Analysis: The following rate constraints are neces-
sary for Case 3:

R=Rg
R < I(V;Y,S)—6(e)
Ry < H(S|Z,V) — 46(¢)

Rg >0,R>0.

Using Fourier-Motzkin elimination, these constraints imply the
achievability of

" max
p(v)p(z|s,v)

R< win{H(S|Z, V), I(V;Y]$)}.
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V. PROOF OF THEOREM 2

For any sequence of codes with.probability of error-and
leakage rate that approach zero as n — oo, consider

nR = H(M)
(@)
< I(M; Y™, 8™) + ney
®)
< I(M; Y™, 8™ — I(M; Z™) + 2ne,
=3 (I(M; Y, Sil Vi1, SF41)

=1
—I(M; Z;|1Z*7Y)) + 2nen

93 (1m,
i=1

—I(M, Y], 1+1,Z|Z‘—1)) + 2ne,

i1,
z YYiYSil i1113?+1)

d n
e Z (I(M; Yz, Sil YLy, SP1s Z2571)
—I(M; Z;|Y} it+1y 1+1,Zl 1))+2TL€n

QS (I(Viii Ya, S:lU) — I(Vass ZilUL)) + 2ne

=Y (I(Vi; Y5, SilUs) -
+I(Vli; SiIZi7 Uz)) + 2ne,

I(Vii; Zi, Si|Uy)

<3 U(Via 5, SiU) - I(Vig Zo S0
+H(Si|Z:, U;)) + 2ne,
< i (I(Vi4; Ya|U;, S;) — I(Vas; Z;, Si|Us, S)
= +H(S:|Z:,Uy)) + 2ney, '
D arov; YU, 8) - I(Vi; Z|U, 8))

+nH(S|Z,U) + 2ne,

where (a) follows by Fano’s inequality; (b) follows by the se-
crecy condition; (¢) and (d) follow by the Csiszar sum iden-
tity; (e) follows by the identifications U; = (Y%, S%,, 2 1)
and Va; = (M, Y%, 8%, Z°71); and (f) follows by using the
time-sharing random variable @ and defining U = (Ug, @),
Vi=(Vg,@),8 =8¢, Y =Yg,and Z = Zg.

For the second upper bound, we have

nR < I(M;Y™,58") + ne,
@ 1(M;Y")S™) + nen
n
=Y (MY, ¥i)
=1
<3 IM, Y, 2 S, ST Y

=1

n
QS 1(vai ilS:)
=1

=nl(V2q;Y|5,Q)
(¢
< nl(V3;Y|S)
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where (a) follows by the independence of M and S™; (b) fol-
lows by the identification Vo; = (M, Y, Z71, 82, , §471);
and (c) follows by defining Vo = (Vaq, Q). The bounds on car-
dinality of the auxiliary random variables follow from standard
techniques (e.g., see [11, App. C]).

VI. CONCLUSION

We established bounds on the secrecy capacity of the wiretap
channel with state information causally available at the encoder
and the decoder. We showed that our lower bound can be strictly
larger than the best known lower bound for the noncausal state
information case. The upper bound holds when the state in-
formation is available noncausally at the encoder and the de-
coder. We showed that the bounds are tight for several classes
of wiretap channels with state.

As we have seen, the secrecy capacity for several special
classes of the wiretap channels with state available at both the
encoder and the decoder does not depend on whether the state is
available causally or noncausally. An interesting question to ex-
plore is whether this observation holds in general for our setup.

We used key generation from state information to improve the
message transmission rate. It may be possible to extend this idea
to the case when the state information is available only at the
encoder. This case, however, is not straightforward to analyze
since it would be necessary for the encoder to reveal some state
information to the decoder (and, hence, partially to the eaves-
dropper) in order to agree on a secret key, which would reduce
the wiretap coding part of the rate.

APPENDIX A
PROOF OF PROPOSITION 1
1) The proof of this part follows largely from Lemma 2 in

[11, Lecture 22]. For completeness, we give the proof here.
Consider

H(K;|C) > P{8"™ € TM™YH(K;|C,8(j) € T™)
> (1 - e,)H(K;|C,8(5) € ™).

Let P(k;) be the random pmf of K; given {S(j) € Ts(")},
where the randomness is induced by the random bin assign-
ment (codebook) C.

By symmetry, P(k;), k; € [1 : 2"Rx], are identically
distributed. We express P(l) in terms of a weighted sum
of indicator functions as

P

an eT(“)

p(s")

P(l) P(S" e T}

{s eB(1)}.
It can be easily shown that

Ec(P(1)) = 27"
Var(P(1))

— z—ﬂRK 1— 2—nRK p(sn) )2
( )mn:‘;m (P{S(J‘) e TV}

< gnlxgn(ES)+a) 2O D)
(1-¢,)?
< 9—n(Rix+H(S)~45(c))
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for sufficiently large n.
By the Chebyshev inequality

P{|P(1) - E(P(1))| Z eE(P(1))}
Var(P(1))

= (B (P())?

N 9—n(H(5)—Rk—45(¢))

€2

Note that if Rg < H(S) — 46(¢), this probability — 0 as
n — o0. Now, by symmetry

H(K|C,S(4) € T)

= 2"« E(P(1))log(1/P(1)))

> 2"k p{|P(1) — E(P(1))| < e27"Bx},
E(P(1)log(1/P(1)) | |P(1) — E(P(1))| < e27"7x)

S (1 ~ 2—"(H(S)—RK—45(€)))

€2

(nRi(1—€) — (1 —e)log(l + €))
> n(Rg — 6(c))

for sufficiently large n and Rg < H(S) — 46(e).
Thus, we have shown that if Rg < H(S) — 4é(e),
H(K;|C) > n(Rx — 6(e)) for n sufficiently large. This
completes the proof of part 1 of Proposition 1. Note now
that since H{S|Z) < H(S), the same results also holds if
R < H(S|Z) - 46(¢).

2) We need to show that if Rg < H(S|Z) — 36(¢), then
I(K;; Z(5)IC) < 2né(e) forevery j € [1 : b]. We have

I(K ;5 Z(5)IC) = I(8(5); Z(1)IC) — I(8(5); Z(5)|K;,C)
We analyze the terms separately. For the first term, we have

I(8(5); Z(5)IC)
= I1(8(5), Li Z()IC) — I(L; Z(5)I8(4), C)
< I(U™, 8(5); Z(5)IC) — H(LIS(5),C)
+ H(L|C,S(5), Z(3))
< nl(U,5; %) — H(L|S(5),C) + H(LIC,S(j), Z2")

(2 nl(U,S; Z) — H(L|S(j),C)

+n(R-I(U; Z,8) + & (€)
=nR — H(Mjo|C) — H(Mj1 & K;-1|C, Mjo)
~ H(L|Mjo,Mj1 ® K;_1,C) +nI(S;Z) + n6’(e)
<nR—nRy— H(M;; ® K;_1|C, Mjo, K;_1)
—n(R — Ry — Ri) + nI(S; Z) + né'(e)
=nRg — H(M;1|C, Mjo, K;_1) + nI(S; Z) + né'(¢)
= n(I(8;2) + §'(¢))

where step (a) follows by applying Lemma 1, which
holds since R — Ry > I(U;Z,8) + 6(¢) and
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P((U™L),8(),2(5) € T™) - 1asn — o
For the second term, we have

1(S(5); Z()|K;,C)

= H(8(j)IK;,C) — H(S()|Z(7), K;, C)

= H(8(j), K;C) — H(K;|C) — H(S()IZ(5), K;,C)
> nH(S) — nRg — H(S(5)|Z(5), K;,C)

> n(H(S) — Rk) — H(S(4)IZ(5), K;)

(ﬁ) n(H(S) — Rg) — n(H(S|Z) — Rx + §"(¢))
=nI(8;Z) — né'(e)

where (b) follows by showing that H(S(5)|Z(j), K;) <

n(H(S|Z) — Rk + 6(€)). This requires the condition

Rx < H(S|Z) — 36(¢). Combining the bounds for the

two expressions gives I(K;; Z(5)|C) < n(8'(e) + 6" (€)).

Proof of Step (b): Give an arbitrary ordering to the set of
all state sequences s™ with S(j) = ¢™(T) forsome T" € [1 :
27108 11]. Hence, H(S(j)|Z(s), K) = H(T|K, Z(3)).

From the coding scheme, we know that P{(s™(T), Z(j)) €
T{™} = 1 asn — oo. Note here that T is random and corre-
sponds to the realization of S™.

Now, fix T = ¢,Z(j) = 2™, K = k,and define N (2", k,t) =
lfe: [T™©S))] (), ") € T, [ £, sn(0) € Bk)|.
For 2" ¢ T{™, N(z",k,t) = 0. For 2" € 7™ it is easy to
show that

I7(812)] - 1 n 17 (812)|
—omEx <E(N(2",k,t)) < e2nRK
- TE(") slz
Var(N(z", k, 1)) < |—2%K|l

By the Chebyshev inequality
P{N(z",k,t) > (1 + ¢)E(N (2", k,1))}
Var(N(z", k,t))
= (eE(N (2, k,1)))?
9—n(H(8|Z)-36(e)~Rx)

—_ 62

Note that P{N(z",k,t) > (1 + e)E(N(z",k,t))} — O as
n — oo if R < H(S|Z) — 38(¢). Now, define the following
events:

& ={(8()), 27)) ¢ T}

Let E = 0if & N E5 occurs and 1 otherwise. We have

P(E=1)
< P(&) + P(&)
< Z (p(z",t, k)
(e an ()T, k
P{N(z",k,t) 2 (1 + ) E(N(z", k,t))})
+P(&)
+ P{(s"(T), Z(5)) ¢ T{™}.

P{(s™(T),Z(5)) ¢ T} = P(£;) and P(€;) — Oasn —
oo by the coding scheme. For the second term, P{N (2", k,t) >
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(14+€)E(N (2", k,t))} — 0asn — oo if R < H(S|Z)—36(¢).
Hence, P(E =1) — 0asn — oo if R < H(S|Z) — 36(¢).
We can now bound H(T|K, Z™) by :

H(T|\K,Z"™)
<1+ P(E=1H(T|\K,Z",E =1)
+H(T|K,Z",E =0)
< n(H(S|Z) - Rk + §(¢)).
This completes the proof of part 2.

1) To upper bound I(K;; Z*|C), we use an induction argu-
ment assuming that I(K;_y; Zi~|C) < né;_;(€), where
8;—1(e) — 0 as € — 0. Note that the proof for j = 2 fol-
lows from part 2. Consider

I(K;Z°|C)
= I(K;; Z(5)[C) + 1(K;; Z771(C, Z(35))

(é) n(8'(e) + 8"(€)) + I(K;; 27711C, Z(4))

= H(Z"‘1|C, Z(J)) . H(Zj_1|c1 Z(j), I(:i)
+n(8'(e) + 6" (e))

< H(Z'YC) — H(Z'YC, Kj-1,2(4), K;)
+ n(d'(€) + 6" (€))

© mzi-Yc) - H(ZI' e, K;_y)

+n(6'(e) + 8"(€))
= I(K;_1; Z771C) 4 n(8'(€) + 6" (€))

< n8-1() + (8 + 6"()

where (a) follows from part 2 of the Proposition; (b) fol-
lows from the Markov Chain relation Zi~! — K; ; —
(Z(j), K;); and (c) follows from the induction hypothesis.
This completes the proof since the last line implies that
there exists a 6"'(€), where §”'(¢) — 0 as ¢ — 0, that
upper bounds I(K;; Z7|C) for j € [1 : b].

APPENDIX B
PROOF OF PROPOSITION 2

1) We first show that if Rk < H(S) — 46(e), then
H(K;|C) > n(Rg — 6(¢)). This is done in the same
manner as for part 1 of Proposition 1. The proof is, there-
fore, omitted.

2) We need to show that if Rx < H(S|Z) — 36(¢), then
I(K;; Z(3)|C) < 2né(e) for every § € [1 : b]. We have

I(K;; Z(5)IC) = I(8(5); Z(7)IC) — I(8(5); Z(4) 1K, C).

We analyze the terms separately. For the first term, we have

I(S(5); Z(5)IC)
= I(S(j), L; Z()IC) — I(L; Z(5)I8(4), C)
< I(U™,8(5); Z(j)[C) — H(LIS(5),C)
+ H(L|C, S(5), Z(j))
<nI(U,S;Z) — H(LIS(j),C)
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+H(L|C,8(7), Z")

(@) :
<. nl(U, S; Z) — H(L|C)

+n(R—-I(U;Z,8) + 6'(¢))
=nR - H(K(j-1)lC)
— H(K(j—1ym © M;|C) + nI(S; Z)
- H(LIK(j-l)m ® M;, K(j—l)d) + né'(e)

(sb)n(R—Rd—R—I?Z+Rd+R+6(e)
+8(€)) + nI(S; Z)
=n(I(S; Z) + 8(e) + &' (€))

where step (a) follows by applying Lemma 1, which holds
by the condition R > I(U; Z, ) + 6(¢) and the fact that
P((U™(L),8(), Z(j)) € TX™) — 1 as n — oo from the
encoding scheme. Step (b) follows from part 1 of Proposi-
tion 2: H(K;_1|C) > n(Rg —~ 6(¢)), which implies that
H(K(;_1)4|C) > n(Rq — §(¢)). Note that we implicitly
assumed j > 2. The case of j = 1 is straightforward since
H(L|C) = nR by the fact that we transmit a codeword
picked uniformly at random.
The proof that I(S(5); Z(j)|K;,C) > nI(S; Z) — né"(€)
follows the same steps as the proof of part 2 of Proposition
1 and requires the same condition that Rg < H(S|Z) —
34(e).

3) This part is proved in the same manner as part 3 of
Proposition 1.

APPENDIX C
PROOF OF PROPOSITION 3

1) We first show that if Rxg < H(S) — 46(e), then
H(K;|C) > n(Rkx — 6(¢)). This is done in the same
manner as part 1 of Proposition 1. The proof is, therefore,
omitted.

2) We need to show that if Rx < H(S|Z, V) — 38(e), then
I(K;;Z(5)|C) < nb(e) for every § € [1 : b]. Consider

I(K;; 2(5)IC) < (K3 2(5), U™C)
= I(8(5); Z(5),U"[C)
- I(S(J)v Z(]), Uanj,C)-
We analyze each term separately. For the first term, we
have

I(8(5); Z(5), V™[C)
= I(8(4); Z(4)IV",C)
=S (H(Z:G)e, v, 271())
=1
= H(Z:(5)IC, V™, 8(), (7))
<) (H(Z:(5)IC, Vi) — H(Z:(5)IC, Vi, 84(7)))
i=1
<n(H(Z|V)- H(Z|V,S))
=nl(Z;8|V) = nl(Z,V;S5).
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For the second term, we have

1(8(5); Z(5), V"|K;, C)
= H(S(j)lKj’C) - H(S(/)|Z(5), V", K;,C)
= H(8(j), K;|C) — H(K;|C)

- H(S(j)lZ(j),V",Kj,C)
> nH(S) - nRx — H(8(4)|2(5), V", K;;,C)
> n(H(S) — Rg) — H(S(J)|Z(5), V", K;)

Q n(H(S) - Rie) - n(H(S|Z,V) - Ry +8(6))
=nl(8;Z,V) —nb'(¢).

The proof of step (b) follows the same steps as in the proof
of part 2 of Proposition 1. We can show that step (b) holds
if R < H(S|Z,V) — 36(¢).
Combining the two terms then give the required upper
bound which completes the proof of Part 2.

3) This part is proved in the same manner as part 3 of
Proposition 1.
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