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Abstract—We establish a new upper bound on the capacity of
the relay channel which is tighter than all previous bounds. The
upper bound uses traditional weak converse techniques involving
mutual information inequalities and identification of auxiliary
random variables via past and future channel random variable
sequences. We show that the new bound is strictly tighter than
all previous bounds for the Gaussian relay channel for every
set of non-zero channel gains. When specialized to the class of
relay channels with orthogonal receiver components, the bound
resolves a conjecture by Kim on a class of deterministic relay
channels. When further specialized to the class of product-form
relay channels with orthogonal receiver components, the bound
resolves a generalized version of Cover’s relay channel problem,
recovers the recent upper bound for the Gaussian case by Wu
et al. and also improves upon the recent bounds for the binary
symmetric case by Wu et al. and Barnes et al., which were all
obtained using non-traditional geometric proof techniques.

A full version of this paper is accessible at: https://arxiv.
org/pdf/2101.11139.pdf

I. INTRODUCTION

The relay channel, first introduced by van-der Meulen in
1971 [VDM71], is a canonical model of multi-hop commu-
nication networks in which a sender X wishes to commu-
nicate to a receiver Y with the help of a relay (Xr, Yr)
over a memoryless channel of the form p(y, yr|x, xr). The
capacity of this channel, which is the highest achievable
rate from X to Y , is not known in general. In [CEG79],
lower bounds on the capacity, later termed decode-forward,
partial decode-forward, and compress-forward, and the cutset
upper bound were established. These bounds were shown to
coincide for several special classes of channels, including de-
graded [CEG79], semi-deterministic [EGA82], and orthogonal
sender components [EGZ05] relay channels. In [ARY09], the
cutset bound was shown not to be tight in general via an
example relay channel with orthogonal receiver components.
These results and others are detailed in Chapter 19 of [EK11].
In a series of recent papers [WOX17], [WBO19], [LO19],
motivated by Cover’s problem concerning a relay channel
with orthogonal receiver components [Cov87], new highly
specialized upper bounds, which are also tighter than the cutset
bound, are developed. While the bounds in [CEG79], [TU08],
[ARY09] use standard weak converse techniques involving
basic mutual information bounds and Gallager-type auxiliary
random variable identification, the recent bounds in [WOX17],

[WBO19], [LO19] for symmetric Gaussian and binary sym-
metric relay channels with orthogonal receiver components
use more sophisticated arguments from convex geometry and
functional analysis.

More recently, Gohari-Nair [GN20] developed a new upper
bound on the capacity of the general relay channel and showed
that it can be strictly tighter than the cutset bound. Their bound
uses traditional converse techniques, including identification
of auxiliary random variables using past and future channel
variable sequences which has been used in several converse
proofs, e.g., see [CK78], [EG79], and the new idea of auxiliary
receiver. The upper bounds we present in this paper are natural
extensions of the upper bound in [GN20]. Our bounds and
their applications do not include an auxiliary receiver because
we are not able to find an example with an auxiliary receiver
that can strictly improve over the bound without it. We will
focus our attention on the class of relay channels without self-
interference p(yr|x)p(y|x, xr, yr) because they include and
generalize several interesting relay channel settings that have
been receiving significant attention in recent years.

Although the techniques used to establish the upper bounds
in this paper have been employed in many previous works,
the contributions of this paper are in the judicious manner
in which these techniques are applied to obtain the tightest
known upper bounds on the capacity of the relay channel and
the rather nontrivial evaluations of these complex bounds to
obtain tighter and more general bounds for several classes of
relay channels.

In the following section we formally introduce the relay
channel capacity problem and discuss our results (see Fig-
ure 1). While some of the proofs are given, the rest can be
found in the full version of this paper at [EGGN21].

II. DEFINITIONS AND STATEMENT OF THE RESULTS

We adopt most of our notation from [EK11]. In particular,
we use Y i to denote the sequence (Y1, Y2, · · · , Yi), and Y ji to
denote (Yi, Yi+1, · · · , Yj). Unless stated otherwise, logarithms
are to the base 2. We use p(x) to indicate the probability mass
function of a discrete random variable X and PY to indicate
the probability distribution of an arbitrary random variable Y .

The discrete memoryless relay channel consists of four
alphabets X , Xr, Yr, Y , and a collection of conditional pmfs
p(yr, y|x, xr) on Yr × Y . A (2nR, n) code for the discrete
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Relay channel (Section II-A)

Relay without self-interference (Section II-A)

GaussianRelay with orthogonal receiver components (Section II-B)

Kim’s conjecture Product-form (Section II-C)

Generalized Cover’s problem Less noisy components (Section II-D)

Gaussian Binary Symmetric

Fig. 1. Classes of relay channels for which upper bounds are established. An arrow from box A to box B indicates that class A includes class B. Dashed
boxes indicate applications for which we compute the bounds.

memoryless relay channel p(y, yr|x, xr) consists of a message
set [1 : 2nR], an encoder that assigns a codeword xn(m) to
each message m ∈ [1 : 2nR], a relay encoder that assigns a
symbol xri(yi−1r ) to each past received sequence yi−1r for each
time i ∈ [1 : n], and a decoder that assigns an estimate M̂ or an
error message ε to each received sequence yn. We assume that
the message M is uniformly distributed over [1 : 2nR]. The
definitions of the average probability of error, achievability
and capacity follow those in [EK11].

A. Upper bound for the relay channel without self-interference

We first consider the following class of relay channels.

Definition 1. A relay channel is said to be without self-
interference if p(y, yr|x, xr) = p(yr|x)p(y|x, xr, yr).

We now present an upper bound for this class of relay
channels. All the bounds discussed in the following sections
follow from this bound either by relaxing the constraints or
specializing it to subclasses of without self-interference relay
channels.

Theorem 1. Any achievable rate R for a general discrete
memoryless relay channel p(yr|x)p(y|x, xr, yr) must satisfy
the following inequalities

R ≤ I(X;Y, Yr|Xr)− I(U ;Y |Xr, Yr), (1)
R ≤ I(X;Y, Yr|Xr)− I(V ;Y |Xr, Yr)

− I(X;Yr|V,Xr, Y ) (2)
= I(X;Y, V |Xr)− I(V ;X|Xr, Yr), (3)

R ≤ I(X,Xr;Y )− I(V ;Yr|Xr, X, Y ), (4)

for some p(u, x, xr)p(y, yr|x, xr)p(v|x, xr, yr) satisfying

I(V,Xr;Yr)− I(V,Xr;Y ) = I(U ;Yr)− I(U ;Y ). (5)

Further it suffices to consider |V| ≤ |X ||Xr||Yr|+2 and |U| ≤
|X ||Xr|+ 1.

The proof, given in [EGGN21], utilizes the following iden-
tification of the auxiliary random variables

Vi = (Y ni+1, Y
i−1
r ), Ui = (Y nri+1, Y

i−1).

Remark 1 (Upper bound on the capacity of the general relay
channel capacity.). An inspection of the proof of this theorem
reveals that the without self-interference assumption is used
only to establish the Markov chain U → X,Xr → Y, Yr. If
we relax this to U → X,Xr, Yr → Y , then the same rate-
constraints must hold for any relay channel.

Remark 2. It is immediate that the bound in Theorem 1 is at
least as tight as the cut-set bound in [CEG79]

C ≤ max
p(x,xr)

{I(Xr, X;Y ), I(X;Y, Yr|Xr)}. (6)

Remark 3. From (3) and (4), we deduce that

R ≤ max
p(x,xr)p(v|x,xr,yr)

min
{
I(X;Y, V |Xr)− I(V ;X|Xr, Yr),

I(X,Xr;Y )− I(V ;Yr|Xr, X, Y )
}
.

If we replace the maximum over p(x, xr)p(v|x, xr, yr) with
maximum over p(x)p(xr)p(v|xr, yr), we obtain the equivalent
form of the compress-forward lower bound without time-
sharing random variable Q in [EK11].

Remark 4. If the cut-set bound is tight for a relay channel
of the form p(y, yr|x, xr) = p(y|x, xr)p(yr|x) and capacity
achieves the MAC bound in the cut-set bound, i.e., C =
I(Xr, X;Y ) for the maximizing p(x, xr), then capacity is
achievable by partial-decode-forward, since from (4) we obtain
that I(V ;Yr|Xr, X, Y ) = 0. The assumption p(y, yr|x, xr) =
p(y|x, xr)p(yr|x) implies that I(V ;Yr|Xr, X) = 0. The con-
straint V → X,Xr → Yr, then implies that

I(X;Y, Yr|Xr)− I(V ;Y |Xr, Yr)− I(X;Yr|V,Xr, Y )

= I(V ;Yr|Xr) + I(X;Y |V,Xr),
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Fig. 2. Plots of the bounds for the Gaussian relay channel with S13 = 3.7585,
S12 = 1.2139. The new upper bound is a weakened version of Theorem 1.

which is the partial-decode-forward lower bound. An applica-
tion of this observation to solve a concrete question, which has
the same flavor as the one introduced by Cover in [Cov87],
can be found in [EGGN21].

Gaussian relay channel. The Gaussian relay channel is
defined by

Yr = g12X + Zr,

Y = g13X + g23Xr + Z,
(7)

where g12, g13, and g23 are channel gains, and Z ∼ N (0, 1)
and Zr ∼ N (0, 1) are independent noise components. We
assume average power constraint P on each of X and Xr.

Remark 5. Note that as defined, the Gaussian relay channel
belongs to the class of relay channels without self-interference.

Let S12 = g212P , S13 = g213P and S23 = g223P . In
[EGGN21], a weakened version of the upper bound in The-
orem 1, which is easier to evaluate for the Gaussian relay
channel, is given. Figure 2 compares this weakened bound
with the bound in [GN20, Proposition 1] for a scalar Gaussian
relay channel.

Theorem 2. The bound in Theorem 1 for the Gaussian relay
channel is strictly tighter than the cut-set upper bound for
every non-zero values of g12, g13, g23.

The idea of the proof is as follows, see [EGGN21] for
details. Let CCS denote the cut-set bound. Assume that CCS

is tight, that is,

max
PX,Xr : E(X2)≤P,E(X2

r )≤P
min{I(X,Xr;Y ), I(X;Y, Yr|Xr)}

is achievable. We know (see Section 16.5 of [EK11]) that the
maximum is attained via a unique jointly Gaussian distribution
and CCS = I(X;Y, Yr|Xr) holds. If C = CCS from Theorem
1, we deduce the existence of a PV |X,Xr,Yr

such that

I(V ;Y |Xr, Yr) = I(X;Yr|V,Xr, Y ) = 0.

We show that the above equality cannot occur.

B. Relay channels with orthogonal receiver components

In this section we present results for the following sub-class
of relay channels without self-interference.

Definition 2. A relay channel is said to be with orthogonal
receiver components (also referred to as primitive) (see Section
16.7.3 in [EK11]) if Y = (Y1, Y2), where p(y1, y2, yr|x, xr) =
p(y1, yr|x)p(y2|xr). It is known that the capacity of the
above relay channel depends only on the capacity of the
channel p(y2|xr), hence we can substitute the relay-to-receiver
channel p(y2|xr) with a noiseless link of the same capacity
C0 [Kim07].

The following provides an equivalent characterization of the
upper bound in Theorem 1 for relay channels with orthogonal
receiver components.

Proposition 1. Any achievable rate R for the relay channel
with orthogonal receiver components p(y1, yr|x) with a relay-
to-receiver link of capacity C0 must satisfy the following
inequalities

R ≤ I(X;Y1, Yr)− I(U ;Y1|Yr), (8)
R ≤ I(X;Y1, Yr)− I(V ;Y1|Yr)− I(X;Yr|V, Y1) (9)

= I(X;Y1, V )− I(V ;X|Yr), (10)
R ≤ I(X;Y1) + C0 − I(V ;Yr|X,Y1) (11)

for some p(u, x)p(y1, yr|x)p(v|x, yr) such that

I(U ;Yr)− I(U ;Y1) ≤ I(V ;Yr)− I(V ;Y1)

≤ I(U ;Yr)− I(U ;Y1) + C0.

Further it suffices to consider |V| ≤ |X ||Yr| + 2 and |U| ≤
|X |+ 1.

Kim’s conjecture. We use Proposition 1 to prove a conjecture
posed by Kim in [Kim07, Question 2] for a class of of deter-
ministic relay channels with orthogonal receiver components
described by p(y1, yr|x), where X = f(Y1, Yr) for some
function f .

Theorem 3. Let C(C0) be the supremum of achievable rates
R for a given C0. Let C∗0 be the minimum value of C0 for
which C(C0) = C(∞) = log |X |. Then C∗0 = HG(Yr|Y1) and
is achieved by a uniform distribution on X . Here HG(Yr|Y1)
denotes the conditional graph entropy of the characteristic
graph of (Yr, Y1) and the function f (as defined in [OR95]).

The proof of this theorem is given in Section III-A.

C. Product-form relay channels

Consider the following class of relay channels with orthog-
onal receiver components.

Definition 3. A relay channel with orthogonal receiver
components is said to be product-form if p(y1, yr|x) =
p(y1|x)p(yr|x).

Generalized Cover Relay Channel Problem. We will need
the following definitions.
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Definition 4. A discrete-memoryless channel p(y|x) is said to
be generic if the channel matrix, P with entries Px,y = p(y|x),
x ∈ X and y ∈ Y is full row rank.

Remark 6. It is immediate that if p(y1|x1) and p(y2|x2) are
generic, then so is p(y1|x1) ⊗ p(y2|x2). That is, the class of
generic channels is closed under a product operation.

Definition 5. A product-form relay channel is said to be
generic if the channel p(y1|x) is generic.

In [Cov87], Cover posed a special (symmetric) case of
the following problem: Consider a generic product-form relay
channel and let C(C0) be the supremum of achievable rates
R for a given C0. What is the critical value C∗0 for which
C∗0 = inf{C0 : C(C0) = C(∞) = maxp(x) I(X;Y1, Yr)}?

This problem has recently attracted a fair amount of atten-
tion and non-traditional methods have been used to answer
the question as well as obtain new upper bounds for C(C0)
for Gaussian channels and binary-symmetric channels. As
we will show in the next subsections our new upper bound,
which uses traditional converse techniques, recovers and (in
the binary-symmetric case) improves on these recent results.
In this section, we show that we can answer the generalized
Cover relay channel problem.

We can answer the generalized Cover’s open problem by
evaluating the bound in Proposition 1.

Theorem 4. Let C∗0 be the minimum value of C0 such that
C(C0) = C(∞) = maxp(x) I(X;Y1, Yr) for a generic product-
form relay channel and R∗0 be the minimum value of C0 such
that RCF(C0) = C(∞) = maxp(x) I(X;Y1, Yr) for the same
relay channel. Then C∗0 = R∗0.

The proof of this theorem is given in Section III-B.

Remark 7. During the finalization of this manuscript the
authors became aware of [Liu20] which uses results and
techniques in convex geometry to arrive at a solution for
Theorem 4.

D. Product-form relay channels with less noisy components

Consider the following class of product-form relay channels.

Definition 6. A product-form relay channel described by
p(yr|x)p(y1|x) and a relay-to-receiver link of capacity C0 is
said to have less-noisy components if it satisfies the conditions:

I(U ;Yr) ≤ I(U ;Y1) for every p(u, x). (12)

For this class of relay channels, we can specialize Proposi-
tion 1 to obtain the following bound.

Proposition 2. Any achievable rate R for product-form relay
channel with less-noisy components must satisfy the following
conditions

R ≤ I(X;Y1, Yr)− I(V ;Y1|Yr)− I(X;Yr|V, Y1) (13)

for some p(x)p(y1, yr|x)p(v|x, yr) satisfying

I(V ;Yr)− I(V ;Y1) ≤ C0. (14)

Further it suffices to consider |V| ≤ |X ||Yr|+ 1.

In the following we will also refer to the following class of
relay channels.

Definition 7. A product-form relay channel is said to be
symmetric if Y1 = Yr, and pY1|X(y|x) = pYr|X(y|x) for all
x, y.

It immediately follows that if a product-form relay channel
is symmetric, then it is less noisy, and Proposition 2 provides
an upper bound for the symmetric class.
Gaussian Product-form relay channel with less-noisy com-
ponents. Consider a Gaussian relay channel with orthogonal
receiver components described by

Y1 = X +W1,

Yr = X +Wr,

where W1 ∼ N (0, N1) and Wr ∼ N (0, Nr) are independent
of each other and of X , and a link of capacity C0 from the
relay to the destination. We assume average power constraint
P on X and define S12 = P/Nr, S13 = P/N1 and S23 =
22C0 − 1.

For S13 ≥ S12, the relay channel has less-noisy components
and the upper bound in Proposition 2 reduces to the following.

Proposition 3. Any achievable rate R for the Gaussian
product-form relay channel with S13 ≥ S12 must satisfy the
following

R ≤ 1

2
log

(
1 + S13 +

S12(S13 + 1)S23

(S13 + 1)(S23 + 1)− 1

)
. (15)

Remark 8. Note that the compress-forward lower bound for
this relay channel as given in [EK11, Eq. 16.17] implies that

C ≥ 1

2
log

(
1 + S13 +

S12(S13 + 1)S23

S12 + (S13 + 1)(S23 + 1)

)
. (16)

Furthermore, the above lower bound can be improved by time-
sharing at the transmitter [EK11, Sec. 16.8] or at the relay
[WBO19, Footnote 2].

Figure 3 depicts the upper bound in Proposition 3 along
with the cut-set upper bound and the compress-forward lower
bound.
Remark 9. In [WBO19], [WBÖ17], an upper bound on the
capacity of the Gaussian product-form relay channel is estab-
lished (see also [BWÖ20] for an alternative proof). Although
the techniques used to prove this theorem are completely
different from those used in this paper, it turns out quite
surprisingly that bound (15) coincides with the bound in
Proposition 3 for the symmetric special case. In simulations,
our bound in Proposition 3 coincides with the bound in
[WBÖ17] for S13 ≥ S12.

Symmetric binary relay channel with orthogonal receiver
components. Assume that the relay channel with orthogonal
receiver components is described by p(y1, yr|x) and a link of
rate C0 from relay to the destination such that p(y1, yr|x) =
p(y1|x)p(yr|x), where x, y1, yr ∈ {0, 1}. Moreover, assume
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Fig. 3. Plots of the bounds for the Gaussian product-form relay channel with
S13 = 5, S23 = 0.5.

that both the channels p(y1|x) and p(yr|x) are binary sym-
metric channels with crossover probability ρ ∈ [0, 1/2].

By specializing Proposition 2 to this channel and using
symmetry properties of the channel, we obtain the following
bound.

Theorem 5. Given arbitrary λ ∈ [0, 1] and c ∈ [0, 1], let gλ(c)
be the maximum of (1−λ) (H(Y1)−H(Yr))+H(Yr|X) over
all joint probability distributions p(x, yr) on {0, 1} × {0, 1}
satisfying p(x, yr)(0, 1) + p(x, yr)(1, 0) = c. For any fixed
λ ∈ [0, 1], let C [gλ] : [0, 1] 7→ R be the upper concave enve-
lope of the function gλ(·), i.e., the smallest concave function
that dominates gλ(·) from above. Any achievable rate R for
a symmetric binary relay channel with orthogonal receiver
components with parameter ρ must satisfy the following

R ≤ 1− 2H2(ρ) + λC0 + C [g](ρ)

for any λ ∈ [0, 1], where H2(x) = −x log(x)−(1−x) log(1−
x) is the binary entropy function.

Figure 4 shows that our new upper bound strictly improves
upon the bounds given in [WOX17] and [BWÖ17].

III. PROOF OF SOME OF THE RESULTS

A. Proof of Theorem 3

As argued in [Kim07], C∗0 ≤ HG(Yr|Y1). It remains to show
that C∗0 ≥ HG(Yr|Y1). Let C0 = C∗0 . From (9), we deduce that
I(V ;Y1|Yr) = 0. Since X is a function of (Y1, Yr), we deduce
that I(V ;X|Yr) = 0. Consequently, (10) and (11) imply that
the achievable rate R = log |X | must satisfy the condition

R ≤ max
p(x)p(v|yr)

min
{
I(X;V, Y1),

I(X;Y1) + C0 − I(V ;Yr|X,Y1)
}
.

This matches the rate achieved by compress-forward (see
[EK11, Eq. 16.14]). Thus, compress-forward must achieve the

Fig. 4. Plots of the minimum of the two upper bounds give in [WOX17], the
upper bound given in [BWÖ17], our new bound and the compress-forward
lower bound for a symmetric binary relay channel with orthogonal receiver
components with parameter ρ = 0.1.

rate log |X | when C0 = C∗0 . Using the characterization of the
compress-forward lower bound in Proposition 3 of [Kim07],
we obtain that log |X | = I(X; Ṽ , Y1) for some p(ṽ|yr) such
that I(Ṽ ;Yr|Y1) ≤ C∗0 . Therefore, X is uniformly distributed
and H(X|Ṽ , Y1) = 0. From [OR95, Theorem 2], we deduce
that C∗0 ≥ HG(Yr|Y1). This confirms Kim’s conjecture in
[Kim07].

B. Proof of Theorem 4

The result follows immediately from the definition that
R∗0 ≥ C∗0 . Therefore it suffices to show that R∗0 ≤ C∗0 . Let C0

be such that C(C0) = C(∞) = maxp(x) I(X;Y1, Yr). From
the constraint (9) of the upper bound in Proposition 1, it
follows that if C(∞) = maxp(x) I(X;Y1, Yr) is achievable,
for a maximizing distribution p∗(x), there exists a distribution
p(v|x, yr) such that I(V ;Y1|Yr) = 0. Since the channel pY1|X
is generic, we show in [EGGN21] that I(V ;Y1|Yr) = 0
implies that I(V ;X|Yr) = 0. Therefore V → Yr → X → Y1
form a Markov chain. Then, the constraints in (10) and (11)
imply that the rate R is achievable by compress-forward with
the compression random variable V . Here, we utilize the char-
acterization of the compress-forward for the relay channel with
orthogonal receiver components given in [EK11, Eq. 16.14].
Consequently, we have that RCF(C0) = C(C0) = C(∞).
Since this holds for any C0 such that C(C0) = C(∞) =
maxp(x) I(X;Y1, Yr), we have that R∗0 ≤ C∗0 . This completes
the proof.

CONCLUSION

We established a new outer bound for the relay channel and
used it to obtain several new results, including showing that
the cutset bound for the scalar Gaussian relay is suboptimal for
all non-zero values of the parameters, providing a resolution
of Kim’s conjecture and a generalization of Cover’s open
problem, strictly improving upon previous outer bounds on
the capacity of the symmetric binary relay channels with
orthogonal receiver components.
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