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Abstract— This paper shows that for any random variables X
and Y , it is possible to represent Y as a function of (X, Z) such
that Z is independent of X and I (X; Z|Y) ≤ log(I (X; Y)+1)+4
bits. We use this strong functional representation lemma (SFRL)
to establish a bound on the rate needed for one-shot exact channel
simulation for general (discrete or continuous) random variables,
strengthening the results by Harsha et al. and Braverman and
Garg, and to establish new and simple achievability results for
one-shot variable-length lossy source coding, multiple description
coding, and Gray–Wyner system. We also show that the SFRL
can be used to reduce the channel with state noncausally known
at the encoder to a point-to-point channel, which provides a
simple achievability proof of the Gelfand–Pinsker theorem.

Index Terms— Functional representation lemma, channel sim-
ulation, one-shot achievability, lossy source coding, channel with
state.

I. INTRODUCTION

THE functional representation lemma [1, p. 626] states
that for any random variables X and Y , there exists a

random variable Z independent of X such that Y can be
represented as a function of X and Z . This result has been
used to establish several results in network information theory
beginning with the early work of Hajek and Pursley on the
broadcast channel [2] and Willems and van der Meulen on
the multiple access channel with cribbing encoders [3].

The random variable Z in the functional representation
lemma can be intuitively viewed as the part of Y which is
not contained in X . However, Z is not necessarily unique.
For example, let B1, B2, B3, B4 be i.i.d. Bern(1/2) random
variables and define X = (B1, B2, B3) and Y = (B2, B3, B4).
Then both Z1 = B4 and Z2 = B1 ⊕ B4 satisfy the
functional representation lemma. However, H (Y |Z1) = 2
while H (Y |Z2) = 3, that is, Z1 provides more information
about Y than Z2. In general, H (Y |Z) = I (X; Y |Z) +
H (Y |X, Z) = I (X; Y, Z) ≥ I (X; Y ). For our example
H (Y |Z1) = I (X; Y ) = 2, that is, Z1 is the most informative Z
about Y . What is the most informative Z about Y in general?
Does it always achieve the lower bound H (Y |Z) ≥ I (X; Y )?
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In this paper, we show that for general (X, Y ), their exists
a Z such that H (Y |Z) is close to I (X; Y ). Specifically,
we strengthen the functional representation lemma to show
that for any X and Y , there exists a Z independent of X such
that Y is a function of X and Z , and

I (X; Z |Y ) ≤ log(I (X; Y ) + 1) + 4.

Alternatively this can be expressed as

H (Y |Z) ≤ I (X; Y ) + log(I (X; Y ) + 1) + 4. (1)

We use the above strong functional representation
lemma (SFRL) together with an optimal prefix code such as a
Huffman code to establish one-shot, variable-length achiev-
ability results for channel simulation [4], Shannon’s lossy
source coding [5], multiple description coding [6], [7] and
lossy Gray–Wyner system [8]. These one-shot achievability
results can be stated in terms of mutual information, without
the need of information density or other quantities. We then
show how the SFRL can be used to reduce the channel
with state known at the encoder to a point-to-point channel,
providing a simple proof to the Gelfand-Pinsker theorem [9].
The asymptotic block coding counterparts of these one-shot
results can be readily obtained by converting the variable-
length code into a block code and incurring an error probability
that vanishes as the block length approaches infinity.

A weaker form of the SFRL for discrete random variables
follows from the result by Harsha et al. [4] on the one-shot
exact channel simulation with unlimited common randomness.
Their result implies that I (X; Z |Y ) ≤ (1 + ϵ) log(I (X; Y ) +
1) + cϵ is achievable, where ϵ > 0 and cϵ is a function of ϵ.
This result was later strengthened by Braverman and Garg [10]
to I (X; Z |Y ) ≤ log(I (X; Y ) + 1) + c (note that replacing
the universal code in [4] by a code for a suitable power law
distribution can also yield the same improvement). It is also
shown in [10] that there exist examples for which the log term
is necessary. SFRL strengthens these results in two ways; first
it generalizes the bound to random variables with arbitrary
distributions (whereas the results in [4] and [10] only applies
to discrete distributions), and second it provides a bound with
a small additive constant of 4 (whereas the constants in [4]
and [10] are unspecified). Our stronger result is established
using a new construction of Z and g that we refer to as
the Poisson functional representation, instead of the rejection
sampling approach in [4] and [10]. Perhaps more importantly,
we are the first to show that the result in [4] can be considered
as a strengthened functional representation lemma, which led
us to explore applications in source and channel coding.
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One-shot achievability results using fixed length
(random) coding have been recently established for lossy
source coding and several settings in network information
theory. Liu et al. [11] established a one-shot achievability
result for lossy source coding using channel resolvability.
One-shot quantum lossy source coding settings were
investigated by Datta et al. [12]. Verdú [13] introduced
non-asymptotic packing and covering lemmas and used
them to establish one-shot achievability results for several
settings including Gelfand-Pinsker. Liu et al. [14] proved a
one-shot mutual covering lemma and used it to establish
a one-shot achievability result for the broadcast channel.
Watanabe et al. [15] established several one-shot achievability
results for coding with side-information (including Gelfand-
Pinsker). Yassaee et al. [16] established several one-shot
achievability results, including Gelfand-Pinsker and multiple
description coding. Most of these results are stated in terms of
information density and various other quantities. In contrast,
our one-shot achievability results using variable-length codes
are all stated in terms of only mutual information. Moreover,
given the SFRL, our proofs are generally simpler.

Variable-length (one-shot, finite blocklength or asymptotic)
lossy source coding settings have been studied, see [17]–[21].
Some of these works concern the universal setting in which
the distribution of the source is unknown, hence the use of
variable-length codes is justified. In contrast, the reason we
consider variable-length codes in this paper is that it allows
us to give one-shot results that subsume their asymptotic fixed-
length counterparts.

In the following section, we state the SFRL, introduce the
Poisson functional representation construction and provide a
sketch of the proof of the lemma. The complete proof is
given in Appendix A. In Sections III and IV we use SFRL to
establish one-shot achievability results for channel simulation
and three source coding settings, respectively. In Section V,
we use SFRL together with Shannon’s channel coding theorem
to provide a simple achievability proof of the Gelfand–Pinsker
theorem. Finally in Section VI we prove a lower bound on
I (X; Z |Y ) in SFRL (whereas SFRL is an upper bound) and
discuss several other properties.

Notation

Throughout this paper, we assume that log is base 2 and the
entropy H is in bits. We use the notation: Xb

a = (Xa, . . . , Xb),
Xn = Xn

1 , [a : b] = [a, b] ∩ Z and [a] = [1 : a].
For discrete X , we write the probability mass function

as pX . For continuous X , we write the probability density
function as fX . For general random variable X , we write the
probability measure (push-forward measure by X) as PX .

II. STRONG FUNCTIONAL REPRESENTATION LEMMA

The main result in this paper is given in the following.
Theorem 1 (Strong Functional Representation Lemma):

For any pair of random variables (X, Y ) ∼ PXY (over a Polish
space with Borel probability measure) with I (X; Y ) < ∞,
there exists a random variable Z independent of X such that

Y can be expressed as a function g(X, Z) of X and Z , and

I (X; Z |Y ) ≤ log(I (X; Y ) + 1) + 4.

Moreover, if X and Y are discrete with cardinalities |X | and
|Y|, respectively, then |Z| ≤ |X |(|Y| −1) + 2.
Note that SFRL can be applied conditionally; given PXY |U ,
we can represent Y as a function g(X, Z , U) such that Z is
independent of (X, U) and

I (X; Z |Y, U) ≤ log (I (X; Y |U) + 1) + 4. (2)

We can have Z ⊥⊥(X, U), not only Z ⊥⊥X | U which follows
from directly applying SFRL for each value of U . The
reason is that by the functional representation lemma, we can
represent Z as a function of U and Z̃ such that Z̃ ⊥⊥U
(which, together with Z̃ ⊥⊥X | U , gives Z̃ ⊥⊥(X, U)), and use
Z̃ instead of Z .

Note that SFRL applies to general distributions PXY .
Although H (Y ) may be infinite, as long as I (X; Y ) is finite,
the cardinality of Y conditioned on Z is countable and H (Y |Z)
is finite by SFRL. Since Z ⊥⊥X and H (Y |X, Z) = 0 imply
that I (X; Z |Y ) = H (Y |Z) −I (X; Y ), the SFRL implies the
existence of a Z ⊥⊥X such that H (Y |Z) is close to I (X; Y ).

To prove the SFRL, we use the following random variable
Z and function g construction.

Definition 1 (Poisson Functional Representation): Fix any
joint distribution PXY . Let 0 ≤ T1 ≤ T2 ≤ · · · be a Poisson
point process with rate 1 (i.e., the increments Ti −Ti−1 are
i.i.d. Exp(1) for i = 1, 2, . . . with T0 = 0), and Ỹ1, Ỹ2, . . . be
i.i.d. with Ỹ1 ∼ PY . Take Z = {(Ỹi , Ti )}i=1,2,..., i.e., a marked
Poisson point process. Then we can let Y = gX→Y (X, Z),
where

gX→Y (x, {(ỹi , ti )}) = ỹkX→Y (x, {( ỹi,ti )}),

and

kX→Y (x, {(ỹi , ti )}) = arg min
i

ti · d PY

d PY |X (·|x)
(ỹi ),

where we write (dPY /d PY |X (·|x))(y) =
((d PY |X (·|x)/dPY )(y))−1 for the Radon-Nikodym derivative
(i is not chosen if (d PY |X (·|x)/dPY )(ỹi ) = 0).

To illustrate this Poisson functional representation, consider
the following.

Example 1: Let Y ∼ Unif[0, 1] and Y |{X =
x} ∼ fY |X (y|x). Then gX→Y (x, z) = ỹk where
k = arg mini ti/ fY |X (y|x). Figure 1 shows an example
of z = {(ỹi , ti )}. The index k is selected by scaling up the
graph of fY |X (y|x) until it hits the first point, then we output
ỹk of that point (ỹ3 in the figure). It is straightforward to check
that this procedure gives the correct conditional distribution
Y |{X = x} ∼ fY |X (y|x). Roughly speaking, if I (X; Y )
is small, then Y |{X = x} will be close to the uniform
distribution for most x’s, and the ỹk’s with smaller indices k’s
will be more likely to be output, and therefore H (Y |Z) will
be smaller. (If I (X; Y ) = 0, then Y |{X = x} ∼ Unif[0, 1]
and ỹ1 is output for almost all x , and hence H (Y |Z) = 0.)

Remark 1: Exponential representation for discrete Y Let
Y ∈ {1, . . . , l} be discrete, then we can simplify the construc-
tion of Z in the definition of Poisson functional representation
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Fig. 1. Illustration of the Poisson functional representation construction for
Example 1.

to first generating a sequence of i.i.d. exponential random
variables Z1, . . . , Zl with Z1 ∼ Exp(1) and setting

gX→Y (x, zl) = arg min
y∈Y

zy

pY |X (y|x)
.

Since the arg min of independent exponential random variables
with different rates has a pmf proportional to the rates, we have
gX→Y (x, Zl) ∼ pY |X (·|x). Moreover, if |Y| is finite, then
normalizing {Z y}y∈Y by scaling each Z y by the same factor
such that

∑
y Z y = 1 (making {Z y} uniformly distributed over

the probability simplex on Y) would not affect gX→Y (X, Zl).
Hence we can assume {Z y} is uniformly distributed over the
simplex.

To see the connection to the Poisson construction, note that
we can equivalently let Z y = pY (y) · mini: Ỹi =y Ti , where Ti

is as defined before, and Y = gX→Y (X, Zl).
We now proceed to give a sketch of the proof of Theorem 1

by showing that the Poisson functional representation satisfies
the constraints. The complete proof is given in Appendix A.

Proof: [Sketch of the Proof of Theorem 1] Consider the
Poisson functional representation. Let Y = ỸK ,

K = kX→Y (X, {(Ỹi , Ti )}) = arg min
i

Ti · d PY

d PY |X (·|X)
(Ỹi ).

Since Y is a function of Z and K , we have H (Y |Z) ≤ H (K ).
We now proceed to bound H (K ).

Condition on X = x . Since T1 ≤ T2 ≤ · · · , K is small
when d PY (y)/d PY |X (y|x) for different y’s are close to 1,
i.e., PY is close to PY |X (·|x) (if PY = PY |X (·|x) for all y,
then d PY (y)/d PY |X (y|x) = 1, and K = 1). In fact we can
prove that

E
[
log K |X = x

] ≤ D(PY |X (·|x)∥ PY ) + e−1 log e + 1.

The proof is given in Appendix A. Therefore E
[
log K

]
≤

I (X; Y )+e−1 log e+1. By the maximum entropy distribution

subject to a given E
[
log K

]
, we have

H (K ) ≤ E
[
log K

]
+ log

(
E

[
log K

]
+ 1

)
+ 1.

The proof of this bound is given in Appendix B for the sake
of completeness. Hence

H (K )

≤ I (X; Y ) + e−1 log e + 2 + log
(

I (X; Y ) + e−1 log e + 2
)

≤ I (X;Y )+log(I (X;Y )+1)+e−1log e+2+log(e−1log e+2)

< I (X; Y ) + log (I (X; Y ) + 1) + 4.

Operationally, K can be encoded using the optimal prefix-free
code for the Zipf distribution q (k) ∝ k−λ, where

λ = 1 + 1/(I (X; Y ) + e−1 log e + 1). (3)

It can be checked that the expected length of the codeword is
upper bounded by I (X; Y ) + log (I (X; Y ) + 1) + 5.

Remark 2: The Poisson functional representation is a non-
causal scheme, meaning that in order to determine whether
to output ỹi , one has to look at future ỹ j ’s, j > i . While
a future ỹ j has larger t j , it can be chosen if it has a much
smaller (d PY /d PY |X (·|x))(ỹi). In comparison, the schemes
in [4] and [10], which are based on rejection sampling, are
causal. Causality is irrelevant in the applications in this paper,
however, and will not be discussed further.

III. ONE-SHOT CHANNEL SIMULATION

Channel simulation aims to find the minimum amount of
communication over a noiseless channel needed to simulate
a memoryless channel PY |X . Several settings of this problem
have been studied, see [22]–[24]. Consider the one-shot chan-
nel simulation with unlimited common randomness setup [4]
in which Alice and Bob share unlimited common randomness
W . Alice observes X ∼ PX and sends a prefix-free description
M to Bob via a noiseless channel such that Bob can generate
Y (from M and W ) according to a prescribed conditional dis-
tribution PY |X . The problem is to find the minimum expected
description length of M , E [L(M)], needed. Since we have the
Markov chain X −M −Y conditional on W ,

E [L(M)] ≥ H (M|W )

≥ I (X; Y |W )

= I (X; Y, W ) −I (X; W )

= I (X; Y, W )

≥ I (X; Y ).

In [10], which strengthens the result in [4], it is shown that
for X and Y discrete,

E [L(M)] ≤ I (X; Y ) + log(I (X; Y ) + 1) + c

is achievable, where c is an unspecified constant.
We now show that the SFRL provides an upper bound on

E [L(M)] that applies to arbitrary (not only discrete) channels.
By the SFRL (1), there exists a Z independent of X such that
Y = gX→Y (X, Z) and

H (Y |Z) ≤ I (X; Y ) + log(I (X; Y ) + 1) + 4.
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We use W = Z as the common randomness. Upon observing
X = x , Alice computes y = gX→Y (x, z) and encodes y using
a Huffman code for the pmf pY |Z(·|z) into the description m
(note that Y can be arbitrary but by the SFRL Y |{Z = z} is
discrete). Bob then recovers y from m and z. The expected
length is

E [L(M)] ≤ I (X; Y ) + log(I (X; Y ) + 1) + 5.

In practice, instead of using a Huffman code (which may be
impractical since pY |Z(·|z) is not easy to compute), we can
compress k = kX→Y (x, z) in the Poisson functional represen-
tation into m using the optimal prefix-free code for the Zipf
distribution (3).

Moreover, for discrete X, Y , the amount of the
common randomness can be bounded by log |W| ≤
log(|X |(|Y| − 1) + 2). In comparison, the amount of
the common randomness in [4] can be bounded by
O(log(|X ||Y|)) only if the expected description length is
increased by O(log log(|X | + |Y|)).

Remark 3: In [4], the setting in which X = x is an arbitrary
input (instead of X ∼ pX ) is studied. It is shown that

E [L(M)] ≤ C + (1 + ϵ) log(C + 1) + cϵ

for all x ∈ X is achievable, where C is the capacity of the
channel pY |X and cϵ is a function of ϵ.

The Poisson functional representation can still be applied to
this setting. If we encode k = kX→Y (x, z) into M using the
optimal prefix-free code for the Zipf distribution q (k) ∝ k−λ,
where λ = 1+1/(C+e−1 log e+1), then by the same argument
in the proof of the SFRL, and [4, Claim 3.1],

E [L(M)] ≤ C + log(C + 1) + 5

is achievable.
We can also prove a cardinality bound of the common

randomness Z in this setting. Applying Carathéodory’s
theorem on the (|X ||Y|)-dimensional vectors with entries
E[log K |X = x, Z = z] and p(x, y|z) for x ∈ {1, . . . , |X |},
y ∈ {1, . . . , |Y| −1}, we have the cardinality bound |Z| ≤
|X ||Y| + 1.

Remark 4: A generalization to this problem, referred as
message compression in the study of communication complex-
ity, and related to Slepian-Wolf coding [25], concerns the case
in which Bob also observes the side information U correlated
with X (see [26], [27]). SFRL cannot be directly applied in
this case since the conditional version of SFRL requires Y to
be a function of (X, Z , U), though Alice does not observe U .
Such generalization is beyond the scope of this paper.

IV. LOSSY SOURCE CODING

We use the SFRL to establish one-shot achievability results
for three lossy source coding settings.

A. Lossy Source Coding

Consider the following one-shot variable-length lossy
source coding problem. We are given a random variable
(source) X ∈ X with X ∼ PX , a reproduction alphabet Y ,
and a distortion function d : X × Y → [0,∞] (note that

X, Y can be arbitrary, and d(x, y) can be infinite). Given X ,
the encoder selects Ỹ ∈ Y and encodes it using a prefix-
free code into M ∈ {0, 1}∗. The decoder recovers Ỹ from M .
Let R̄ = E[L(M)] be the expected value of the length of
the description M and E[d(X, Ỹ )] be the average distortion
of representing X by Ỹ . An expected length-distortion pair
(R̄, D) is said to be achievable if there exists a variable-
length code with expected description length R̄ such that
E[d(X, Ỹ )] ≤ D.

In the following we use the SFRL to establish a set of
achievable (R̄, D) pairs.

Theorem 2: A pair (R̄, D) is achievable for the one-shot
variable-length lossy source coding problem with source X ∼
PX , reproduction alphabet Y , and distortion measure d(x, y)
if

R̄ > R(D) + log(R(D) + 1) + 6,

where

R(D) = inf
PY |X : E[d(X,Y )]≤D

I (X; Y )

is the (asymptotic) rate-distortion function [5].
Proof: Let Y be the random variable that attains

E[d(X, Y )] ≤ D and I (X; Y ) ≤ R(D) + ϵ. By the SFRL (1),
there exists Z independent of X such that Y = gX→Y (X, Z)
and

H (gX→Y (X, Z)|Z) ≤ I (X; Y ) + η,

where η = log(I (X; Y ) + 1) + 4. Consider the set

A = {(H (gX→Y (X, z)), EX [d(X, gX→Y (X, z))]) : z ∈ Z} .

The point (H (gX→Y (X, Z)|Z), E [d(X, Y )]) is a weighted
average of the points in A (and thus is in the convex hull
of A). Hence there exists z satisfying the rate constraint
H (gX→Y (X, z)) ≤ H (gX→Y (X, Z)|Z), and there exists z′

satisfying the distortion constraint EX
[
d(X, gX→Y (X, z′))

] ≤
E [d(X, Y )]. However, there may not exist a single z
simultaneously satisfying both constraints. Hence we invoke
Carathéodory’s theorem to find a mixture between two points
z0, z1 and λ ∈ [0, 1] such that both constraints are satisfied:

(1 −λ)H (gX→Y (X, z0)) + λH (gX→Y (X, z1))

≤ H (gX→Y (X, Z)|Z) ≤ I (X; Y ) + η,

×(1−λ)EX [d(X, gX→Y (X, z0))]

+ λEX [d(X, gX→Y (X, z1))]

≤ E [d(X, Y )] .

Note that to satisfy the above inequalities, we need one point
less than stated in Carathéodory’s theorem. Take Q ∼ Bern(λ),
Ỹ = gX→Y (X, zQ). Then

H (Ỹ ) ≤ H (Ỹ |Q)+H (Q) ≤ H (Ỹ |Q) + 1 ≤ I (X; Y )+η + 1.

We use a Huffman code to encode Ỹ and obtain an expected
length R̄ ≤ H (Ỹ ) + 1. The result follows by letting
ϵ → 0.

Note that a stochastic encoder is used in the proof. Neverthe-
less, the encoder only needs to randomize between two deter-
ministic encoding functions in order to achieve Theorem 2.
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An interesting implication of Theorem 2 is that for any
source PX , distortion measure d(x, y), and distortion level D,
the optimal asymptotic rate R(D) cannot be too far from the
optimal one-shot expected description length R̄∗(D) = inf{R̄ :
(R̄, D) achievable} ≤ R(D)+log(R(D)+1)+6. For example,
there does not exist (PX , d(x, y), D), where R(D) = 100
but R̄∗(D) ≥ 113. This is a benefit of considering variable-
length codes. Such conclusion does not hold if we consider
fixed-length codes instead (e.g., if X ∼ Geom(1/2), d(x, y) =
1{x ̸= y}, then R(D) ≤ 2 for any D ≥ 0, but the optimal
length of the one-shot fixed-length code tends to infinity as
D → 0).

Although the above achievability proof does not use random
coding, it can be interpreted as using the following soft random
coding scheme.

Soft codebook generation. The random variable Z =
{(Ỹi , Ti )}i=1,2,... produced by the Poisson functional
representation represents the choice of the codebook.
We select a “soft codebook” by conditioning on Z =
{(ỹi , ti )}i=1,2,.... Unlike conventional codebook C ⊆ Y
which contains a fixed number of y’s, a soft codebook
{(ỹi , ti )} contains an infinite sequence of ỹi ’s, each with a
weight ti (the smaller ti is, the more likely ỹi is chosen).
Encoding. The encoder observes x and finds the recon-
struction ỹk where

k = arg min
i

ti · d PY

d PY |X (·|x)
(ỹi ).

It then encodes the index k using an optimal prefix-free
code for the Zipf distribution (3). This is analogous to a
conventional codebook generation in which we find the
closest y ∈ C to x and encodes it into its index in C. Here
we use a prefix-free code over the positive integers to
encode the index into the description m because the index
k can be unbounded, but the smaller k’s (with smaller
tk’s) are more likely to be used so they are assigned
shorter descriptions.
Decoding. The decoder receives m, recovers k, then
outputs ỹk .

Note that the soft random coding scheme shares some
similarity with the likelihood encoder in [28], which uses a
conventional i.i.d. random codebook generation y(m) ∼ PY ,
m = 1, . . . , 2R , but uses a stochastic encoder which chooses
m with probability proportional to the likelihood function

L(m|x) = pX |Y (x |y(m)) ∝ d PY |X (·|x)

d PY
(y(m)).

The soft random coding scheme can be viewed as fixing the
randomness in the likelihood encoder as part of the codebook.

A related one-shot variable-length lossy source coding set-
ting with a constraint on the probability that the distortion
exceed certain level (instead of average distortion) was studied
in [21]. In [29], a result similar to Theorem 2 is given in the
context of epsilon entropy.

The finite blocklength variable-length lossy source cod-
ing problem [17] concerns the case in which the source is
memoryless and average per symbol distortion d(xn, yn) =
(1/n)

∑
i d(xi , yi ). In [30] it is shown that the expected per

symbol description length R̄/n = R(D)+(1+o(1))(1/n) log n
is achievable via d-semifaithful codes [31] with d(Xn, Ỹ n) ≤
D surely. Applying Theorem 2 to Xn , we have

R̄/n = R(D) + (1/n)(log(n R(D) + 1) + 6)

= R(D) + (1 + o(1))(1/n) log n.

Hence we achieve the same redundancy as [30] albeit under
the expected distortion constraint instead of the stronger sure
distortion constraint using the d-semifaithful codes.

We can use Theorem 2 to establish the achievability of
Shannon’s (asymptotic) lossy source coding theorem [5],
assuming there exists a symbol y0 ∈ Y with finite d(x, y0)
for all x . First note that the redundancy (1 + o(1))(1/n) log n
in the finite block length extension can be made arbitrarily
small, hence R̄/n can be made arbitrarily close to R(D).
Now we use the finite block length scheme over l blocks of
n source symbols each of length n (for a total block length
of nl). By the law of large numbers, the probability that the
total description length is greater than nl(R(D) + ϵ) tends
to 0 as the block length approaches infinity. Hence, we can
construct a fixed length code out of the variable-length code
by simply discarding descriptions longer than nl(R(D) + ϵ)
and assigning the reconstruction sequence (y0, . . . , y0) to the
discarded descriptions.

B. Multiple Description Coding

In this section, we use the SFRL to establish a one-
shot inner bound for the variable-length multiple descrip-
tion coding problem, which yields an alternative proof of
the El Gamal-Cover inner bound [6] and the Zhang-Berger
inner bound [7], [32], [33] in the asymptotic regime. The
encoder observes X ∼ PX and produces two prefix-free
descriptions M1, M2 ∈ {0, 1}∗. Decoder 1 observes M1 and
generates Ỹ1 with distortion d1(X, Ỹ1). Similarly, Decoder
2 observes M2 and produces Ỹ2 with distortion d2(X, Ỹ2).
Decoder 0 observes M1 and M2 and produces Ỹ0 with distor-
tion d0(X, Ỹ0). An expected description length-distortion tuple
(R̄1, R̄2, D0, D1, D2) is said to be achievable if there exists a
scheme with expected description length E[L(Mi )] ≤ R̄i and
expected distortion E[di (X, Ỹi )] ≤ Di .

Theorem 3: The tuple (R̄1, R̄2, D0, D1, D2) is achievable
if

R̄1 ≥ I (X; Y1, U) + 2η,

R̄2 ≥ I (X; Y2, U) + 2η,

R̄1+ R̄2 ≥ I (X; Y0, Y1, Y2|U)+2I (X; U)+ I (Y1; Y2|U)+5η,

Di ≥ E[di(X, Yi )] for i = 0, 1, 2

for some PU,Y0,Y1,Y2|X , where

η = log
(
I (X; Y0, Y1, Y2, U) + I (Y1; Y2|U) + 1

)
+ 7.

Note that the only difference between the above region and
Zhang-Berger inner bound is the addition of η, which grows
like log n if we consider Xn and does not affect the asymptotic
rate.
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Proof: It suffices to prove the achievability of the corner
point:

R̄1 = I (X; Y1|U) + I (X; U) + 2η −1, (4)

R̄2 = I (X,Y1; Y2|U)+ I (X; Y0|Y1, Y2, U)+ I (X; U)+3η−1,

(5)

Di = E[di (X, Yi )] for i = 0, 1, 2. (6)

The desired rate region can be achieved by time sharing
between this corner point and the other corner point where
Y1, Y2 are flipped, resulting in a penalty of at most 1 bit (we
can use the first bits of M1 and M2 to represent which corner
point it is).

Applying the SFRL (1) to X, U , we have U =
gX→U (X, Z3), where Z3 ⊥⊥X such that

H (U |Z3) ≤ I (X; U) + log(I (X; U) + 1) + 4

≤ I (X; U) + η −3.

Applying the SFRL to X, Y1 conditioned on U (2), we have
Y1 = gX→Y1|U (X, Z1, U), where Z1 ⊥⊥(X, U) such that

H (Y1|U, Z1) ≤ I (X; Y1|U) + log(I (X; Y1|U) + 1) + 4

≤ I (X; Y1|U) + η −3.

Applying the SFRL to (X, Y1), Y2 conditioned on U , we have
Y2 = gXY1→Y2|U (X, Y1, Z2, U), Z2 ⊥⊥(X, Y1, U) such that

H (Y2|U, Z2) ≤ I (X, Y1; Y2|U)+log(I (X, Y1; Y2|U)+1)+4

≤ I (X, Y1; Y2|U) + η −3.

Applying the SFRL to X, Y0 conditioned on (Y1, Y2, U),
we have Y0 = gX→Y0|Y1Y2U (X, Z0, Y1, Y2, U),
Z0 ⊥⊥(X, Y1, Y2, U) such that

H (Y0|Y1, Y2, U, Z0)

≤ I (X; Y0|Y1, Y2, U) + log(I (X; Y0|Y1, Y2, U) + 1) + 4

≤ I (X; Y0|Y1, Y2, U) + η −3.

Note that Z3
0 ⊥⊥X . Consider the convex hull of the 7-

dimensional vectors
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

H (U |Z3
0 = z3

0)
H (Y1|U, Z3

0 = z3
0)

H (Y2|U, Z3
0 = z3

0)
H (Y0|Y1, Y2, U, Z3

0 = z3
0)

E[d0(X, Y0) | Z3
0 = z3

0]
E[d1(X, Y1) | Z3

0 = z3
0]

E[d2(X, Y2) | Z3
0 = z3

0]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

for different z3
0 ∈ Z0 × Z1 × Z2 × Z3. By Carathéodory’s

theorem, there exists a pmf pQ with cardinality |Q| ≤ 7 and
z̃3

0(q ) such that

H (U |Q, Z3
0 = z̃3

0(Q)) ≤ I (X; U) + η −3,

and similarly for the other 6 inequalities. Take
Ũ = gX→U (X, z̃3(Q)), Ỹ1 = gX→Y1|U (X, z̃1(Q), Ũ),
Ỹ2 = gXY1→Y2|U (X, Ỹ1, z̃2(Q), Ũ) and Ỹ0 = gX→Y0|Y1Y2U (X,
z̃0(Q), Ỹ1, Ỹ2, Ũ ). Write CpY (y) ∈ {0, 1}∗ for the
Huffman codeword of y for the distribution pY .
We set M1 to be the concatenation of Q (3 bits),

CpŨ |Q( · |Q)(Ũ) and CpỸ1|Ũ Q( · |Ũ,Q)(Ỹ1), and M2 to be

the concatenation of Q, CpŨ |Q( · |Q)(Ũ), CpỸ2|Ũ Q( · |Ũ,Q)(Ỹ2)

and CpỸ0|Ỹ1Ỹ2Ũ Q( · |Ỹ1,Ỹ2,Ũ ,Q)(Ỹ0). The expected length of M1

is upper bounded by

3 + (I (X; U) + η −3 + 1) + (I (X; Y1|U) + η −3 + 1)

= I (X; Y1|U) + I (X; U) + 2η −1.

Hence (4) is satisfied. By similar arguments, (5) and (6) hold.
Decoder 1 receives M1 and recovers Q, and then recovers Ũ

by decoding the Huffman code for the distribution pŨ |Q( · |Q),
and then recovers Ỹ1 similarly. Decoder 2 receives M2 and
recovers Q, Ũ and Ỹ2. Decoder 0 receives M1, M2 and recov-
ers Q, Ũ , Ỹ1, Ỹ2 and Ỹ0.

C. Lossy Gray–Wyner System

In this section, we use the SFRL to establish a one-
shot inner bound for the lossy Gray–Wyner system [8],
which yields an alternative proof of the achievability of
the rate region in the asymptotic regime. The encoder
observes (X1, X2) ∼ PX1,X2 and produces three prefix-
free descriptions M0, M1, M2 ∈ {0, 1}∗. Decoder 1 observes
M0, M1 and generates Ỹ1 with distortion d1(X1, Ỹ1). Similarly,
Decoder 2 observes M0, M2 and produces Ỹ2 with distortion
d2(X2, Ỹ2). An expected description length-distortion tuple
(R̄0, R̄1, R̄2, D1, D2) is said to be achievable if there exists
a scheme with expected description length E[L(Mi )] ≤ R̄i
and expected distortion E[di (Xi , Ỹi )] ≤ Di .

Theorem 4: The tuple (R̄0, R̄1, R̄2, D1, D2) is achievable if

R̄0 ≥ I (X1, X2; U) + log(I (X1, X2; U) + 1) + 8, (7)

R̄1 ≥ I (X1; Y1|U) + log(I (X1; Y1|U) + 1) + 5, (8)

R̄2 ≥ I (X2; Y2|U) + log(I (X2; Y2|U) + 1) + 5, (9)

Di ≥ E[di(Xi , Yi )] for i = 1, 2 (10)

for some PU |X1,X2 , PY1|X1,U , PY2|X2,U .
Note that the only difference between the above region and
the lossy Gray–Wyner rate region [1, p. 357] is the addition
of the logarithm terms, which grows like log n if we consider
Xn

1 , Xn
2 and does not affect the asymptotic rate.

Proof: Applying the SFRL to (X1, X2), U , we have U =
gX1 X2→U (X1, X2, Z0), where Z0 ⊥⊥(X1, X2) such that

H (U |Z0) ≤ I (X1, X2; U) + log(I (X1, X2; U) + 1) + 4.

Applying the SFRL to X1, Y1 conditioned on U (2), we have
Y1 = gX1→Y1|U (X1, Z1, U), where Z1 ⊥⊥(X1, U) such that

H (Y1|U, Z1) ≤ I (X1; Y1|U) + log(I (X1; Y1|U) + 1) + 4.

Applying the SFRL to X2, Y2 conditioned on U , we have Y2 =
gX2→Y2|U (X2, Z2, U), where Z2 ⊥⊥(X2, U) such that

H (Y2|U, Z2) ≤ I (X2; Y2|U) + log(I (X2; Y2|U) + 1) + 4.
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Note that Z2
0 ⊥⊥(X1, X2). Consider the convex hull of the 5-

dimensional vectors
⎡

⎢⎢⎢⎢⎣

H (U |Z2
0 = z2

0)
H (Y1|U, Z2

0 = z2
0)

H (Y2|U, Z2
0 = z2

0)
E[d1(X1, Y1) | Z2

0 = z2
0]

E[d2(X2, Y2) | Z2
0 = z2

0]

⎤

⎥⎥⎥⎥⎦

for different z2
0 ∈ Z0 ×Z1 ×Z2. By Carathéodory’s theorem,

there exists a pmf pQ with cardinality |Q| ≤ 5 and z̃2
0(q ) such

that

H (U |Q, Z2
0 = z̃2

0(Q))

≤ I (X1, X2; U) + log(I (X1, X2; U) + 1) + 4,

and similarly for the other 4 inequalities. Take Ũ =
gX1 X2→U (X1, X2, z̃0(Q)), Ỹ1 = gX1→Y1|U (X1, z̃1(Q), Ũ )
and Ỹ2 = gX2→Y2|U (X2, z̃2(Q), Ũ ). Write CpY (y) ∈ {0, 1}∗
for the Huffman codeword of y for the distribution pY . We set
M0 to be the concatenation of Q (3 bits) and CpŨ |Q( · |Q)(Ũ),

M1 = CpỸ1|Ũ Q( · |Ũ,Q)(Ỹ1) and M2 = CpỸ2|Ũ Q( · |Ũ,Q)(Ỹ2). The
expected length of M0 is upper bounded by

3 + (H (U |Z0) + 1)

≤ 3 + (I (X1, X2; U) + log(I (X1, X2; U) + 1) + 4 + 1)

= I (X1, X2; U) + log(I (X1, X2; U) + 1) + 8.

Hence (7) is satisfied. By similar arguments, (8), (9) and (10)
hold.

Decoder 1 receives M0, M1 and recovers Q, and then
recovers Ũ by decoding the Huffman code for the distri-
bution pŨ |Q( · |Q), and then recovers Ỹ1 by decoding the
Huffman code for the distribution pỸ1|Ũ Q( · |Ũ, Q). Similar for
Decoder 2.

V. ACHIEVABILITY OF GELFAND–PINSKER

In this section, we use the SFRL to prove the achievability
part of the Gelfand-Pinsker theorem [9] for discrete mem-
oryless channels with discrete memoryless state pS pY |X,S,
where the state is noncausally available at the encoder. The
asymptotic capacity of this setting is

CGP = max
pU |S , x(u,s)

(I (U ; Y ) −I (U ; S)) .

We show the achievability of any rate below CGP directly
by using the SFRL to reduce the channel to a point-to-point
memoryless channel. Fix pU |S and x(u, s) that attain the
capacity. Applying the SFRL to S, U , there exists a random
variable V ⊥⊥S such that

H (U |V ) ≤ I (U ; S) + log(I (U ; S) + 1) + 4.

Note that

I (V ; Y ) = I (U ; Y ) −I (U ; Y |V ) + I (V ; Y |U)

≥ I (U ; Y ) −H (U |V )

≥ I (U ; Y ) −I (U ; S) −log(I (U ; S) + 1) −4.

Hence we have constructed a memoryless point-to-point chan-
nel pY |V with achievable rate close to I (U ; Y ) −I (U ; S).

For n channel uses, let Un |{Sn = sn} ∼ ∏
i pU |S(ui |si ).

The SFRL applied to Sn, Un gives

I (V ; Y n) ≥ nI (U ; Y ) −nI (U ; S) −log(nI (U ; S) + 1) −4.

Now we use the channel pY n |V l times (for a total block length
of nl). By the channel coding theorem, we can communicate
l(nI (U ; Y )−nI (U ; S)−log(nI (U ; S)+1)−4)−o(l) bits with
error probability that tends to 0 as l → ∞. Letting n → ∞
completes the proof.

In the above proof, we see that the SFRL can be used
to convert a channel with state into a point-to-point channel
by “orthogonalizing” the auxiliary input U and the state S.
The point-to-point channel can be constructed explicitly via
Poisson functional representation. This construction can be
useful for designing codes for channels with state based on
codes for point-to-point channels. It is interesting to note
that this reduction makes the achievability proof for the
Gelfand–Pinsker quite similar to that for the causal case in
which the channel is reduced to a point-to-point channel using
the “Shannon strategy” (see [1, p. 176]).

Note that Marton’s inner bound for the broadcast channels
with private messages [34] can also be proved using the SFRL
in a similar manner. The idea is to “orthogonalize” the depen-
dent auxiliary random variables U1, U2 by applying the SFRL
on U1, U2 to produce two independent input random variables,
and treat them with Y1, Y2 as an interference channel, and
finally to treat interference as noise.

VI. LOWER BOUND AND PROPERTIES OF I (X; Z |Y )

Define the excess functional information as

$(X → Y ) = inf
Z : Z ⊥⊥X, H(Y |X,Z)=0

I (X; Z |Y ).

An equivalent way to state SFRL is $(X → Y ) ≤
log(I (X; Y )+1)+4. In this section, we explore the properties
of $(X → Y ). We first establish a lower bound.

Proposition 1: For discrete Y ,

$(X → Y ) ≥ −
∑

y∈Y

∫ 1

0

(
PX

{
pY |X (y|X) ≥ t

}

· log
(
PX

{
pY |X (y|X) ≥ t

}) )
dt −I (X; Y ).

Moreover for |Y| = 2, equality holds in the above inequality,
and the infimum in $(X → Y ) is attained via the Poisson
functional representation.

Proof: Fix Z ⊥⊥X such that Y = g(X, Z). For any y, let
Vy = pY |Z(y|Z), U ∼ Unif[0, 1], X̃ y = pY |X (y|X), Ṽy =
P

{
X̃ y ≥ U | U

}
, then E[Vy] = E[Ṽy] = pY (y). We have

∫ 1

v
P{Vy ≥ t}dt

= E
[
max

{
Vy −v, 0

}]

= EZ
[
max

{
pY |Z (y|Z) −v, 0

}]

= EZ
[
max {PX {g(X, Z) = y | Z} −v, 0}]

= EZ

[
max

{
EX̃ y

[
PX

{
g(X, Z) = y

∣∣ Z , X̃ y

} ∣∣∣ Z
]

−v, 0
}]

= EZ

[
max

{
EX̃ y

[
PX

{
g(X, Z) = y

∣∣ Z , X̃ y

} ∣∣∣ Z
]
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−EX̃ y

[
1

{
X̃ y > F−1

X̃ y
(1 −v)

}]
, 0

}]

≤ EZ

[
EX̃ y

[
max

{
PX

{
g(X, Z) = y

∣∣ Z , X̃ y

}

−1
{

X̃ y > F−1
X̃ y

(1 −v)

}
, 0

} ∣∣∣ Z
]]

= EZ

[
EX̃ y

[
PX

{
g(X, Z) = y

∣∣ Z , X̃ y

}

· 1
{

X̃ y ≤ F−1
X̃ y

(1 −v)

} ∣∣∣Z
]]

= EX̃ y

[
EZ

[
PX

{
g(X, Z) = y

∣∣ Z , X̃ y

} ∣∣∣ X̃ y

]

· 1
{

X̃ y ≤ F−1
X̃ y

(1 −v)

} ]

= EX̃ y

[
EX

[
PZ {g(X, Z) = y | X}

∣∣ X̃ y

]

· 1
{

X̃ y ≤ F−1
X̃ y

(1 −v)

} ]

= EX̃ y

[
EX

[
pY |X (y|X)

∣∣ X̃ y

]
1

{
X̃ y ≤ F−1

X̃ y
(1 −v)

}]

= EX̃ y

[
X̃ y · 1

{
X̃ y ≤ F−1

X̃ y
(1 −v)

}]

= EU

[
max

{
P

{
X̃ y ≥ U

∣∣ U
}

−v, 0
}]

= E
[
max

{
Ṽy −v, 0

}]

=
∫ 1

v
P{Ṽy ≥ t}dt .

Hence Vy dominates Ṽy stochastically in the second order.
By the concavity of −t log t , we have

H (Y |Z) = −
∑

y

EZ
[

pY |Z (y|Z) log pY |Z (y|Z)
]

= −
∑

y

E
[
Vy log Vy

]

≥ −
∑

y

E
[
Ṽy log Ṽy

]

= −
∑

y

∫ 1

0

(
PX

{
pY |X (y|X) ≥ u

}

· log
(
PX

{
pY |X (y|X) ≥ u

}) )
du. (11)

Therefore,

I (X; Z |Y ) ≥ −
∑

y

∫ 1

0

(
PX

{
pY |X (y|X) ≥ t

}

· log
(
PX

{
pY |X (y|X) ≥ t

}) )
dt −I (X; Y ).

One can verify that for |Y| = 2, equality in (11) holds by the
definition of Poisson functional representation.
The following proposition shows that there exists a sequence
of (X, Y ) for which the bound $(X, Y ) ≤ log(I (X; Y )+1)+4
given in the SFRL is tight within 5 bits. An example where
the log term is tight is also given in [10], though the additive
constant is not specified there.

Proposition 2: For every α ≥ 0, there exists discrete X, Y
such that I (X; Y ) ≥ α and

$(X → Y ) ≥ log(I (X; Y ) + 1) −1.

The proof is given in Appendix C. Besides the upper
bound given by the SFRL and its tightness, in the following
we establish other properties of $(X → Y ). We write the
conditional excess functional information as

$(X → Y | Q) = EQ [$(X → Y | Q = q )] .

Proposition 3: The excess functional information $(X →
Y ) satisfies the following properties.

1) Alternative characterization.

$(X → Y ) = inf
Z : Z ⊥⊥X

H (Y |Z) −I (X; Y ).

2) Monotonicity. If X1 ⊥⊥X2 and X1 ⊥⊥(X2, Y2) | Y1, then

$((X1, X2) → (Y1, Y2)) ≥ $(X1 → Y1).

3) Subadditivity. If (X1, Y1) ⊥⊥(X2, Y2), then

$((X1, X2) → (Y1, Y2)) ≤ $(X1 → Y1)

+ $(X2 → Y2).

As a result, if we further have X2 ⊥⊥Y2, then
$((X1, X2) → (Y1, Y2)) = $(X1 → Y1) by
monotonicity.

4) Data processing of $ + I . If X2 −X1 −Y1 −Y2 forms
a Markov chain,

$(X1 → Y1) + I (X1; Y1) ≥ $(X2 → Y2)+ I (X2; Y2).

5) Upper bound by common entropy.

$(X → Y ) ≤ G(X; Y ) −I (X; Y )

≤ min {H (X |Y ), H (Y |X)},

where G(X; Y ) = minX ⊥⊥Y |W H (W ) is the common
entropy [35], [36].

6) Conditioning. If Q satisfies H (Q|X) = 0, then

$(X → Y ) ≥ $(X → Y | Q).

If we further have H (Q|Y ) = 0, then equality holds in
the above inequality.

7) Successive minimization.

$(X → Y ) = inf
V : V ⊥⊥X

{I (X; V |Y ) + $(X → Y | V )} .

Proof:

1) Alternative characterization. Note that if Z ⊥⊥X and
H (Y |X, Z) = 0, then H (Y |Z)−I (X; Y ) = I (X; Z |Y ),
hence

inf
Z : Z ⊥⊥X, H(Y |X,Z)=0

I (X; Z |Y )

≥ inf
Z : Z ⊥⊥X

H (Y |Z) −I (X; Y ).
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For the other direction, assume Z ⊥⊥X . By the func-
tional representation lemma, let Y = g(X, Z , Z̃),
Z̃ ⊥⊥(X, Z). We have

H (Y |Z) −I (X; Y ) ≥ H (Y |Z , Z̃) −I (X; Y )

= I (X; Z , Z̃ |Y )

≥ inf
Z ′: Z ′ ⊥⊥X, H(Y |X,Z ′)=0

I (X; Z ′|Y ).

2) Monotonicity. Let Z satisfies Z ⊥⊥(X1, X2) and
H (Y1, Y2|X1, X2, Z) = 0. Note that (Z , X2) ⊥⊥X1 and
H (Y1|X1, Z , X2) = 0. Hence

I (X1, X2; Z |Y1, Y2)

≥ I (X1; Z |X2, Y1, Y2)

= I (X1; Z |X2, Y1, Y2) + I (X1; Y2|X2, Y1)

= I (X1; Z |X2, Y1) + I (X1; Y2|X2, Y1, Z)

≥ I (X1; Z |X2, Y1)

= I (X1; Z |X2, Y1) + I (X1; X2|Y1)

= I (X1; Z , X2|Y1)

≥ $(X1 → Y1).

3) Subadditivity. let Z1, Z2 satisfies Zi ⊥⊥Xi and
H (Yi |Xi , Zi ) = 0, then

$((X1, X2) → (Y1, Y2))

≤ I (X1, X2; Z1, Z2 | Y1, Y2)

= I (X1; Z1|Y1) + I (X2; Z2|Y2).

4) Data processing of $ + I . let Z ⊥⊥X1, and let Y2 =
g(Y1, W ) be the functional representation of Y2. Then
(Z , W ) ⊥⊥X2, and by the the alternative characteriza-
tion,

$(X2 → Y2) + I (X2; Y2)

≤ H (Y2|Z , W )

= H (Y2|Z , W, Y1) + I (Y1; Y2|Z , W )

≤ H (Y1|Z , W )

= H (Y1|Z).

5) The upper bound by common entropy is a direct conse-
quence of the data processing inequality in the previous
part.

6) Conditioning. Assume that H (Q|X) = 0, Z ⊥⊥X
and H (Y |X, Z) = 0, then Z ⊥⊥X |{Q = q }and
H (Y |X, Z , Q = q ) = 0 for all q , hence

I (X; Z |Y ) ≥ I (X; Z |Y, Q)

= Eq ∼PQ [I (X; Z |Y, Q = q )]

≥ Eq ∼PQ [$(X → Y | Q = q )].

To show the equality case, assume H (Q|Y ) = 0. Let Z̃
satisfies Z̃ ⊥⊥X |{Q = q } and H (Y |X, Z̃, Q = q ) = 0
for all q . By functional representation lemma, let Z̃ =
g(Q, Z), Z ⊥⊥Q, and since we are invoking functional
representation lemma over the marginal distribution

of (Q, Z̃), we can assume Z ⊥⊥(X, Y )|(Q, Z̃ ). Hence
Z ⊥⊥X . We have

Eq ∼PQ

[
I (X; Z̃ |Y, Q = q )

]
= I (X; Z̃ |Y, Q)

= I (X; Z |Y, Q)

= I (X; Z |Y )

≥ $(X → Y ).

7) Successive minimization. Assume that V ⊥⊥X , and let
Z̃ satisfy Z̃ ⊥⊥X |{V = v} and H (Y |X, Z̃, V = v) = 0
for all v, then X ⊥⊥(Z̃ , V ). We have

Eq ∼PQ

[
I (X; Z̃ |Y, V = v)

]

= I (X; Z̃ |Y, V )

= I (X; Z̃ , V |Y ) −I (X; V |Y )

= I (X; Z̃ , V |Y ) −I (X; V |Y )

≥ $(X → Y ) −I (X; V |Y ).

Note that I (X; V |Y ) + $(X → Y | V ) = $(X → Y ) if
V = ∅. Also note that

inf
V : V ⊥⊥X

{I (X; V |Y ) + $(X → Y | V )}
≤ inf

V : V ⊥⊥X, H(Y |X,Z)=0
{I (X; V |Y ) + $(X → Y | V )}

= inf
V : V ⊥⊥X, H(Y |X,Z)=0

I (X; V |Y )

= $(X → Y ).

Remark 5: If $(X, Y ) = 0, then it means that there
exists Z such that Z ⊥⊥X , Z ⊥⊥X |Y , H (Y |Z) = I (X; Y )
and H (Y |X, Z) = 0. This implies there exists z such that
H (Y |Z = z) ≥ I (X; Y ) and H (Y |X, Z = z) = 0. Hence it is
possible to perform one-shot zero error channel coding on the
channel PX |Y with input distribution PY |Z=z to communicate
a message with entropy ≥ I (X; Y ).

APPENDIX

A. Proof of Theorem 1

Condition on the event {X = x} where PY |X (·|x) ≪
PY (which is true for PX -almost all x’s since I (X; Y ) <
∞). First we show that gX→Y (x, {(Ỹi , Ti )}) follows the
distribution PY |X (·|x). By the marking theorem of the
Poisson point process [37], [38], {(Ỹi , Ti )} is a non-
homogeneous Poisson point process with intensity measure
PY × µ (where µ is the Lebesgue measure on [0,∞)).
Applying the mapping theorem [37], [38] for the mapping
(y, t) 4→ (y, t · (dPY /d PY |X (·|x))(y)) over the set {(y, t) :
(d PY |X (·|x)/dPY )(y) > 0} (note that the mapping is measur-
able since d PY |X (·|x)/dPY is measurable),

{(
Ỹi , Ti · d PY

d PY |X (·|x)
(Ỹi )

)}

is a Poisson point process with intensity measure PY |X (·|x)×
µ, since the number of occurrences of this process in the set
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A follows the Poisson distribution with rate

(PY × µ)({(y, t) : (y, t · (dPY /d PY |X (·|x))(y)) ∈ A})
=

∫
µ({t : (y, t · (dPY /d PY |X (·|x))(y)) ∈ A})dPY

=
∫ (

µ({t : (y, t · (dPY /d PY |X (·|x))(y)) ∈ A})

· d PY

d PY |X (·|x)

)
dPY |X (·|x)

=
∫

µ({t : (y, t) ∈ A})dPY |X (·|x)

= (PY |X (·|x) × µ)(A).

Hence if we consider {Ti · (dPY /d PY |X (·|x))(Ỹi )} alone, it is
a Poisson point process with intensity measure µ. Therefore
the first occurrence has a distribution

min
i

(
Ti · d PY

d PY |X (·|x)
(Ỹi )

)
∼ Exp(1).

Now, let

& = min
i

(
Ti · d PY

d PY |X (·|x)
(Ỹi )

)
,

K = arg min
i

(
Ti · d PY

d PY |X (·|X)
(Ỹi )

)
.

Letting Y = ỸK , then as desired we have

Y |{X = x} ∼ PY |X (·|x).

Since Y is a function of {(Ỹi , Ti )}) and K , H (Y | {(Ỹi , Ti )}) ≤
H (K ). Conditioned on & = θ , we have ỸK ∼ PY |X (·|x)
since we can consider {Ỹi , Ti · (dPY /d PY |X (·|x))(Ỹi )} as a
marked Poisson point process with i.i.d. marks distributed
as PY |X (·|x), and {Ỹi , Ti · (dPY /d PY |X (·|x))(Ỹi )}i ̸=K is a
Poisson point process with intensity measure PY |X (·|x) ×
µ|[θ,∞) (where µ|[θ,∞) is the restriction of µ to [θ,∞)).
By mapping theorem, {(Ỹi , Ti )}i ̸=K is a Poisson point process
with intensity measure

ν(A × B) =
∫

A
µ

(
B ∩

[
θ · d PY |X (·|x)

d PY
(y) , ∞

))
dPY (y).

Note that K −1 = |{i : Ti < TK }|. Hence K −1 conditioned
on & = θ and ỸK = ỹ follows the Poisson distribution with
rate

ν (Y × [0, TK ))

= ν

(
Y ×

[
0, θ · d PY |X (·|x)

d PY
(ỹ)

))

=
∫

Y
µ

( [
0, θ · d PY |X (·|x)

d PY
(ỹ)

)

∩
[
θ · d PY |X (·|x)

d PY
(y) , ∞

) )
dPY (y)

= θ

∫

Y
max

{
0,

d PY |X (·|x)

d PY
(ỹ) −d PY |X (·|x)

d PY
(y)

}
dPY (y)

≤ θ

∫

Y

d PY |X (·|x)

d PY
(ỹ) · dPY (y)

= θ
d PY |X (·|x)

d PY
(ỹ).

Therefore

E[log K |X = x]
= EY∼PY |X (·|x)

[∫ ∞

0
e−θE

[
log K | & = θ, ỸK = Y

]
dθ

]

≤ EY∼PY |X (·|x)

[∫ ∞

0
e−θ log

(
θ

d PY |X (·|x)

d PY
(Y ) + 1

)
dθ

]

≤ EY∼PY |X (·|x)

[
log

(∫ ∞

0
e−θ θ

d PY |X (·|x)

d PY
(Y )dθ + 1

)]

= EY∼PY |X (·|x)

[
log

(
d PY |X (·|x)

d PY
(Y ) + 1

)]

≤ EY∼PY |X (·|x)

[
max

{
log

d PY |X (·|x)

d PY
(Y ) , 0

}
+ 1

]

= D(PY |X (·|x) ∥ PY )

−EY∼PY |X (·|x)

[
min

{
log

d PY |X (·|x)

d PY
(Y ) , 0

}]
+ 1

≤ D(PY |X (·|x) ∥ PY ) + e−1 log e + 1,

where the last line follows by the same arguments as
in [4, Appendix A]. For X ∼ PX ,

E
[
log K

] ≤ I (X; Y ) + e−1 log e + 1.

By the maximum entropy distribution subject to a given
E

[
log K

]
(see Appendix B), we have

H (K )

≤ I (X; Y ) + e−1 log e + 2 + log
(

I (X; Y ) + e−1 log e + 2
)

≤ I (X; Y ) + log (I (X; Y ) + 1) + e−1 log e + 2

+ log
(

e−1 log e + 2
)

< I (X; Y ) + log (I (X; Y ) + 1) + 4.

To prove the cardinality bound, first note that if |X |,
|Y| are finite, then |Z| ≤ |Y||X | can be assumed to be
finite since it is the number of different functions x 4→
gX→Y (x, z) for different z. To further reduce the cardinality,
we apply Carathéodory’s theorem on the (|X |(|Y| −1) + 1)-
dimensional vectors with entries H (Y |Z = z) and p(x, y|z)
for x ∈ {1, . . . , |X |}, y ∈ {1, . . . , |Y| −1}; see [39], [40].
The cardinality bound can be proved using Fenchel-Eggleston-
Carathéodory theorem [41], [42].

B. Proof of the Bound on Entropy in Theorem 1

The proof of the following proposition follows from the
standard argument in maximum entropy distribution. It is well-
known that Zipf distribution maximizes the entropy for a fixed
E

[
log &

]
, see [43]. A similar lemma (with an unspecified

constant) is also used in [10]. It is included here for the sake
of completeness.

Proposition 4: Let & ∈ {1, 2, . . .} be a random variable,
then

H (&) ≤ E
[
log &

]
+ log

(
E

[
log &

]
+ 1

)
+ 1.

Proof: Let q (θ) = cθ−λ where λ = 1 + 1/E
[
log &

]
, and

c > 0 such that
∑∞

θ=1 q (θ) = 1. Note that
∞∑

θ=1

θ−λ ≤ 1 +
∫ ∞

1
θ−λdθ = 1 + 1

λ −1
.
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Therefore

H (&) ≤
∞∑

θ=1

p&(θ) log
1

q (θ)

=
∞∑

θ=1

p&(θ) (λ log θ −log c)

= λE
[
log &

]
+ log

( ∞∑

θ=1

θ−λ

)

≤ λE
[
log &

] + log
(

1 + 1
λ −1

)

= E
[
log &

]
+ log

(
E

[
log &

]
+ 1

)
+ 1.

Operationally, we would use the optimal prefix-free code for
the Zipf distribution q (θ) to encode &.

C. Proof of Proposition 2

Let k ∈ {0, 1, . . .}, V ∈ [0 : 2k −1],

pV (v) = γ −12k−⌈log(v+1)⌉,

where γ = 2k−1(k + 2), and let X ∼ Unif[0 : 2k −1]
independent of V , and Y = (X + V ) mod 2k . Note that
|{v : γ pV (v) > t}| = γ pV (⌊t⌋) for t ≥ 0. We have

−
∑

y∈Y

∫ 1

0
PX

{
pY |X (y|X)≥ t

}
log

(
PX

{
pY |X (y|X)≥ t

})
dt

= −
∑

y∈Y

∫ 1

0
2−k |{v : pV (v)≥ t}| log

(
2−k |{v : pV (v)≥ t}|

)
dt

= k −
∫ 1

0
|{v : pV (v) ≥ t}| log |{v : pV (v) ≥ t}| dt

= k −
∫ 1

0
γ pV (⌊γ t⌋) log (γ pV (⌊γ t⌋)) dt

= k −
2k−1∑

v=0

pV (v) log (γ pV (v)) dt

= k −log γ + H (V ).

And

I (X; Y ) = H (Y ) −H (Y |X) = k −H (V ).

By Proposition 1,

$(X →Y ) ≥ k −log γ + H (V ) −(k −H (V ))

= 2H (V ) −log γ .

One can check that

H (V ) = 1
2

k + log(k + 2) −3
2

+ 1
k + 2

.

Hence

I (X; Y ) = 1
2

k −log(k + 2) + 3
2

− 1
k + 2

≤ 1
2

k,

and

$(X → Y )

≥ k + 2 log(k + 2) −3 + 2
k + 2

−log
(

2k−1(k + 2)
)

= log(k + 2) −2 + 2
k + 2

≥ log(I (X; Y ) + 1) −1.
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