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Optimal Achievable Rates for Interference
Networks With Random Codes

Bernd Bandemer, Member, IEEE, Abbas El Gamal, Fellow, IEEE, and Young-Han Kim, Fellow, IEEE

Abstract— The optimal rate region for interference networks
is characterized when encoding is restricted to random code
ensembles with superposition coding and time sharing. A simple
simultaneous nonunique decoding rule, under which each
receiver decodes for the intended message as well as the
interfering messages, is shown to achieve this optimal rate
region regardless of the relative strengths of signal, interference,
and noise. This result implies that the Han–Kobayashi bound,
the best known inner bound on the capacity region of the
two-user pair interference channel, cannot be improved merely
by using the optimal maximum likelihood decoder.

Index Terms— Han–Kobayashi bound, interference network,
maximum likelihood decoding, network information theory, ran-
dom code ensemble, superposition coding, simultaneous decoding.

I. INTRODUCTION

CONSIDER a communication scenario in which multiple
senders communicate independent messages to multiple

receivers over a network with interference. What is the set
of simultaneously achievable rate tuples for reliable commu-
nication? What coding scheme achieves this capacity region?
Answering these questions involves joint optimization of the
encoding and decoding functions, which has remained elusive
even for the case of two sender–receiver pairs.

With a complete theory in terra incognita, we take in this
paper a simpler modular approach to these questions. Instead
of searching for the optimal encoding functions, suppose
rather that the encoding functions are restricted to realizations
of a given random code ensemble of a certain structure.
What is the set of simultaneously achievable rate tuples so
that the probability of decoding error, when averaged over
the random code ensemble, can be made arbitrarily small?
To be specific, we focus on random code ensembles with
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superposition coding and time sharing of independent and
identically distributed (i.i.d.) codewords. This class of ran-
dom code ensembles includes those used in the celebrated
Han–Kobayashi coding scheme [9].

We characterize the set R∗ of rate tuples achievable by
the random code ensemble for an interference network as the
intersection of rate regions for its component multiple access
channels in which each receiver recovers its intended messages
as well as appropriately chosen unintended messages. More
specifically, the rate region R∗ for the interference network
with senders [1 : K ] = {1, 2, . . . , K }, each communicating an
independent message, and receivers [1 : L], each required to
recover a subset D1, . . . ,DL ⊆ [1 : K ] of messages, is

R∗ =
⋂

l∈[1:L]

⋃

S⊇Dl

RMAC(S, l). (1)

Here RMAC(S, l) denotes the set of rate tuples achievable by
the random code ensemble for the multiple access channel
with senders S and receiver l when the codewords from the
other senders [1 : K ] \ S are treated as random noise.

A direct approach to proving this result would be to analyze
the average performance of the optimal decoding rule for each
realization of the random code ensemble that minimizes the
probability of decoding error, namely, maximum likelihood
decoding (MLD). This analysis, however, is unnecessarily
cumbersome. We instead take an indirect yet conducive
approach that is common in information theory. First, we
show that any rate tuple inside R∗ is achieved by using the
typicality-based simultaneous nonunique decoding (SND)
rule [6], [7], [13], in which each receiver attempts to recover
the codewords from its intended senders and (potentially
nonuniquely) the codewords from interfering senders. Second,
we show that if the average probability of error of MLD for
the random code ensemble is asymptotically zero, then its rate
tuple must lie in R∗. The key to proving the second step is to
show that after a maximal set of messages has been recovered,
the remaining signal at each receiver is distributed essentially
independently and identically. The two-step approach taken
here is reminiscent of the random coding proof for the
capacity of the point-to-point channel [16], wherein a
suboptimal (in the sense of the probability of error) decoding
rule based on the notion of joint typicality can achieve the
same rate as MLD when used for random code ensembles.

Our result has several implications.
• It shows that incorporating the structure of interference

into decoding, when properly done as in MLD and
SND, always achieves higher or equal rates compared
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Fig. 1. Two-user-pair discrete memoryless interference channel.

to treating interference as random noise; thus, the tradi-
tional wisdom of distinguishing between decoding for the
interference at high signal-to-noise ratio and ignoring the
interference at low signal-to-noise ratio does not provide
any improvement on achievable rates.

• It shows that the Han–Kobayashi inner bound [9], [6],
[7, Th. 6.4], which was established using the random
code ensemble and a typicality-based simultaneous
decoding rule, cannot be improved by using a more
powerful decoding rule such as MLD.

• It generalizes the result by Motahari and Khandani [12],
and Baccelli et al. [2] on the optimal rate region for
K -user-pair Gaussian interference channels with point-
to-point Gaussian random code ensembles to arbitrary
(not necessarily Gaussian) random code ensembles with
time sharing and superposition coding.

• It shows that the interference decoding rate region for the
three-user-pair deterministic interference channel in [3]
is the optimal rate region achievable by point-to-point
random code ensembles and time sharing.

As the simplest example of a general interference net-
work, consider the two-user-pair discrete memoryless interfer-
ence channel (2-DM-IC) p(y1, y2|x1, x2) with input alphabets
X1 and X2 and output alphabets Y1 and Y2, depicted in Fig. 1.
Here sender j = 1, 2 wishes to communicate a message to
its respective receiver via n transmissions over the shared
interference channel. Each message M j , j = 1, 2, is separately
encoded into a codeword Xn

j = (X j1, X j2, . . . , X jn) and
transmitted over the channel. Upon receiving the sequence Y n

j ,
receiver j = 1, 2 finds an estimate M̂ j of the message M j .

We now consider the standard random coding analy-
sis for inner bounds on the set of achievable rate pairs
(the capacity region) of the 2-DM-IC. Given a product
input pmf p(x1) p(x2), suppose that the codewords xn

j (m j ),
m j ∈ [1 : 2nR j ] = {1, 2, . . . , 2nR j }, for j = 1, 2 are generated
randomly, each drawn according to

∏n
i=1 pX j (x j i).

We recall the rate regions achieved by employing the
following simple suboptimal decoding rules, described for
receiver 1 (see [7, Sec. 6.2]).

• Treating Interference as Noise (IAN): Receiver 1 finds
the unique message m̂1 such that (xn

1 (m̂1), yn
1 ) is jointly

typical. (See the end of this section for the definition
of joint typicality.) It can be shown that the average
probability of decoding error for receiver 1 tends to zero
as n → ∞ if

R1 < I (X1; Y1). (2)

The corresponding rate region (IAN region) is depicted
in Fig. 2(a).

Fig. 2. Achievable rate regions for the 2-DM-IC: (a) treating interference
as noise, (b) using simultaneous decoding, (c) using simultaneous nonunique
decoding (R1); note that R1 is the union of the regions in (a) and (b); and
(d) using simultaneous nonunique decoding at receiver 2 (R2).

• Simultaneous Decoding (SD): Receiver 1 finds the unique
message pair (m̂1, m̂2) such that (xn

1 (m̂1), xn
2 (m̂2), yn

1 ) is
jointly typical. The average probability of decoding error
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for receiver 1 tends to zero as n → ∞ if

R1 < I (X1; Y1 | X2), (3a)

R2 < I (X2; Y1 | X1), (3b)

R1 + R2 < I (X1, X2; Y1). (3c)

The corresponding rate region (SD region) is depicted
in Fig. 2(b).

Now, consider simultaneous nonunique decoding (SND)
in which receiver 1 finds the unique m̂1 such that
(xn

1 (m̂1), xn
2 (m2), yn

1 ) is jointly typical for some m2. Clearly,
any rate pair in the SD rate region (3a–3c) is achievable
via SND. Less obviously, any rate pair in the IAN region (2)
is also achievable via SND as we show in the achievability
proof of Theorem 1 in Section II. Hence, SND can achieve any
rate pair in the union of the IAN and SD regions, that is, the
rate region R1 as depicted in Fig. 2(c). Similarly, the average
probability of decoding error for receiver 2 using SND tends
to zero as n → ∞ if the rate pair (R1, R2) is in R2, which is
defined analogously by exchanging the roles of the two users
(see Fig. 2(d)). Combining the decoding requirements for both
receivers yields the rate region R1 ∩ R2.

This rate region R1 ∩ R2 turns out to be optimal for the
given random code ensemble. As shown in the converse proof
of Theorem 1, if the probability of error for MLD averaged
over the random code ensemble tends to zero as n → ∞,
then the rate pair (R1, R2) must reside inside the closure of
R1 ∩ R2. Thus, SND achieves the same rate region as MLD
(for random code ensembles of the given structure).

The rest of the paper is organized as follows. For simplicity
of presentation, in Section II we formally define the problem
for the two-user-pair interference channel and establish our
main result for the random code ensemble with time sharing
and no superposition coding. In Section III, we extend our
result to a multiple-sender multiple-receiver discrete memory-
less interference network in which each sender has a single
message and wishes to communicate it to a subset of the
receivers. This extension includes superposition coding with
an arbitrary number of layers. In Section IV, we specialize the
result to the Han–Kobayashi coding scheme for the two-user-
pair interference channel. Most technical proofs are deferred
to the Appendices.

Throughout we closely follow the notation in [7]. In par-
ticular, for X ∼ p(x) and ε ∈ (0, 1), we define the set of
ε-typical n-sequences xn (or the typical set in short) [15] as

T (n)
ε (X) =

{
xn : |#{i : xi = x}/n − p(x)| ≤ εp(x)

for all x ∈ X
}
.

For a tuple of random variables (X1, . . . , Xk), the joint
typical set T (n)

ε (X1, . . . , Xk) is defined as the typical
set T (n)

ε ((X1, . . . , Xk)) for a single random variable
(X1, . . . , Xk). The joint typical set T (n)

ε (XS ) for a subtuple
XS = (Xk : k ∈ S) is defined similarly for each S ⊆ [1 : k].
We use δ(ε) > 0 to denote a generic function of ε > 0 that
tends to zero as ε → 0. Similarly, we use εn ≥ 0 to denote
a generic function of n that tends to zero as n → ∞.

II. DM-IC WITH TWO USER PAIRS

Consider the two-user-pair discrete memoryless interference
channel (2-DM-IC) p(y1, y2 | x1, x2) introduced in the previ-
ous section (see Fig. 1). A (2nR1 , 2nR2 , n) code Cn for the
2-DM-IC consists of

• two message sets [1 : 2nR1 ] and [1 : 2nR2 ],
• two encoders, where encoder 1 assigns a codeword

xn
1 (m1) to each message m1 ∈ [1 : 2nR1] and en-

coder 2 assigns a codeword xn
2 (m2) to each message

m2 ∈ [1 : 2nR2 ], and
• two decoders, where decoder 1 assigns an estimate m̂1

or an error message e to each received sequence yn
1 and

decoder 2 assigns an estimate m̂2 or an error message e
to each received sequence yn

2 .
We assume that the message pair (M1, M2) is uniformly
distributed over [1 : 2nR1]× [1 : 2nR2 ]. The average probability
of error for the code Cn is defined as

P(n)
e (Cn) = P

{
(M̂1, M̂2) ̸= (M1, M2)

}
.

A rate pair (R1, R2) is said to be achievable for the 2-DM-IC
if there exists a sequence of (2nR1, 2nR2 , n) codes Cn such that
limn→∞ P(n)

e (Cn) = 0. The capacity region C of the 2-DM-IC
is the closure of the set of achievable rate pairs (R1, R2).

We now limit our attention to a randomly generated code
ensemble with a special structure. Let p = p(q, x1, x2) =
p(q) p(x1|q) p(x2|q) be a given pmf on Q×X1 ×X2, where
Q is a finite alphabet. Suppose that the codewords Xn

1 (m1),
m1 ∈ [1 : 2nR1 ], and Xn

2 (m2), m2 ∈ [1 : 2nR2 ], that constitute
the codebook, are generated randomly as follows:

• Let Qn ∼∏n
i=1 pQ(qi ).

• Let Xn
1 (m1) ∼ ∏n

i=1 pX1|Q(x1i |qi), m1 ∈ [1 : 2nR1 ],
conditionally independent given Qn .

• Let Xn
2 (m2) ∼ ∏n

i=1 pX2|Q(x2i |qi ), m2 ∈ [1 : 2nR2 ],
conditionally independent given Qn .

Each instance {(xn
1 (m1), xn

2 (m2)) : (m1, m2) ∈ [1 : 2nR1 ] ×
[1 : 2nR2 ]} of such generated codebooks, along with the
corresponding optimal decoders, constitutes a (2nR1 , 2nR2 , n)
code. We refer to the random code ensemble generated in this
manner as the (2nR1, 2nR2 , n; p) random code ensemble.

Definition 1 (Random Coding Optimal Rate Region):
Given a pmf p = p(q) p(x1|q) p(x2|q), the optimal rate
region R∗(p) achievable by the p-distributed random code
ensemble is the closure of the set of rate pairs (R1, R2)
such that the sequence of (2nR1 , 2nR2 , n; p) random code
ensembles Cn satisfies

lim
n→∞ ECn [P(n)

e (Cn)] = 0,

where the expectation is with respect to the random code
ensemble Cn .

To characterize the random coding optimal rate region, we
define R1(p) to be the set of rate pairs (R1, R2) such that

R1 ≤ I (X1; Y1 | Q) (4a)

or

R2 ≤ I (X2; Y1 | X1, Q), (4b)

R1 + R2 ≤ I (X1, X2; Y1 | Q). (4c)
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Similarly, define R2(p) by making the index substitution
1 ↔ 2. We are now ready to state the main result of the
section.

Theorem 1: Given a pmf p = p(q) p(x1|q) p(x2|q), the
optimal rate region of the DM-IC p(y1, y2|x1, x2) achievable
by the p-distributed random code ensemble is

R∗(p) = R1(p) ∩ R2(p).
Before we prove the theorem, we point out a few important

properties of the random coding optimal rate region.
Remark 1 (MAC Form): Let R1,IAN(p) be the set of rate

pairs (R1, R2) such that

R1 ≤ I (X1; Y1 | Q),

that is, the achievable rate (region) for the point-to-point
channel p(y1|x1) by treating the interfering signal X2 as noise.
Let R1,SD(p) be the set of rate pairs (R1, R2) such that

R1 ≤ I (X1; Y1 | X2, Q),

R2 ≤ I (X2; Y1 | X1, Q),

R1 + R2 ≤ I (X1, X2; Y1 | Q),

that is, the achievable rate region for the multiple access chan-
nel p(y1|x1, x2) by decoding for both messages M1 and M2
simultaneously. Then, we can express R1(p) as

R1(p) = R1,IAN(p) ∪ R1,SD(p),

which is referred to as the MAC form of R1(p), since it is the
union of the achievable rate regions of 1-sender and 2-sender
multiple access channels. The region R2(p) can be expressed
similarly as the union of the interference-as-noise region
R2,IAN(p) and the simultaneous-decoding region R2,SD(p).
Hence the optimal rate region R∗(p) can be expressed as

R∗(p) =
(
R1,IAN(p)∩R2,IAN(p)

)
∪
(
R1,IAN(p)∩R2,SD(p)

)

∪
(
R1,SD(p)∩R2,IAN(p)

)
∪
(
R1,SD(p)∩R2,SD(p)

)
,

(5)

which is achieved by taking the union over all possible com-
binations of treating interference as noise and simultaneous
decoding at the two receivers.

Remark 2 (Min Form): The region R1(p) in (4a–4c) can
be equivalently characterized as the set of rate pairs (R1, R2)
such that

R1 ≤ I (X1; Y1 | X2, Q), (6a)

R1+min{R2, I (X2; Y1 | X1, Q)} ≤ I (X1, X2; Y1 | Q). (6b)

The minimum term in (6b) can be interpreted as the effective
rate of the interfering signal X2 at the receiver Y1, which is a
monotone increasing function of R2 and saturates at the max-
imum possible rate for distinguishing X2 codewords; see [3].
When R2 is small, all X2 codewords are distinguishable and
the effective rate equals the actual code rate. In comparison,
when R2 is large, the codewords are not distinguishable
and the effective rate equals I (X2; Y1 | X1, Q), which is the
maximum achievable rate for the channel from X2 to Y1.

Fig. 3. An example for nonconvex R∗(p). (a) Channel block diagram.
(b) Regions R1(p), R2(p), and R∗(p) for Q = ∅ and X1, X2 ∼ Unif[0 : 3].

Remark 3 (Nonconvexity): The random coding optimal rate
region R∗(p) is not convex in general. This is exemplified by
the deterministic 2-DM-IC in Fig. 3.

A direct approach to proving Theorem 1 would be to
analyze the performance of maximum likelihood decoding:

m̂1 = arg max
m1

1
2nR2

∑

m2

n∏

i=1

pY1|X1,X2(y1i | x1i(m1), x2i (m2)),

m̂2 = arg max
m2

1
2nR1

∑

m1

n∏

i=1

pY2|X1,X2(y2i | x1i(m1), x2i (m2))

for the p-distributed random code. Instead of performing this
analysis, which is quite complicated (if possible), we establish
the achievability of R∗(p) by the suboptimal simultaneous
nonunique decoding rule, which uses the notion of joint
typicality. We then show that if the average probability of
error of the (2nR1 , 2nR2 , n; p) random code ensemble tends to
zero as n → ∞, then the rate pair (R1, R2) must lie in R∗(p).

A. Proof of Achievability

Each receiver uses simultaneous nonunique decoding.
Receiver 1 declares that m̂1 is sent if it is the unique message
among [1 : 2nR1 ] such that
(
qn, xn

1 (m̂1), xn
2 (m2), yn

1
)

∈ T (n)
ε for some m2 ∈ [1 : 2nR2 ].

If there is no such message or more than one, it declares
an error. Similarly, receiver 2 finds the unique message
m̂2 ∈ [1 : 2nR2 ] such that
(
qn, xn

1 (m1), xn
2 (m̂2), yn

2
)

∈ T (n)
ε for some m1 ∈ [1 : 2nR1 ].
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To analyze the probability of decoding error averaged over the
random codebook ensemble, assume without loss of generality
that (M1, M2) = (1, 1) is sent. Receiver 1 makes an error only
if one or both of the following events occur:

E1 =
{
(Qn, Xn

1 (1), Xn
2 (1), Y n

1 ) /∈ T (n)
ε

}
,

E2 =
{
(Qn, Xn

1 (m1), Xn
2 (m2), Y n

1 ) ∈ T (n)
ε

for some m1 ̸= 1 and some m2
}
.

By the law of large numbers, P(E1) tends to zero as n → ∞.
We bound P(E2) in two ways, which leads to the MAC form

of R1(p) in Remark 1. First, since the joint typicality of the
quadruple (Qn, Xn

1 (m1), Xn
2 (m2), Y n

1 ) for each m2 implies the
joint typicality of the triple (Qn, Xn

1 (m1), Y n
1 ), we have

E2 ⊆
{
(Qn, Xn

1 (m1), Y n
1 ) ∈ T (n)

ε for some m1 ̸= 1
}

= E ′
2.

Then, by the packing lemma in [7, Sec. 3.2], P(E ′
2) tends to

zero as n → ∞ if

R1 < I (X1; Y1 | Q) − δ(ε). (7)

The second way to bound P(E2) is to partition E2 into the two
events

E21 =
{
(Qn, Xn

1 (m1), Xn
2 (1), Y n

1 ) ∈ T (n)
ε

for some m1 ̸= 1
}
,

E22 =
{
(Qn, Xn

1 (m1), Xn
2 (m2), Y n

1 ) ∈ T (n)
ε

for some m1 ̸= 1, m2 ̸= 1
}
.

Again by the packing lemma, P(E21) and P(E22) tend to zero
as n → ∞ if

R1 < I (X1; Y1 | X2, Q) − δ(ε), (8a)

R1 + R2 < I (X1, X2; Y1 | Q) − δ(ε). (8b)

Thus we have shown that the average probability of decoding
error at receiver 1 tends to zero as n → ∞ if at least one of (7)
and (8a, 8b) holds. Similarly, we can show that the average
probability of decoding error at receiver 2 tends to zero as
n → ∞ if R2 < I (X2; Y2 | Q) − δ(ε), or R2 < I
(X2; Y2 | X1, Q)−δ(ε) and R1+R2 < I (X1, X2; Y2 | Q)−δ(ε).
Since ε > 0 is arbitrary and δ(ε) → 0 as ε → 0, this
completes the proof of achievability for any rate pair (R1, R2)
in the interior of R1(p) ∩ R2(p). !

Remark 4 (Comparison to Maximum Likelihood Decoding):
It is instructive to consider the following progression of
decoding rules for receiver 1.

1) Maximum likelihood decoding:

m̂1 = arg max
m1

p(yn
1 | m1)

= arg max
m1

1
2nR2

∑

m2

p(yn
1 | m1, m2)

= arg max
m1

1
2nR2

∑

m2

n∏

i=1

pY1|X1,X2

(y1i | x1i(m1), x2i (m2)),

(9)

which is the optimal decoding rule.

2) Simultaneous maximum likelihood decoding:

m̂1 = arg max
m1

max
m2

p(yn
1 | m1, m2),

which is equivalent to performing optimal decoding of
the message pair (M1, M2) and then taking the first
coordinate. Note the maximum over m2 instead of the
average as in (9).

3) Typicality score decoding:

m̂1 = arg min
m1

min
m2

ε⋆(yn
1 , m1, m2),

where ε⋆(yn
1 , m1, m2) is defined as the smallest ε such

that

(qn, xn
1 (m1), xn

2 (m2), yn
1 ) ∈ T (n)

ε .

Here the notion of joint typicality plays the role of
likelihood in previous decoding rules and ε⋆ captures
the penalty for being atypical.

4) Simultaneous nonunique decoding: Find the unique m̂1
such that

(qn, xn
1 (m̂1), xn

2 (m2), yn
1 ) ∈ T (n)

ε for some m2.

This is equivalent to performing typicality score decod-
ing with predetermined threshold ε for ε⋆(yn

1 , m1, m2);
thus first forming a list of all (m1, m2) for which
ε⋆(yn

1 , m1, m2) ≤ ε, and then taking the first coordinate
of the members of the list (if it is unique).

Starting from the optimal maximum likelihood decoding rule,
each subsequent rule modifies its predecessor by “relaxing”
one step. Nonetheless, these relaxation steps do not result in
any significant loss in performance, as is evident in the rate-
optimality of the simultaneous nonunique decoding rule.

Remark 5: As observed in [4] (see also (5) in Remark 1
above), each rate point in R∗(p) can alternatively be achieved
by having each receiver specifically decode for either the
desired message alone or both the desired and interfering
messages.

B. Proof of the Converse

Fix a pmf p = p(q) p(x1|q) p(x2|q) and let (R1, R2)
be a rate pair achievable by the p-distributed random code
ensemble. We prove that this implies that (R1, R2) ∈ R1(p)∩
R2(p) as claimed. Here, we show the details for the inclusion
(R1, R2) ∈ R1(p); the proof for (R1, R2) ∈ R2(p) follows
similarly. With slight abuse of notation, let Cn denote the
random codebook (and the time sharing sequence), namely
(Qn, Xn

1 (1), . . . , Xn
1 (2nR1), Xn

2 (1), . . . , Xn
2 (2nR2)).

First consider a fixed codebook Cn = c. By Fano’s
inequality,

H (M1 | Y n
1 , Cn = c) ≤ 1 + n R1 P(n)

e (c).

Taking the expectation over the random codebook Cn ,
it follows that

H (M1 | Y n
1 , Cn) ≤ 1 + n R1 ECn [P(n)

e (Cn)] ≤ nεn, (10)

where εn → 0 as n → ∞ since ECn [P(n)
e (Cn)] → 0.
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We prove the conditions in the min form (6a, 6b). To see
that the first inequality is true, note that

n(R1 − εn) = H (M1 | Cn) − nεn
(a)≤ I (M1; Y n

1 | Cn)

≤ I (Xn
1 ; Y n

1 | Cn)

≤ I (Xn
1 ; Y n

1 , Xn
2 | Cn)

= I (Xn
1 ; Y n

1 | Xn
2 , Cn)

= H (Y n
1 | Xn

2 , Cn) − H (Y n
1 | Xn

1 , Xn
2 , Cn)

(b)≤ H (Y n
1 | Xn

2 , Qn) − H (Y n
1 | Xn

1 , Xn
2 , Qn)

(c)= nI (X1; Y1 | X2, Q),

where (a) follows by (the averaged version of) Fano’s inequal-
ity in (10), (b) follows by omitting some conditioning and
using the memoryless property of the channel, and (c) follows
since the tuple (Qi , X1i , X2i , Yi ) is i.i.d. for all i . Note that
unlike conventional converse proofs where nothing can be
assumed about the codebook structure, here we can take
advantage of the properties of a given codebook generation
procedure.

To prove the second inequality in (6), we need the following
lemma, which is proved in Appendix A.

Lemma 1:

lim
n→∞

1
n

H (Y n
1 | Xn

1 , Cn) = H (Y1 | X1, X2, Q)

+ min{R2, I (X2; Y1 | X1, Q)}.
The lemma states that depending on R2,

(1/n)H (Y n
1 | Xn

1 , Cn) either tends to H (Y1 | X1, Q), that is,
the remaining received sequence after recovering the desired
codeword looks like i.i.d. noise, or to R2 + H (Y1 | X1, X2, Q),
that is, the receiver can distinguish the interfering codeword
from the noise.

Equipped with this lemma, we have

n(R1 − εn)
(a)≤ I (Xn

1 ; Y n
1 | Cn)

= H (Y n
1 | Cn) − H (Y n

1 | Xn
1 , Cn)

≤ H (Y n
1 | Qn) − H (Y n

1 | Xn
1 , Cn)

(b)≤ nH (Y1 | Q) − nH (Y1 | X1, X2, Q)

− min{n R2, nI (X2; Y1 | X1, Q)} + nεn

= nI (X1, X2; Y1 | Q)

+ min{n R2, nI (X2; Y1 | X1, Q)} + nεn.

Here, (a) follows by Fano’s inequality and (b) follows by
Lemma 1 with some εn that tends to zero as n → ∞. The
conditions for R2(p) can be proved similarly. This completes
the proof of the converse.

III. DM-IN WITH K SENDERS AND L RECEIVERS

We generalize the previous result to the K -sender,
L-receiver discrete memoryless interference network
((K , L)-DM-IN) with input alphabets X1, . . . ,XK , output
alphabets Y1, . . . ,YL , and pmfs p(y1, . . . , yL | x1, . . . , xK ).
In this network, each sender k ∈ [1 : K ] communicates
an independent message Mk at rate Rk and each receiver

Fig. 4. Discrete memoryless interference network with K senders and
L receivers.

l ∈ [1 : L] wishes to recover the messages sent by a subset
Dl ⊆ [1 : K ] of senders (also referred to as a demand set).
The channel is depicted in Fig. 4.

More formally, a (2nR1, . . . , 2nRK , n) code Cn for the
(K , L)-DM-IN consists of

• K message sets [1 : 2nR1 ], …, [1 : 2nRK ],
• K encoders, where encoder k ∈ [1 : K ] assigns a

codeword xn
k (mk) to each message mk ∈ [1 : 2nRk ],

• L decoders, where decoder l ∈ [1 : L] assigns estimates
m̂kl , k ∈ Dl , or an error message e to each received
sequence yn

l .
We assume that the message tuple (M1, . . . , MK ) is uni-

formly distributed over [1 : 2nR1] × · · · × [1 : 2nRK ]. The
average probability of error for the code Cn is defined as

P(n)
e (Cn) = P

{
M̂kl ̸= Mk for some l ∈ [1 : L], k ∈ Dl

}
.

A rate tuple (R1, . . . , RK ) is said to be achievable for the
DM-IN if there exists a sequence of (2nR1 , . . . , 2nRK , n)
codes Cn such that limn→∞ P(n)

e (Cn) = 0. The capacity
region C of the (K , L)-DM-IN is the closure of the set of
achievable rate tuples (R1, . . . , RK ).

As in Section II, we limit our attention to a ran-
domly generated code ensemble with a special structure. Let
p = p(q) p(x1|q) · · · p(xK |q) be a given pmf on
Q×X1 × · · ·×XK , where Q is a finite alphabet. Suppose that
codewords Xn

k (mk), mk ∈ [1 : 2nRk ], k ∈ [1 : K ], are generated
randomly as follows.

• Let Qn ∼∏n
i=1 pQ(qi ).

• For each k ∈ [1 : K ] and mk ∈ [1 : 2nRk ], let Xn
k (mk) ∼∏n

i=1 pXk |Q(xki |qi ), conditionally independent given Qn .
Each instance of codebooks generated in this manner,
along with the corresponding optimal decoders, constitutes
a (2nR1 , . . . , 2nRK , n) code. We refer to the random code
ensemble thus generated as the (2nR1 , . . . , 2nRK , n; p) random
code ensemble.

Definition 2 (Random Coding Optimal Rate Region):
Given a pmf p = p(q) p(x1|q) · · · p(xK |q), the optimal rate
region R∗(p) achievable by the p-distributed random code
ensemble is the closure of the set of rate tuples (R1, . . . , RK )
such that the sequence of the (2nR1, . . . , 2nRK , n; p) random
code ensembles Cn satisfies

lim
n→∞ ECn [P(n)

e (Cn)] = 0,

where the expectation is with respect to the random code
ensemble Cn .
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Fig. 5. The class of (K , L)-DM-INs includes superposition coding with an
arbitrary number of layers. (a) Multiple messages per sender via superposition
coding. (b) Equivalent channel with a single message per sender.

We note that the p-distributed random code ensemble for the
(K , L)-DM-IN captures superposition coding with an arbitrary
number of layers. Suppose that there are K senders, some of
which need to communicate multiple messages (see Fig. 5(a)).
In superposition coding, each message at a sender is encoded
into a codeword Un

k′ and the sender combines (superimposes)
all such codewords. By merging the combining functions at
the sender with the physical channel p(yL|x K ), we obtain
a (K ′, L)-DM-IN p(y L|uK ′

) with “virtual” inputs Uk′ ,
k ′ ∈ [1 : K ′], as illustrated in Fig. 5(b).

Define the rate region R1(p) as

R1(p) =
⋃

S⊆[1:K ],
D1⊆S

RMAC(S)(p), (11)

where RMAC(S)(p) is the achievable rate region for the
multiple access channel from the set of senders S to receiver 1,
i.e., the set of rate tuples (R1, . . . , RK ) such that

RT =
∑

j∈T
R j ≤ I (XT ; Y1 | XS\T , Q) for all T ⊆ S.

Note that the set RMAC(S)(p) corresponds to the rate region
achievable by decoding for the messages from the senders S,
which contains all desired messages and possibly some inter-
fering messages. Also note that RMAC(S)(p) contains upper
bounds only on the rates Rk , k ∈ S, of the active senders S
in the MAC. The signals from the inactive senders in Sc are
treated as noise and the corresponding rates Rk for k ∈ Sc

are unconstrained. Consequently, R1(p) is unbounded in the
coordinates Rk for k ∈ [1 : K ] \ D1.

The region R1(p) in (11) can equivalently be written
as the set of rate tuples (R1, . . . , RK ) such that for all

U ⊆ [1 : K ] \ D1 and for all D with ∅ ⊂ D ⊆ D1,

RD + min
U ′⊆U

(
RU ′ + I (XU\U ′; Y1 | XD, XU ′ , X[1:K ]\D\U , Q)

)

≤ I (XD, XU ; Y1 | X[1:K ]\D\U , Q). (12)

As in the case of the 2-DM-IC, each argument of each term in
the minimum represents a different mode of signal saturation.
The equivalence between the MAC form (11) and the min
form (12) can be proved by identifying the largest set of
decodable interfering messages as in [12]. For completeness,
we provide a proof in Appendix B.

Remark 6: The MAC and min forms of R1(p) are duals
to each other in the following sense. The condition for
(R1, . . . , RK ) ∈ R1(p) in the MAC form (11) can be
expressed as

∃S ⊆ [1 : K ], D1 ⊆ S :
∀T ⊆ S :

RT ≤ I (XT ; Y1 | XS\T , Q). (13)

The conditions in the min form (12) can be rewritten1 as

∀V ⊆ [1 : K ], V ∩ D1 ̸= ∅ :
∃V ′ ⊆ V, V ′ ∩ D1 = V ∩ D1 :

RV ′ ≤ I (XV ′; Y1 | X[1:K ]\V , Q). (14)

Both conditions involve a set of messages from the senders S
(or V) and its subset T (or V ′), and impose a mutual infor-
mation upper bound on the sum rate over the subset. The key
difference is the order of the quantifiers ∀ and ∃.

Analogous to R1(p), define the regions R2(p), . . . ,RL(p)
for receivers 2, . . . , L by making appropriate index substi-
tutions. We are now ready to state the main result for the
(K , L)-DM-IN.

Theorem 2: Given a pmf p = p(q) p(x1|q) · · · p(xK |q),
the optimal rate region of the (K , L)-DM-IN p(yL |x K ) with
demand sets D1, . . . ,DL achievable by the p-distributed ran-
dom code ensemble is

R∗(p) =
⋂

l∈[1:L]
Rl(p).

Note that, as for its 2-DM-IC counterpart, this region is not
convex in general.

Example 1: Consider the K -user-pair Gaussian interference
network

Yl =
K∑

k=1

gkl Xk + Zl, l ∈ [1 : K ],

where Zl ∼ N(0, 1) and gkl are channel gains from sender k to
receiver l. Assume the Gaussian random code ensemble with
Xk ∼ N(0, 1), k ∈ [1 : K ]. The optimal rate region achievable

1To see this, first note that the minimum terms on the left hand side of (12)
represent a set of conditions of which at least one has to be true, then use
the identity

I (XD, XU ; Y1 | X[1:K ]\D\U , Q)

− I (XU\U ′ ; Y1 | XD, XU ′ , X[1:K ]\D\U , Q)

= I (XD, XU ′ ; Y1 | X[1:K ]\D\U , Q),

and finally, let V = U ∪ D and V ′ = U ′ ∪ D.
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by this random code ensemble was established in [2] and [12],
and can be recovered from Theorem 2 by letting K = L,
Dk = {k} for k ∈ [1 : K ], and applying the discretization
procedure in [7, Sec. 3.4]. Theorem 2 generalizes this result
in several directions, since (a) it applies to non-Gaussian net-
works, (b) it applies to non-Gaussian random code ensembles
(which is crucial to analyze the performance under a fixed
constellation), and (c) it includes coded time sharing and
superposition coding.

Example 2: Consider the deterministic interference channel
with three sender–receiver pairs (3-DIC) [3], where

Y1 = f1(g11(X1), h1(g21(X2), g31(X3))),

Y2 = f2(g22(X2), h2(g32(X3), g12(X1))),

Y3 = f3(g33(X3), h3(g13(X1), g23(X2)))

for some loss functions gkl and combining functions hk and fk ,
k, l ∈ {1, 2, 3}. The combining functions are supposed to be
injective in each argument. This setting is of interest since it
contains as special cases the El Gamal–Costa two-user-pair
interference channel [8], for which the Han–Kobayashi
coding scheme achieves the capacity region, and the
Avestimehr–Diggavi–Tse q-ary expansion determinis-
tic (QED) interference channel [1], which approximates
Gaussian interference networks in the high-power regime.
The 3-DIC is an instance of a (K , L)-DM-IN with L = K = 3
and Dk = {k} for k ∈ [1 : K ]. The interference decoding
inner bound on the 3-DIC capacity region in [3] coincides
with the region in Theorem 2 in its min form. Beyond the
results in [3], Theorem 2 establishes that the interference
decoding inner bound is in fact optimal given the codebook
structure. Note that for the 3-DIC channel, we can identify
each minimum term with a specific signal in the channel
block diagram for which the term counts the number of
distinguishable sequences.

Proof of Theorem 2: We focus only on receiver 1 for
which Mk , k ∈ D1, are the desired messages and Mk ,
k ∈ Dc

1 = [1 : K ] \D1, are interfering messages. Achievability
is proved using simultaneous nonunique decoding. Receiver 1
declares that m̂D1 is sent if it is the unique message tuple such
that
(
qn, xn

D1
(m̂D1), xn

Dc
1
(mDc

1
), yn

1
)

∈ T (n)
ε for some mDc

1
,

where xn
D1

(m̂D1) is the tuple of xn
k (m̂k), k ∈ D1, and similarly,

xn
Dc

1
(mDc

1
) is the tuple of xn

k (mk), k ∈ Dc
1. The analysis follows

similar steps as in Subsection II-A.
To prove the converse, fix a pmf p and let (R1, . . . , RK ) be

a rate tuple that is achievable by the p-distributed random code
ensemble. We need the following generalization of Lemma 1,
which is proved in Appendix C.

Lemma 2: If D1 ⊆ S ⊆ [1 : K ], then

lim
n→∞

1
n

H (Y n
1 | Xn

S , Cn) = H (Y1 | X[1:K ], Q)

+ min
U⊆Sc

(
RU+ I (X(S∪U)c; Y1 |XS∪U , Q)

)
.

We now establish (12) as follows. Fix a subset of desired
message indices, D ⊆ D1, and a subset of interfering message

Fig. 6. Han–Kobayashi coding scheme.

indices, U ⊆ Dc
1. Then

n(RD − εn)
(a)≤ I (Xn

D; Y n
1 | Cn)

≤ I (Xn
D; Y n

1 , Xn
(D∪U)c | Cn)

≤ I (Xn
D; Y n

1 | Xn
(D∪U)c, Cn)

= H (Y n
1 | Xn

(D∪U)c, Cn) − H (Y n
1 | Xn

U c, Cn)

(b)≤ nH (Y1 | X(D∪U)c, Q) − nH (Y1 | X[1:K ], Q)

− n · min
U ′⊆U

(
RU ′ + I (X(U c∪U ′)c; Y1 | XU c∪U ′ , Q)

)
+ nεn

= nI (XD∪U ; Y n
1 | X(D∪U)c, Q)

− n · min
U ′⊆U

(
RU ′ + I (XU\U ′; Y1 | X(U\U ′)c, Q)

)
+ nεn,

where (a) follows by Fano’s inequality and (b) follows by
Lemma 2. This completes the proof of the converse. !

IV. APPLICATION TO THE HAN–KOBAYASHI

CODING SCHEME

We revisit the two-user-pair DM-IC in Fig. 1. The best
known inner bound on the capacity region is achieved by
the Han–Kobayashi coding scheme [9]. In this scheme, the
message M1 is split into common and private messages
M12 and M11 at rates R12 and R11, respectively, such
that R1 = R12 + R11. Similarly M2 is split into common and
private messages M21 and M22 at rates R21 and R22
such that R2 = R22 + R21. More specifically, the
scheme uses random codebook generation and coded
time sharing as follows. Fix a pmf p = p(q) p(u11|q)
p(u12|q) p(u21|q) p(u22|q) p(x1|u11, u12, q) p(x2|u21, u22, q),
where the latter two conditional pmfs represent deterministic
mappings x1(u11, u12) and x2(u21, u22). Randomly generate
a coded time sharing sequence qn ∼ ∏n

i=1 pQ(qi). For
each k, k ′ ∈ {1, 2} and mkk′ ∈ [1 : 2nRkk′ ], randomly and
conditionally independently generate a sequence un

kk′ (mkk′ )
according to

∏n
i=1 pUkk′ |Q(ukk′ i |qi ). To communicate message

pair (m11, m12), sender 1 transmits x1i = x1(u11i , u12i ) for
i ∈ [1 : n], and analogously for sender 2. Receiver k = 1, 2
recovers its intended message Mk and the common message
from the other sender (although it is not required to). While
this decoding scheme helps reduce the effect of interference,
it results in additional constraints on the rates for common
messages. The Han–Kobayashi coding scheme is illustrated
in Fig. 6.
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Let RHK,1(p) be defined as the set of rate tuples
(R11, R12, R21, R22) such that

R11 ≤ I (U11; Y1 |U12, U21, Q), (15a)

R12 ≤ I (U12; Y1 |U11, U21, Q), (15b)

R21 ≤ I (U21; Y1 |U11, U12, Q), (15c)

R11 + R12 ≤ I (U11, U12; Y1 |U21, Q), (15d)

R11 + R21 ≤ I (U11, U21; Y1 |U12, Q), (15e)

R12 + R21 ≤ I (U12, U21; Y1 |U11, Q), (15f)

R11 + R12 + R21 ≤ I (U11, U12, U21; Y1 | Q). (15g)

Similarly, define RHK,2(p) by making the sender/receiver
index substitutions 1 ↔ 2 in the definition of RHK,1(p).
As shown by Han and Kobayashi [9], the coding scheme
achieves any rate pair (R1, R2) that is in the interior of

RHK = Proj4→2

(⋃
p RHK,1(p) ∩ RHK,2(p)

)

= ⋃p Proj4→2

(
RHK,1(p) ∩ RHK,2(p)

)
, (16)

where Proj4→2 is the projection that maps the
4-dimensional (convex) set of rate tuples (R11, R12, R21, R22)
into a 2-dimensional rate region of rate pairs
(R1, R2) = (R11 + R12, R21 + R22) and the unions are
taken over all pmfs p = p(q) p(u11|q) p(u12|q) p(u21|q)
p(u22|q) p(x1|u11, u12, q) p(x2|u21, u22, q).

We are interested in finding the rate region that is
achievable by the Han–Kobayashi encoding functions in
conjunction with the optimal decoding functions. To this end,
note that by combining the channel and the deterministic
mappings as indicated by the dashed box in Fig. 6, the
channel (U11, U12, U21, U22) → (Y1, Y2) is a (4, 2)-DM-IN.
After removing the artificial requirement for each decoder
to recover the interfering sender’s common message, the
message demands are D1 = {11, 12} and D2 = {21, 22}.
Moreover, the Han–Kobayashi encoding scheme is in fact the
p-distributed random code ensemble applied to this network,
as defined in Section III.

Definition 3: The optimal rate region Ropt achievable by
the Han–Kobayashi random code ensembles is defined as

Ropt = Proj4→2

(
⋃

p

R∗(p)

)
=
⋃

p

Proj4→2

(
R∗(p)

)
,

where the union is over pmfs of the form p = p(q) p(u11|q)
p(u12|q) p(u21|q) p(u22|q) p(x1|u11, u12) p(x2|u21, u22) with
the latter two factors representing deterministic mappings
x1(u11, u12) and x2(u21, u22), and R∗(p) is the optimal rate
region achievable by the p(q) p(u11|q) p(u12|q) p(u21|q)
p(u22|q)-distributed random code ensemble for the
(4, 2)-DM-IN p(y1, y2|u11, u12, u21, u22) = pY1,Y2|X1,X2

(y1, y2|x1(u11, u12), x2(u21, u22)) (cf. Definition 2).
Then Theorem 2 implies the following.
Theorem 3: Ropt = RHK.
Thus, the Han–Kobayashi inner bound is optimal when

encoding is restricted to randomly generated codebooks,
superposition coding, and coded time sharing. It cannot

be enlarged by replacing the decoders used in the proof
of (15a–15g) with optimal decoders.

Proof of Theorem 3: Applying Theorem 2 to the definition
of Ropt yields

Ropt = Proj4→2

(
⋃

p

R1(p) ∩ R2(p)

)
,

where R1(p) is the set of rate tuples (R11, R12, R21, R22) such
that

RT1 ≤ I (UT1 ; Y1 | US1\T1, Q) for all T1 ⊆ S1 (17)

for some S1 with {11, 12} ⊆ S1 ⊆ {11, 12, 21, 22}. Likewise,
R2(p) is the set of rate tuples that satisfy

RT2 ≤ I (UT2 ; Y2 | US2\T2, Q) for all T2 ⊆ S2 (18)

for some S2 with {21, 22} ⊆ S2 ⊆ {11, 12, 21, 22}. Here,
S1 and S2 contain the indices of the messages recovered by
receivers 1 and 2, respectively.

In order to compare Ropt to RHK, recall (15) and (16) and
the compact description of RHK in [6] as the set of all rate
pairs (R1, R2) such that

R1 ≤ I (U11, U12; Y1 | U21, Q), (19a)

R2 ≤ I (U21, U22; Y2 | U12, Q), (19b)

R1 + R2 ≤ I (U11, U12, U21; Y1 | Q)

+ I (U22; Y2 | U12, U21, Q), (19c)

R1 + R2 ≤ I (U12, U21, U22; Y2 | Q)

+ I (U11; Y1 | U12, U21, Q), (19d)

R1 + R2 ≤ I (U11, U21; Y1 | U12, Q)

+ I (U12, U22; Y2 | U21, Q), (19e)

2R1 + R2 ≤ I (U11, U12, U21; Y1 | Q)

+ I (U11; Y1 | U12, U21, Q)

+ I (U12, U22; Y2 | U21, Q), (19f)

R1 + 2R2 ≤ I (U12, U21, U22; Y2 | Q)

+ I (U22; Y2 | U12, U21, Q)

+ I (U11, U21; Y1 | U12, Q) (19g)

for some pmf of the form p = p(q) p(u11|q) p(u12|q)
p(u21|q) p(u22|q) p(x1|u11, u12) p(x2|u21, u22), where the lat-
ter two factors represent deterministic mappings x1(u11, u12)
and x2(u21, u22).

It is easy to see that RHK ⊆ Ropt. Choosing
S1 = {11, 12, 21} in (17), the resulting conditions coincide
with the ones in (15), and the constituent sets satisfy
the condition RHK,1(p) ⊆ R1(p). Likewise, choosing
S2 = {12, 21, 22} in (18), RHK,2(p) ⊆ R2(p), and the
desired inclusion follows.

To show that Ropt ⊆ RHK, note that conditions (17)
and (18) must hold for some S1 ⊇ {11, 12} and S2 ⊇ {21, 22}.
For each of the 16 possible choices of S1 and S2, the resulting
rate region is (directly or indirectly) included in RHK as
follows (see Fig. 7).

• If S1 = {11, 12, 21} and S2 = {21, 22, 12}, we obtain
precisely RHK (depicted as a dashed box in the figure).
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Fig. 7. Different cases of S1 and S2 for the region Ropt and the inclusion
of the corresponding regions in RHK. An arrow from A to B means that the
region achieved by case A is included in the region achieved by case B.

• If S1 = {11, 12, 21, 22}, both receivers decode for the
messages with indices {21, 22}. This is equivalent to let-
ting U ′

21 = (U21, U22), U ′
22 = ∅, and S ′

1 = {11, 12, 21}.
A symmetric argument holds if S2 = {21, 22, 11, 12}.

• If S1 = {11, 12, 22}, then S1 can be replaced by
{11, 12, 21} by exchanging the roles of U21 and U22.
The exchange will not affect receiver 2, since the two
auxiliary random variables play symmetric roles there.
A symmetric argument holds if S2 = {21, 22, 11}.

• If S1 = {11, 12} and S2 = {21, 22}, we apply
Fourier–Motzkin elimination and arrive at

R1 ≤ I (X1; Y1 | Q),

R2 ≤ I (X2; Y2 | Q).

This region is a subset of the one in (19a–19g) when the
latter is specialized to U12 = U21 = ∅, U11 = X1, and
U22 = X2.

• If S1 = {11, 12} and S2 = {21, 22, 12}, Fourier–Motzkin
elimination leads to

R1 ≤ I (X1; Y1 | Q),

R1 ≤ I (X1; Y1 | U12, Q) + I (U12; Y2 | X2, Q),

R2 ≤ I (X2; Y2 | U12, Q),

R1 + R2 ≤ I (X1; Y1 | U12, Q) + I (U12, X2; Y2 | Q).

Again, this region is a subset of the one in (19a–19g),
namely when the latter is specialized to U21 = ∅
and U22 = X2. A symmetric argument holds if
S1 = {11, 12, 21} and S2 = {21, 22}.

This concludes the proof of Corollary 3. !
Remark 7: Chong, Motani, Garg, and El Gamal [6]

proposed an alternative coding scheme with a different
random codebook structure and showed that this scheme
achieves RHK in (16). More specifically, we fix a pmf
p = p(q) p(u1, x1|q) p(u2, x2|q). Randomly generate a
coded time sharing sequence qn ∼ ∏n

i=1 pQ(qi ). For each
k ∈ {1, 2} and mk1 ∈ [1 : 2nRk1 ], randomly and conditionally
independently generate a sequence un

k (mk1) according to∏n
i=1 pUk |Q(uki |qi ). For each k ∈ {1, 2}, mk1 ∈ [1 : 2nRk1 ],

and mk2 ∈ [1 : 2nRk2 ], randomly and conditionally
independently generate a sequence xn

k (mk1, mk2) according

to
∏n

i=1 pXk |Uk ,Q(xki |uki (mk1, qi ). To communicate message
pair (m11, m12), sender k = 1, 2 transmits xki (mk1, mk2)
for i ∈ [1 : n]. A question arises whether using optimal
decoders (and employing tighter performance analysis) would
enlarge the achievable rate region of the coding scheme
by Chong et al. The answer is negative, which can be
shown by adapting the analysis technique in the proofs of
Theorems 2 and 3 (see [18]).

V. CONCLUDING REMARKS

Taking a modular approach to the problem of finding the
capacity region of the interference network, we have studied
the performance of random code ensembles. This result
provides a simple characterization of the rate region achievable
by the optimal maximum likelihood decoding rule and invites
more refined studies on the performance of random coding
for interference networks, such as the error exponent analysis
(see [10], [14]) and Verdú’s finite-block performance
bounds [17].

The optimal rate region can be achieved by simultaneous
nonunique decoding, which fully incorporates the codebook
structure of interfering signals. Although its performance can
be achieved also by an appropriate combination of simul-
taneous decoding (SD) of strong interference and treating
weak interference as noise (IAN) [2], [4], [12], simultane-
ous nonunique decoding provides a conceptual unification of
SD and IAN, recovering all possible combinations of the
two schemes at each receiver.

Finally, we remark that simultaneous nonunique decoding
can be applied to encoding schemes beyond what is considered
in this paper. For example, when combined with the restricted
version of Marton’s coding scheme [11] for the two-receiver
broadcast channel p(y1, y2|x) without the center codeword
U0 [7, Th. 8.3] under the random code ensemble p =
(p(u1)p(u2), x(u1, u2)), simultaneous nonunique decoding
can achieve any rate pair (R1, R2) such that

R1 < R̃1,

R2 < R̃2,

R1 + R2 < R̃1 + R̃2 − I (U1; U2)

for some (R̃1, R̃2) ∈ R̃1 ∩ R̃2, where R̃1 consists of rate
pairs such that

R̃1 < I (U1; Y1)

or

R̃1 < I (U1; Y1, U2),

R̃1 + R̃2 < I (U1, U2; Y1),

and R̃2 is defined similarly by exchanging the
subscripts 1 and 2. The optimality of this region, in
any reasonable sense, remains open.

APPENDIX A
PROOF OF LEMMA 1

Clearly, the right hand side of the equality is an upper bound
to the left hand side, since

H (Y n
1 | Xn

1 , Cn) ≤ nH (Y1 | X1, Q),
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and

H (Y n
1 | Xn

1 , Cn) ≤ H (Y n
1 , M2 | Xn

1 , Cn)

= n R2 + H (Y n
1 | Xn

1 , Xn
2 , Cn)

≤ n R2 + nH (Y1 | X1, X2, Q),

where we have used the codebook structure and the fact that
the channel is memoryless.

To see that the right hand side is also a valid lower bound,
note that

H (Y n
1 | Xn

1 , Cn)

= H (Y n
1 | Xn

1 , Cn, M2)︸ ︷︷ ︸
=nH(Y1|X1,X2)

=nH(Y1|X1,X2,Q)

+ H (M2)︸ ︷︷ ︸
=nR2

−H (M2 | Xn
1 , Cn, Y n

1 ).

Next, we find an upper bound on H (M2 | Xn
1 , Cn, Y n

1 ) by
showing that given Xn

1 , Cn , and Y n
1 , a relatively short list

L ⊆ [1 : 2nR2 ] can be constructed that contains M2 with high
probability (the idea is similar to [7, proof of Lemma 22.1]).
Without loss of generality, assume M2 = 1. Fix an ε > 0 and
define the random set

L = {m2 : (Qn, Xn
1 , Xn

2 (m2), Y n
1 ) ∈ T (n)

ε }.

To analyze the cardinality |L|, note that, for each m2 ̸= 1,

P{(Qn, Xn
1 , Xn

2 (m2), Y n
1 ) ∈ T (n)

ε }
=

∑

qn ,xn
1 ,xn

2

P{Qn = qn, Xn
1 = xn

1 , Xn
2 (m2) = xn

2 }

· P{(xn
1 , xn

2 , Y n
1 ) ∈ T (n)

ε }
(a)
≤

∑

qn ,xn
1 ,xn

2

P{Qn = qn, Xn
1 = xn

1 , Xn
2 (m2) = xn

2 }

·2−n(I (X2;Y1|X1,Q)−δ(ε))

= 2−n(I (X2;Y1|X1,Q)−δ(ε)),

where (a) follows by the joint typicality lemma. Thus, the
cardinality |L| satisfies |L| ≤ 1 + B , where B is a binomial
random variable with 2nR2 − 1 trials and success probability
at most 2−n(I (X2;Y1|X1,Q)−δ(ε)). The expected cardinality is
therefore bounded as

E(|L|) ≤ 1 + 2n(R2−I (X2;Y1|X1,Q)+δ(ε)). (20)

Note that the true M2 is contained in the list with high
probability, i.e., 1 ∈ L, by the weak law of large numbers,

P{(Qn, Xn
1 , Xn

2 (1), Y n
1 ) ∈ T (n)

ε } → 1 as n → ∞.

Define the indicator random variable E = I(1 ∈ L), which
therefore satisfies P{E = 0} → 0 as n → ∞. Hence

H (M2 | Xn
1 , Cn, Y n

1 )

= H (M2 | Xn
1 , Cn, Y n

1 , E) + I (M2; E | Xn
1 , Cn, Y n

1 )

≤ H (M2 | Xn
1 , Cn, Y n

1 , E) + 1

= 1 + P{E = 0} · H (M2 | Xn
1 , Cn, Y n

1 , E = 0)

+ P{E = 1} · H (M2 | Xn
1 , Cn, Y n

1 , E = 1)

≤ 1 + n R2 P{E = 0} + H (M2 | Xn
1 , Cn, Y n

1 , E = 1).

For the last term, we argue that if M2 is included in L, then
its conditional entropy cannot exceed log(|L|):
H (M2 | Xn

1 , Cn, Y n
1 , E = 1)

(a)= H (M2 | Xn
1 , Cn, Y n

1 , E = 1,L, |L|)
≤ H (M2 | E = 1,L, |L|)

=
2nR2∑

l=0

P{|L| = l} · H (M2 | E = 1,L, |L| = l)

≤
2nR2∑

l=0

P{|L| = l} · log(l)

= E(log(|L|))
(b)
≤ log(E(|L|))
(c)≤ 1 + max{0, n(R2 − I (X2; Y1 |X1, Q) + δ(ε))},

where (a) follows since the list L and its cardinality |L| are
functions only of Xn

1 , Cn , and Y n
1 , (b) follows by Jensen’s

inequality, and (c) follows from (20) and the soft-max inter-
pretation of the log-sum-exp function [5, p. 72].

Substituting back, we have

H (M2 | Xn
1 , Cn, Y n

1 )

≤ 2 + n R2 P{E = 0}
+ max{0, n(R2 − I (X2; Y1 |X1, Q) + δ(ε))},

and
1
n

H (Y n
1 | Xn

1 , Cn)

≥ H (Y1 |X1, X2, Q) + R2 − 2
n

− R2 P{E = 0}
− max{0, R2 − I (X2; Y1 |X1, Q) + δ(ε)}

≥ H (Y1 |X1, X2, Q) + min
{

R2, I (X2; Y1 |X1, Q) − δ(ε)
}

− 2
n

− R2 P{E = 0}.

Taking the limit as n → ∞, and noting that we are free to
choose ε such that δ(ε) becomes arbitrarily small, the desired
result follows.

APPENDIX B
EQUIVALENCE BETWEEN THE MIN AND MAC FORMS

Fix a distribution p = p(q) p(x1|q) · · · p(xK |q) and a rate
tuple (R1, . . . , RK ). We show that the conditions (13) and (14)
are equivalent.

Proof That (13) Implies (14): We are given a set S with
D1 ⊆ S ⊆ [1 : K ]. Fix an arbitrary V with nonempty
intersection V ∩ D1. Now consider V ′ = T = S ∩ V . Note
V ′ ∩ D1 = V ∩ D1 as required. Then,

RV ′ = RT
(a)≤ I (XT ; Y1 | XS\T , Q)
(b)≤ I (XT ; Y1 | XS\V , X[1:K ]\S\V , Q)

= I (XV ′; Y1 | X[1:K ]\V , Q),

where (a) follows from (13), and (b) follows from the structure
of p. !
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Fig. 8. Partitioning the set T ′′ ⊆ S1 ∪ S2.

Proof That (14) Implies (13): Denote a set S ⊆ [1 : K ] as
decodable if

∀T ⊆ S : RT ≤ I (XT ; Y1 | XS\T , Q).

Then the following proposition holds, which is proved below.
Proposition 1: If S1 and S2 are decodable sets, then S1∪S2

is a decodable set.
To determine which messages are decodable, consider

the optimization problem of maximizing |S| over decodable
sets S. From Proposition 1, a unique maximizer S⋆ must
exist, which is a superset of all decodable sets. Consider its
complement S⋆

. The intuitive reason for the messages indexed
by S⋆

being undecodable is that the corresponding rates are too
large. This notion is made precise in the following proposition,
which is analogous to a property for the Gaussian case given
in [2, Fact 1] and for which a proof is provided below.

Proposition 2: For all sets U with ∅ ⊂ U ⊆ S⋆
, the rates

satisfy

RU > I (XU ; Y1 | XS⋆, Q). (21)
Assuming (13) is not true, there must be some desired

message index that is not decodable, i.e., D1 ! S⋆, or
equivalently, S⋆ ∩ D1 ̸= ∅. Then we can choose V = S⋆

in (14), yielding

∃V ′ ⊆ S⋆
,V ′ ∩ D1 = S⋆ ∩ D1 : RV ′ ≤ I (XV ′; Y1 | XS⋆, Q),

which contradicts (21). This proves that (14)
implies (13). !

Proof of Proposition 1: Since S1 and S2 are decodable,
we have

RT ≤ I (XT ; Y1 | XS1\T , Q) for all T ⊆ S1,

RT ′ ≤ I (XT ′; Y1 | XS2\T ′, Q) for all T ′ ⊆ S2.

and we need to show

RT ′′ ≤ I (XT ′′; Y1 | X(S1∪S2)\T ′′ , Q) for all T ′′ ⊆ S1 ∪ S2.

Fix a subset T ′′ ⊆ S1 ∪ S2 and partition it as T ′′ = T ′′
1 ∪ T ′′

2
where T ′′

1 ⊆ S1, T ′′
2 ⊆ S2, T ′′

1 ∩ T ′′
2 = ∅, and T ′′

2 ∩ S1 = ∅
(see Fig. 8).

Then

RT ′′ = RT ′′
1

+ RT ′′
2

≤ I (XT ′′
1
; Y1 | XS1\T ′′

1
, Q) + I (XT ′′

2
; Y1 | XS2\T ′′

2
, Q)

≤ I (XT ′′
1
; Y1 | X(S1∪S2)\T ′′ , Q)

+I (XT ′′
2
; Y1 | X(S1∪S2)\T ′′ , XT ′′

1
, Q)

= I (XT ′′
1
, XT ′′

2
; Y1 | X(S1∪S2)\T ′′ , Q),

which concludes the proof. !

Fig. 9. Partitioning the set T ′ ⊆ S⋆ ∪ U .

Proof of Proposition 2: Assume first that the proposition was
not true. Then there must be a minimal U with ∅ ⊂ U ⊆ S⋆

such that

RU ≤ I (XU ; Y1 | XS⋆, Q), (22)

RU\T > I (XU\T ; Y1 | XS⋆ , Q) for all T with ∅ ⊂ T ⊂ U .

Now,

RT = RU − RU\T
≤ I (XU ; Y1 | XS⋆, Q) − I (XU\T ; Y1 | XS⋆, Q)

= I (XT ; Y1 | XS⋆, XU\T , Q)

for all T satisfying ∅ ⊂ T ⊂ U .

Recalling (22), the last statement continues to hold for T = U .
Thus,

RT ≤ I (XT ; Y1 | XS⋆, XU\T , Q) for all T ⊆ U . (23)

We are going to show that S⋆ ∪ U is decodable, which
contradicts the definition of S⋆ as the maximum decodable
set since U is non-empty and does not intersect S⋆. To this
end, consider an arbitrary T ′ ⊆ S⋆ ∪ U and partition it as
T ′ = T ′

1 ∪ T ′
2 with T ′

1 ∩ T ′
2 = ∅, T ′

1 ⊆ S⋆, and T ′
2 ⊆ U

(see Fig. 9).
Then

RT ′ = RT ′
1

+ RT ′
2

(a)≤ I (XT ′
1
; Y1 | XS⋆\T ′

1
, Q) + I (XT ′

2
; Y1 | XS⋆, XU\T ′

2
, Q)

(b)≤ I (XT ′
1
; Y1 | XS⋆\T ′

1
, XU\T ′

2
, Q)

+ I (XT ′
2
; Y1 | XS⋆\T ′

1
, XU\T ′

2
, XT ′

1
, Q)

= I (XT ′
1
, XT ′

2
; Y1 | X(S⋆∪U)\(T ′

1∪T ′
2 ), Q),

where (a) follows from S⋆ being decodable and (23), and
in (b), we have augmented the first mutual information expres-
sion and rewritten the second one. This concludes the proof
by contradiction. !

APPENDIX C
PROOF OF LEMMA 2

The proof proceeds along similar lines as the proof of
Lemma 1. First, we show that the right hand side is a valid
upper bound to the left hand side. For any U ⊆ Sc,

H (Y n
1 | Xn

S , Cn) ≤ H (Y n
1 , MU | Xn

S , Cn)

= n RU + H (Y n
1 | Xn

S , Xn
U , Cn)

≤ n RU + nH (Y1 | XS , XU , Q)

= n RU + nH (Y1 | X[1:K ], Q)

+ I (X(S∪U)c; Y1 | XS∪U , Q),

where we have used the codebook structure.
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To see that the right hand side is a valid lower bound to the
left hand side, note

H (Y n
1 | Xn

S , Cn) = nH (Y1 |X[1:K ], Q) + n RSc

− H (MSc | Xn
S , Y n

1 , Cn).

Without loss of generality, assume Mk = 1, for k ∈ Sc.
Fix an ε > 0 and define the random set

L = {mSc : (Qn, Xn
i |i∈D1, Xn

i (mi )|i∈Dc
1
, Y n

1 ) ∈ T (n)
ε

with mk = 1 for all k ∈ Dc
1 ∩ S}.

To analyze the cardinality |L|, fix a mSc and consider the
probability of mSc ∈ L. If mk ̸= 1 for all k ∈ Sc, and mk = 1
otherwise, then the joint typicality lemma implies

P{(Qn, Xn
i |i∈D1, Xn

i (mi )|i∈Dc
1
, Y n

1 ) ∈ T (n)
ε }

≤ 2−n(I (XSc ;Y1|XS ,Q)−δ(ε)),

and there are at most 2nRSc such mSc . More generally, fix
a subset U ⊆ Sc. If mk ̸= 1 for k ∈ Sc \ U , and mk = 1
otherwise, then

P{(Qn, Xn
i |i∈D1, Xn

i (mi )|i∈Dc
1
, Y n

1 ) ∈ T (n)
ε }

≤ 2−n(I (XSc\U ;Y1|XS ,XU ,Q)−δ(ε)),

and there are at most 2nRSc\U such mSc . Thus,

E(|L|) ≤
∑

U⊆Sc

2n(RSc\U−I (XSc\U ;Y1|XS ,XU ,Q)+δ(ε)). (24)

Define the indicator random variable
E = I((1, 1, . . . , 1) ∈ L), which satisfies P{E = 0} → 0 as
n → ∞ by the weak law of large numbers. Now

H (MSc | Xn
S , Y n

1 , Cn)

≤ 1 + n RSc P{E = 0} + H (MSc | Xn
S , Y n

1 , Cn, E = 1).

For the last term, we argue

H (MSc | Xn
S , Y n

1 , Cn, E = 1)

≤ log(E(|L|))
(24)≤ log

⎛

⎝
∑

U⊆Sc

2n(RSc\U−I (XSc\U ;Y1|XS ,XU ,Q)+δ(ε))

⎞

⎠

≤ max
U⊆Sc

(
n(RSc\U− I (XSc\U ;Y1 |XS , XU , Q)+δ(ε))

)
+|Sc|.

Substituting back,

H (MSc | Xn
S , Y n

1 , Cn)

≤ 1 + |Sc| + n RSc P{E = 0}
+ max

U⊆Sc

(
n(RSc\U − I (XSc\U ; Y1 |XS , XU , Q) + δ(ε))

)
,

and finally,
1
n

H (Y n
1 | Xn

S , Cn)

≥ H (Y1|X[1:K ], Q) + RSc − 1 + |Sc|
n

− RSc P{E = 0}
− max

U⊆Sc

(
RSc\U − I (XSc\U ; Y1 |XS , XU , Q) + δ(ε)

)

= H (Y1|X[1:K ], Q) − 1 + |Sc|
n

− RSc P{E = 0}
+ min

U⊆Sc

(
RU + I (XSc\U ; Y1 |XS , XU , Q) + δ(ε)

)
.

Taking the limits n → ∞ and ε → 0 concludes the proof.
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