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On Marton’s Inner Bound for the General
Broadcast Channel

Amin Gohari, Abbas El Gamal, and Venkat Anantharam

Abstract— We establish several new results on Marton’s inner
bound on the capacity region of the general broadcast channel.
Inspired by the fact that Marton’s coding scheme without
superposition coding is optimal in the Gaussian case, we consider
the class of binary input degraded broadcast channels with no
common message that have the same property. We characterize
this class. We also establish new properties of Marton’s inner
bound that help restrict the search space for computing the
Marton sum rate. In particular, we establish an extension of
the XOR case of the binary inequality of Nair, Wang, and
Geng.

Index Terms— General broadcast channel, Marton’s inner
bound.

I. INTRODUCTION

ONSIDER the two-receiver broadcast channel [2] with
input alphabet X, output alphabets } and Z, and condi-
tional probability mass function ¢ (y, z|x). The capacity region
of this channel is the set of rate triples (Rg, R;, R2) such that
the sender X can reliably communicate a common message at
rate Ry to both receivers and two private messages at rates R
and R, to receivers Y and Z, respectively; see for example [3]
for a detailed definition. The capacity region of this channel
is known only for several special cases (including the vector
Gaussian broadcast channel [22]) but is not known in general.
The best known inner bound on the capacity region is due to
Marton [4].
Marton’s Inner Bound: The set of rate triples (Ro, Ry, R2)
such that

Ro+ R < I(U,W;Y),
Ro+ Ry < I(V,W,; Z),
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Ro+ R+ Ry < I(U, W; Y) + I(V; Z|W)
—-I(U; VW),

Ro+ R+ Ry < I(U; YIW)+ I(V. W, Z)
—I(U; VW),

2Ro+ Ry + Ry = I(U,W; )+ I(V,W; Z)
—I1(U; V|W) (1

for some (U, V,W,X,Y,Z) ~ p(u,v,w,x)q(y,z|x) con-
stitutes an inner bound on the capacity of the two-receiver
broadcast channel ¢(y, z|x). Further, to compute this region
it suffices to consider U] < JX,IV| < |X,IW| <
|X| +4, and H(X|U,V, W) = 0 [10]. Note that the con-
straint H(X|U,V, W) = 0 corresponds to a determinis-
tic encoder for the code associated with joint probability
mass function (pmf) p(u, v, w, x) as one would expect (see
Appendix IV of [12]). We denote by Rgm the maximum
achievable sum-rate in Marton’s inner bound, or the Marton
sum-rate in short, that is, the maximum of Ry + R; +
Ry over all (Ry, Ry, Ry) in Marton’s inner bound. Note
that

Ryum = max min{{(W;Y), I(W; Z})}
pu,0,w,x)
+HI(U; YWY+ I(V; Z|W)
—I(U; V|W). 2)

It is not known if Marton’s region is tight. Evaluation
of Marton’s inner bound in [10] has provided the possi-
bility of checking whether it matches any of the known
outer bounds (see [7], [10], [13], [16], [19], [24]). Further-
more it has motivated comparing multi-letter characteriza-
tions of Marton’s inner bound with its single-letter version
[14]. The following is a summary of some of these recent
developments.

o It was originally shown that there is a gap between
the Nair-El Gamal outer bound [19] and Marton’s inner
bound [7], [10], [13]. Thus either the inner bound, the
outer bound, or both are loose.

o In [15], it was shown that the Nair-El Gamal outer bound
is loose. The paper established a tighter outer bound for
product broadcast channels and showed that this new
outer bound coincides with Marton’s inner bound for a
new class of these channels.

o In [16], a new incquality was found for binary input
broadcast channels. It was shown that for all random
variables (U, V,X,Y, Z) such that (U,V) — X —
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(¥, Z) and |X| =2,

I(U; Y)+1(V,Z2)—I(U; V) <max{I(X;Y), [(X; Z)}.
3)

To prove this the authors of [16] consider different
mappings from U x V > X. Because of the cardinality
bound of two on U and V ( [10]) it suffices to argue, as
the authors do, that the XOR mapping (i.e., X =U G V)
and the AND mapping (i.e., X = U A V) cannot occur
in any maximizer of I(U; Y)+I(V; Z) - I(U; V). This
inequality led to the simple representation of the Marton
sum-rate for binary input broadcast channels as
max min {I(W;Y), I(W; Z)}
pw,x)
+P(W =0)I(X;Y|W =0)
+P(W = DIX; Z|W =1).

Here W = {0, 1}.

o In [23], extensions of inequality (3) for computing the
entire Marton region were studied.

o New cardinality bounds for Marton’s region in the private
message case were derived in [21].

In this paper we establish the following results most of
which are related to evaluating the Marton sum-rate. We
believe that finding the correct extension of equation (3) to
larger alphabets can be useful in computing the boundary
of Marton’s inner bound efficiently for a given channel, and
comparing Marton’s inner bound with its multi-letter charac-
terizations to see if Marton’s inner bound is optimal or not
(see [14] for a discussion of this line of attack on determining
the capacity region of the general broadcast channel).

1) (Computing the Marton sum-rate): To compute the Mar-
ton sum-rate, one has to solve a maximization problem
over all p(u, v, w,x). In Section II, we introduce an
alternative form of this optimization problem (Lemma
1) and establish several restrictions on the optimizers
that reduce the search space (Theorems 1 and 2). In
particular we extend part of the result in [16], which is
used to prove (3), to larger alphabets by showing that any
p(u, v, x) that maximizes I (U; Y)+1(V: Z)—1(U; V)
cannot satisfy X = U @ V (i.e., X being the XOR of
U and V) in a suitable sense. We also note that since
the presentation of part of this work at the 2010 ISIT
conference [5], our alternative form of expressing the
Marton sum-rate in Lemma 1 has proved to very helpful
in studying the Marton sum-rate, see [14].

2) (nsufficiency of Marton’s coding scheme without a
superposition variable): In Marton’s inner bound (1),
the auxiliary random variable W corresponds to the
“superposition-coding" aspect of the bound, while U
and V correspond to the “Marton-coding” aspect of the
bound. Necessity of the “superposition-coding" aspect of
the inner bound had previously been observed for a non-
degraded broadcast channel [13]. For degraded channels,
it is known that W is unnecessary for achieving the
capacity region of Gaussian broadcast channels (through
dirty paper coding) [17]. It is interesting to find out the
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extent to which this property extends to other degraded
broadcast channels. To study this, we consider the class
of binary input degraded broadcast channels. Theorem
3 shows that any channel in this class has to satisfy
some restrictive conditions. In particular any p(x) that
maximizes 7(X; Y) must maximize /(X; Z) as well.

3) (A simple direct proof for optimality of superposition
coding along certain directions): For a general broadcast
channel, the rate pair (R}, Rp) is said to be achievable
by superposition coding if we have

Ry = I(X; Y|U),
Ry < 1(U; Z),

Ri+ Ry = I(X5Y) “

for some (U, X,Y,Z) ~ p(u,x)q(y, z|x), or we have
the similar set of inequalities with the role of ¥ and Z
interchanged, see [3, Th. 5.1].1
Consider the problem of computing the maximum of
AoRo+21Ri+A2 Ry overall (Ry, Ry, R») in the capacity
region of the general broadcast channel where Ao, 41
and A, are real numbers such that 49 > A; + 4,. This
would characterize part of the boundary of the capacity
region since any convex region can be expressed as the
intersection of the half spaces formed by its supporting
hyperplanes (see [20, pp. 50-51]). We observe in Theo-
rem 4 that superposition coding is tight along directions
corresponding to Ao > A3 + 2. Our contribution here is
a simple direct argument based on the characterization
of the capacity region of a degraded BC [9].
The following section describes the above results in detail.
The proofs of these results are contained in Section IIT with
some of the details relegated to the appendices.

II. MAIN RESULTS

Let C(g(y, z|x)) denote the capacity region of the broadcast
channel g(y, z|x), and Cy(g(y, z|x)) denote Marton’s inner
bound as given in (1). We use the standard notation, X =
(X1, X2,...X;) and X:-’ =(Xi, Xit1,--.5 Xn).

A. Computing the Marton Sum-Rate

We establish the following alternative representation of the
Marton sum-rate, Rgym defined in eqn. (2).
Lemma I: Regym = minsejo,1) T3, where for any 4 € [0, 1],

T, = max (AI(W;Y)+1—-DI(W:Z)

pu,v,w,x)

HIU; YWY+ I(V; ZIW) = [(U; VIW)).  (5)

Remark 1: Since the presentation of part of this work at the

2010 ISIT conference [5], this lemma has proved very helpful

in studying the Marton sum-rate, see [14]. Some interesting

properties of T; such as its convexity in A, its connection

to the outer bound, and its factorization (for products of

broadcast channels) have been investigated in [14] and [15].

An alternative proof of Lemma 1 using a theorem by Terkelsen
is reported in [14].

LRurther, we can take || < |X|+ 1 without loss of generality in the
definition of this region.
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Observe that AI(W; Y) + (1 — A)I(W; Z) depends only on
p(w, x). The term I(U;Y|W) + I(V; Z|W) — I(U; V|W)
can be written as Y., p(w)(I(U; YW =w) + I(V; Z|W =
w)—I(U; VW = w)). Then, we have

T = max [AI(W; Y)+ (1 — ) (W; Z)

plw,x

+ (w) max [I(U;YIW=uw
%}p ) max 13| )

+I(V:ZIW=w)—I(U; VIW = w)]].

One can think of this maximization as

max JI(W3¥) + (1= DIW: Z) + 3, p)T (pxlw)),
where T(p(x)) is the maximum of I(U;Y) + I(V; Z) —
I(U; V) over all p(u,v|x) with p(x) and H(X|U,V) = 0.
The first theorem of this section proves results for the problem
of maximizing T (p(x)), while the second theorem concerns
the problem of maximizing Tj.

To state our main result we need the following two defini-
tions.

Definition 1: The input symbols xo and x1 are said to be
indistinguishable by the channel if q(y|xo) = q(y|x1) for
all y, and q(z|xg) = q(z|x)) for all z. A channel q(y, z|x)
is said to be irreducible if no two of its inputs symbols are
indistinguishable by the channel.

Definition 2: Let U = Aur,uz,...,uyyl, V=
{v1,...,00v} be finite sets, and & be a deterministic
mapping from U x V to X. One can represent the mapping
by a table having \U| rows and |V| columns with the rows
indexed by ui,uz,...,ujy and the columns indexed by
v1,02,..., 00 In cell (i, ), we write E(ui,vj) for the
symbol x that (uj,v;) is being mapped to. The profile of the
row i is defined as a vector of size |X| counting the number
of occurrences of the elements of X in the row i. In other
words if X = {x1,x2,...,%x|}, the element k of the profile
of row i is the number of times that x; shows up in row i of
the table. The profile of column j is defined similarly. Define
the profile of the table to be a vector of size (U] + [V])|X]
formed by concatenating the profile vectors of the rows and
the columns of the table. Denote the profile vector of the
mapping & by v¢.

We establish the following.

Theorem 1: Consider an arbitrary irreducible broadcast
channel q(y, z|x), where q(y|x) > 0,q(z|x) > 0 for all
x, Y,z Fix a pmf p(x). Consider any p(u, v|x) that maximizes
I(U; VHI(V; Z)=1(U; V), where X is a function of (U, V).
Without loss of generality assume that p(u) > 0 for allu e U
and p(®) > 0 for all v € V. Let x = {(u,v) denote the
deterministic mapping from U x V to X. Then the following
conditions must hold:

1) pu,v) >0, p(u,y) >0, and p(v,z) > 0forallu,v,y
and z.

2) The profile vector of the mapping &, v_g cannot be
written as Z,Ail a,u_;),, where & (fort =1,2,3,..., M)
are deterministic mappings from U xV to X not equal
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Xy Xo Xo

Fig. 1. If we have a mapping with the XOR structure, we can get another
mapping with the same profile by switching xg and xy of four cells of the

mappings.

to &, and a;, t = 1,..., M, are nonnegative numbers
such that 3 a, = 1.
3) Define the functions:

£u0) =D q(yix) log p(u, y),

go(x) = > _q(zlx)log p(v, 2),

h(x) = u/erz}],il?ev (log(p@', ")) = fur(x) — gu(x)).

These definitions make sense because of the first part of
this theorem. Then, for any u and v, the following two
equations hold:

log(p(u, v)) = max[fu(x) + & (x) + r(x)],
and

plxolu,v) =1 for some xg € X
= xg € argmax[f, (x) + gy (x) + A(x)].
X

Remark 2: These constraints imply restrictions on the max-
imizers. The second part of the theorem implies that one
cannot find distinct uo,u1 € U, distinct vo,v1 € V and
distinct xg, x1 € X such that p(xp|ug,vo) = plxolui,v1) =
p(x1lui, vo) = plxilug, v1) = 1. To see this, let the mapping
&1 be equal to & except that (uo, vo) and (u1,v1) are mapped
to x1 (instead of xo), and (uy, vo) and (ug, v1) are mapped to
xg (instead of x1); see Figure 1. The mapping &1 has the same
profile vector as &. Thus we can write the original profile as a
convex combination of other profiles (i.e., UE =>", a,IZ
holds for the choice of M = 1, &, and a1 = 1). Thus
the second part implies that it cannot happen. Similarly the
mapping shown in Figure 2 cannot occur because there is
another mapping with the same profile.

Remark 3: A special case of the result of the second part
of the theorem for a binary X has been studied in [16],
where the authors show that the optimizers of the expression
max (o, [(U; Y)+1(V; Z)—1(U; V) are not of the form
X=U®YV (ie., the XOR mapping from (U, V) to X). Their
proof applies to binary input broadcast channels by consider-
ing the first order derivatives of I(U; Y)+1(V; Z)—1(U; V)
for local perturbations that preserve the alphabet size of U
and V. This proof technique, however, cannot be used to refute
the XOR pattern for larger input alphabets. Our proof goes
beyond theirs by considering perturbations that extend the
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Fig. 2. Another mapping that cannot occur because one can find another
mapping with the same profile.

alphabet of U and V. The proof considers a certain p(u, v, x)
whose mapping contains such an XOR pattern. It explicitly
constructs a joint pmf p@',v’,x) such that 1(U;Y) >
IU; Yy, I(V;Z) = I(V;Z), and [(U"; V") = I(U; V).
In constructing p(u',v’, x), we extend the alphabet of U.

Remark 4: The second part of the theorem holds more gen-
erally for any p(u,v|x) maximizing the weighted expression
MIWU; Y)Y+ IV, Z)— I(U; V), where 41,42 > 0 and
X is a function of (U, V). If the condition in the second
part is violated, one can use the explicit construction given
in the proof of the theorem to construct a new p(u,v,x)
such that the term 1(U; Y) increases while the terms 1(V; Z)
and 1(U; V) remain constant. Thus, the weighted expression
AMIW; Y)Y+ A1(V; Z)— I(U; V) also increases.

Remark 5: Assume that all we know about the mapping
pattern is that xo = E(ug, vo) = E(u1, v1) for some xo. Then
the third part of the theorem implies that p(ug, vo)p (U1, 01) <
p(uy, vo) puo, v1). This holds since

log p(uo, vo)+log p(u1,v1) = fuy(x0)+ gog(x0)+h(x0)
+fu1 (x0) + 8 (xo) + A(xo)
= fuo (o) + gv, (x0) + h(x0)
+ fuy (x0) + &oo (x0) + 2 (x0)
< max fuy(x) + gv, (0) + h(x)

+ max Juy () + guy(x) + h(x)

= log p(uo, v1) + log p(u1, Vo).

Let us next turn to the evaluation of the entire Marton sum-
rate expression (including the W terms). Recall the definition
of T; in (5) for A € [0,1]. The next theorem restricts the
search space for computing T;. For this theorem, we only
deal with broadcast channels g(y, z|x) with strictly positive
transition matrices, i.e., when g(y|x) > 0, g(z|x) > 0 for all
X, Y, z. In order to evaluate T; when g(y|x) or q(z|x) become
zero for some y or z, one can use the continuity of T3 in
q(y, z|x) and take the limit of 7} for a sequence of channels
with positive entries converging to the desired channel. The
reason for dealing with this class of broadcast channels should
become clear from the following corollary to the first part of
Theorem 1.

Corollary 1: Take an arbitrary broadcast channel q(y, z]x)
with strictly positive transition matrices (i.e. q(y|x) >
0,9(z|x) > O for all x,y,z). Let p(u,v, w,x) be an arbi-
trary joint pmf maximizing T; for some A € [0, 1] where
HX|\U,V,W) = 0. If pu,w) and p(v,w) are positive
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for some triple (u,v,w), then it must be the case that
pu,0,w) > 0, plu,w,y) > 0 and pv,w,z) > 0 for all
y and z.

We are now ready to state the following.

Theorem 2: Consider an arbitrary irreducible broadcast
channel q(y, z|x) with strictly positive transition matrices. In
computing T; for some A € [0, 1], it suffices to take the max-
imum over auxiliary random variables p(u, v, w, x)q(y, z|x)
simultaneously satisfying the following constraints:

1) Ul < min(|X], YD), V] < min(|X], | Z]), IV < |X].

2) HX|U,V,W) = 0. Given w where p(w) > 0,
we use x = {(w)(u,u) to denote the deterministic
mapping from Uy, X Vy to X. Here U, is the set of
u € U such that p(ulw) > 0 and Vy is the set of
v € V such that p(v|w) > 0.

For arbitrary w such that p(w) > 0, the profile
vector of the mapping &), m cannot be written as
S b, where D (for o= 1,2,3,..., M) are
deterministic mappings from Uy, x Vy to X not equal
to ™), and a, are non-negative numbers adding up to
one, ie. Z,Ail a =1

For arbitrary w such that p(w) > 0, define the functions

fowl) = g(1x) log pluylw),

3)

4)

go.0() = D_ q(z|x) log p(vz|w),

hpx) = min
w ) w' ey, v' eV,

(log(p(u'v"lw)) = fur,w(x)
- gu’,w(x))-

These definitions make sense because of Corollary 1.
Then, for any u € Uy, and v € Vy, the following two
equations hold: '

log(p(uv|w)) = mxax[fu,w(x) + gu,w(x) + hyp(x)],
and

p(xolu, v, w) =1 for some xg € X
= X0 € argmaxx[fu,w(x) + gu,w(x) + hy ()]
5)

Given any w, random variables Uy, Vi, X, Yu, Zy
distributed according to p(u,v,x,y,z|w) satisfy the

Sfollowing:

1(U; Yu) = 1(U; Vi, Zy) for any U—Up— YoXwYoZy,

I(V: Zp)=1(V; Uy, Yy,) for any V— Vi — U XwYw Zew.
Remark 6: The first part imposes cardinality bounds on
[U| and |V| that are better than those reported in [10].
The improved cardinality bounds, however, are only for T
and not for the entire capacity region. The constraint of
the second part is not new, and can be found in [10].
The other constraints are useful in restricting the search
space due to the constraints imposed on p(u,v,w,x). For
instance, the third and fourth parts restrict the set of possible
mappings, as discussed in Remarks 2 and 5. The constraint of
the last part was inspired by studying the binary inequality
TIU; Y)Y+ 1(V;Z2) — 1(U; V) < max(I(X; ), I(X; Z)).
This inequality can be expressed as 1(U:Y) + I(V;Z) —
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I(U: V) < max(I(U, V; Y), (U, V; Z)) or alternatively as
IU;Y) <IWU;V,Z)and I(V;Z) < I(V;U,Y). The last
part shows that the channels p(y, z|u) and p(y, z|v) are less
noisy channels in opposite directions. It has been recently
shown [21] that this property can be further developed to
establish the improved cardinality bound [U| + |V| < |x|.2

B. Insufficiency of Marton’s Coding Scheme Without W

When Ry = O (private messages only) and W = @, Marton’s
inner bound (1) reduces to the set of rate pairs (Ry, R2) such
that

Ry = 1(U; Y|0Q), )
Ry = I(V; Z|Q), (M
Ry +Ry < IWU;YIQ)+1(V;Z|Q) - TU; VIQ) (8)

IA

for some random variables (Q,U,V,X,Y,Z) ~
p( @) p(u,v,x|g)g(y,z|x). This inner bound corresponds
to the “Marton-coding” aspect of the Marton bound.

It is known that this inner bound is tight for Gaussian
broadcast channels (through dirty paper coding), implying
that W is unnecessary for achieving the capacity region of
this class of broadcast channels [17]. Thus, one might ask to
what extent this property continues to hold for not-necessarily
Gaussian degraded broadcast channels. For degraded broadcast
channels, the Marton region with the superposition variable W
equals the true capacity region. We are looking for conditions
that imply achievability of the capacity region by using only
the “Marton-coding" aspect of the bound. To study this ques-
tion, we consider the class of binary-input degraded broadcast
channels (receiver Z is a degraded version of receiver Y).
Here W is unnecessary for achieving the sum-rate (which is
maxp(x) 1 (X; Y)). Thus we need consider the entire capacity
region in order to answer this question. For simplicity, we
restrict ourselves to the set of binary-input degraded broadcast
channels where ¢ (y|x) > 0 for all (x, y) € (X, V) and denote
it by Cpq. Let Cp; be the set of broadcast channels in Cpy
where W is unnecessary for achieving the capacity region (i.c.,
the inner bound given by (6)-(8) is tight). We show that C}}; is
a very small subset of Cps. In particular a broadcast channel
would not belong to Cp, if the p(x) that maximizes I(X;Y)
is different from the one that maximizes I(X; Z).

To state our result let us further define Cj, to be the
set of broadcast channels in Cp; whose private message
capacity region is the simple time-division region, i.e., the
capacity region is the set of rate pairs (Ry, R2) such that
R1/C1 + Ry/Cy < 1, where C; = maxp(y) [(X;Y) and
Cy = max(x) 1 (X; Z). We prove the following.

Theorem 3: We have CJ,, = C},. Further, any broadcast
channel belonging to C,, = C}}; satisfies the following: any
p(x) maximizing 1(X;Y) is also a maximizer for 1{X; Z).
More generally for any p(x), I(X; Z)/Cy = I1(X; Y)/C).

2Essentially, the idea of [21] is to consider the two subsets of the probability
simplex on X that one would get by fixing p(x|«) and p(x|v) and varying
p(u) and p(v), respectively. The less noisy property implies that the function
p(x) — H(Y)— H(Z)is convex on one of these subsets and concave on the
other. This is used to prove the cardinality reduction statement.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 7, JULY 2014

Example 1: The binary symmetric broadcast channel, as
defined in [3, p. 107], is often considered the discrete coun-
terpart of the Gaussian BC. It turns out, however, that it does
not belong to Cy, since its private message capacity region
is not equal to the triangular time-division region.

C. Optimality of Superposition Coding Along
Certain Directions

In order to state the main result of this section, we need the
following.

Definition 3:  [9] Let Cy,(g(y,z]x)) and Cu{(q(y, z|x))
denote the degraded message set capacity regions, i.e., when
Ri = 0 and R; = 0, respectively. The capacity region
Ca,(q(y, z|x)) is the set of of rate pairs (Ro, R2) such that

Ro < I(W; Y),
Ry < I(X; Z|W),
Ro+ Ry < I(X; 7)

for some random variables (W, X, Y, Z) ~ p(w, x)q(y, z|x).
The capacity region Cg,(q(y, z|x)) is defined similarly.

We now state the result of this subsection.

Theorem 4: For a broadcast channel q(y,z|x) and real
numbers o, A1 and Ay such that g = 11 + 42,

max (AoRo 4+ A1 Ry + 42R?)
(Ro, R1,R2)eClg(y,zlx))

ax { max (AgRo + A2R2),
(Ro, R2)€Cay (g(¥.2]x))

max (/10R0—|—/11R1)}.
(Ro, R1)€Ca, (g(y,zlx))

Corollary 2: The above observation essentially says that if
Ao = A1 + Ao, then a maximum of AoRo + A1 Ry + 2Rz over
triples (Ro, R1, Ry) in the capacity region occurs when either
Ri=00r Ry=0.

Remark 7. Since Ca(q(y,zlx)) U Caq(g(y,2lx)) C
Crmg(y,zlx)) C Cg(y, zlx)), the above lemma implies that
Marton’s inner bound is tight along the direction of each
such (Ao, A1, A2), Le.,

max (AoRo+ A1 R1 + A2Ry)
(Ro, R1,R2)eC{g(y,z1x))

= max (AoRo + A1 Ry + 12R2)
(Ro, Ry, R2)€Cr(g(y,21x))

whenever Ao > A1 + Ao

Remark 8. One way to prove the theorem is to use a rate
transfer argument to exchange between the common rate and
the individual rates. As discussed in the next section, such
a proof requires the use a result by Willems [11], which
shows that the maximal probability of error capacity region
is equal to the average probability of error capacity region.
Our contribution here is to provide a simple direct proof
for optimality along these directions of superposition coding
(without using the result of Willems, and without explicitly
exchanging between the common rate and the individual
rates).
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1II. PROOFS
A. Computing the Marton Sum-Rate
(Proof of Lemma 1). We would like to show that Raum =

minp<i<1 Ti. To do so, we need to argue that the following
exchange of max and min is legitimate:

max min AJ(W; )+ -DIW;Z2)+I{U;YIW)
plu,v,w,x) 4€(0,1]

FI(V: Z|W) — [(U; VW)

= min max AI(W;)+A-NIW;Z2)+I1U;Y|W)

A€[0,1] p(u,v,w,x)
+I(V; ZIW) = I(U; VIW).

Let D be the union over all p(u,v,w,x) of real pairs
(dy, dy) satistying
dy < T(W; V) + T(U; YIW) + 1(V; ZIW) — I(U; VW),
dy < T(W; Z)+ I(U; YIW)Y+ I(V; ZIW) — I (U; V|W).
We claim that this region is convex. Take two points
(di,d2) and (dj,d}) in the region. Corresponding to
these are joint pmfs p(uj,v1, w1, x1)g{(yi,z11x1) and
pluz, vz, w2, x2)q(y2, z2|x2). Take a uniform binary random
variable Q independent of all the previously defined random
variables. Set U = Ug, V = Vg, W = (Q, Wp), X = Xy,
Y =Yg, Z=Zp. We then have
IW )+ IU; YWY+ I(V, ZIW) - I(U; VIW)
=1(Wp, Q; Yg)+ I(Ug; YolWp, Q)
+I1(Vg; ZglWg, Q) — 1(Ug: VolWg, Q)
> 1(Wg:; YolQ)+1(Ug: YgolWg, Q)
+I(Vg; ZolWq, Q) — I(Ug; VoW, 0)

1
= E(I(WIQ Y1) + I(Uy; W) + 1(Vi; Z1{Wh)
1
—I(Uy; Vi|W))) + E(I(Wz; Y2) + 1(Ua; Y2|W2)

1
+1(Va; Zo|Wa) — I (Ua; Va| Wa)) > E(dl + dy).
Similarly,
IW, Z)+I1U; YWY+ 1(V; Z|W) = I(U; V|W)

is greater than or equal to (dy +d5)/2. Thus, the point ((d1 +
d)/2, (dy + d})/2) is in the region, and D is convex.

Next, note that the point (Rsum, Rsum) € D. We claim that
it is a boundary point of D. If it is an interior point, there
must exist an € > 0 such that (Rgum + €, Rsym + €) 1s in D.
This implies the existence of some p(u, v, w, x) where

Raum +€ < T(W: YY)+ I(Us YIW) + I(V; Z|W) = I(U; VW),
Ram +€ < I(W; Z) + T(U; YIW) + I(V: Z|W) — [(U; VIW).

This implies that

Rsum + € < min(/(W; ¥), I(W; 2)) + I{U; Y|W)
+I(V: ZIW) — 1(U; VW)

for some p(u, v, w, x), which is a contradiction.

Using the supporting hyperplane theorem (see [20, pp. 50-
517) and the fact that D is convex and closed, one can conclude
that there exists a supporting hyperplane to D at the boundary
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point (Rsym, Rsum)- We claim that this supporting hyperplane
must satisfy the equation A*d; + (1 —2*)dy = T (4*) for some
A* € [0, 1]. The proof is as follows: any supporting hyperplane
must satisfy A*d; + (1 — 2*)d2 = k for some real 1* and real
k. We claim that A* must be in [0, 1] and k = T(1*). Assume
that A* < 0. We know that D must be entirely contained in one
of the two closed half-spaces determined by the hyperplane.
Note that the points (0,0), (—o0,0), and (0, —co) are all
in D (take p(u,v,w,x) satisfying I1(U; V|W) = 0 in the
definition of D). The value of A*d} + (1 —A1*)d> at these points
is equal to 0, +o00 and —oo, respectively. Thus, D cannot
possibly be entirely contained in one of the two closed half-
spaces determined by the hyperplane. The case 1 — A* < 0
can be similarly refuted. Therefore A* must be in [0, I].
Since the points (—0o, 0) and (0, —oo) are in D, the half-
space determined by the hyperplane that contains D is the
one determined by the equation A*d; + (1 — A*)dy < k for
some k. Since the half-space has at least one point in D, the
value of k must be equal to maX, 4,)er A*d1 + (1 — 4")da.
The latter is equal to T(1*). Thus, the supporting hyperplane
at the boundary point (Rsym, Reum) satisfies the equation
M¥dy + (1 = 1*)dy = T (4*) for some A* € [0, 1].

Since (Rsum, Rsum) lies on this hyperplane, 4* Raum + (1 —
2YReum = T(1*) implies that Reyym = T (4*) for some A* €
[0, 1]. Therefore

min T; < Rgym-

0<1<1
On the other hand, for every A, T; > Rgm. Therefore,
minp<;<1 Ti > Ram. O

Proof of Theorem 1:

1) Note that p(u,y) > O for all (u,y) because there
must exist some x such that p(u,x) > 0. Since the
transition matrices have positive entries and p(u, y) >
pu, x)g(y|x), p(u,y) is positive for all y. A similar
argument shows that p(v,z) > 0 for all (v, z). Next
assume that p(u,») = 0 for some (u,v). Take some
W, v’ such that p(«’, ") > 0. Let us reduce p(u', ") by
¢ and increase p(u,v) by €. Furthermore, let us have
(#,v) mapped to the same x that («’, v’) is mapped to;
this ensures that p(x) is not changed. One can write

U N)+I(V; Z)—-1U; V)
=HW)+H(Z)+HU,V)-HU,Y)-H(V, 2).

The only change in this expression comes from the
changein H(U, V)—H (U,Y)—H(V, Z). The derivative
of H(U, V) with respect to € at ¢ = 0 is infinite. But
the derivatives of H(U, Y) and H(V, Z) are finite since
pu,y), pu’, y), p(v,z) and p(v’, z) are positive for all
y and z. So, the first derivative of H(U, V)—H (U, Y)—
H(V, Z) with respect to € at € = 0 is positive. This is
a contradiction since p(u, v|x) is assumed to maximize
IHU; N+ IV;Z)y—1U; V).

2) Assume that U = {u1,uz,...,up} and V =
{v1,02,...,0n). Let mj = plu,v;) for i =
1,...,|U4|, j=1,...,|V|. From the first part we know
that z;; > O for all i and j. Let € = min;; 7; ;.



Take some € € (0,€). Let x = &(u,v) denote the
deterministic mapping from U x V to X.

We prove the statement by contradiction. Assume
that bz, = z,ﬂi] a,;0%, for some mappings & (f =
1,2, ..., M) distinct from & and non-negative numbers
o, adding up to one.

Let random variables T; ; (for i = 1,...,|U|, j =
1,2,3,...,|V]) be (M + 1)-ary random variables mutu-
ally independent of each other and of U,V,X,Y, Z,
satisfying:

o« P(Ti; =0)=1—5

xt
o W(Tij=1)= :rL,m,J
i
o P(T;; =2) = ;50
o (T} ; =3)= %U.].

o P(T;j =M) = < aum.

7[[,]
Let X be defined as follows:

e On the event {(U, V) = (u;,v;)}, let X be equal
to fT,;,« (ui,v;). In otheL words, if T;; =0, X =
Soui,vj); if Tpj = 1, X = &1(ui, v)), ete.

We claim that P(X = x|U = u;) = P(X = x|U =
u,-)~f0r all i = 1,2,3,...,|U| and x; and similarly
P(X = x|V =vj) = P(X = x|V = p;) forall j =
1,2,3,...,|V| and x. This is proved in Appendix IIL
Note that the above property implies that X and X have
the same marginal pmfs.

lLet ¥ and Z be defined such that U,V,
(7},]')[;1)2’__"1':1,2,_.. — i — ?Z, and the conditional
law of (¥,7) given X is the same as ¢(y,z|x). Here
(T, j)i:1,2,..,j=1,2,.. denotes the collection of all T; ; for
all i and j.

Without loss of generality, assume that a; 7# 0. Since
the mapping &(-, ') = &1(-,-), there must exist (i, j)
such that &(u;, ;) # &1(ui, vj). Let us label the input
symbol & (u;, v;) by xo, and the input symbol &; (ui,vj)
by x1 (the channel is irreducible). Let us then assume
that there is some y such that g(yi{xo) # q(yIx1);
the proof for the case when there is some z such that
q(zlxo) # q(zlx1) is similar. Let U= U,T;) and
V=yV.

Since P(X = x|U = u) = P(X = x|U = u) for all
u and x, and P(X = x|V =) = P(X = x|V =) for
all » and x, we have

o I(U;Y)=1(U;Y),

« I(V:Z)=1(V; 2).

Therefore 1(V;Z) = 1(V:Z) and 1(U;Y) =
IU, )+ I(T;; Y|U). Furthermore, since 7} ; is inde-
pendent of (U,V), we have I(U;V) = I(U;V).
Therefore

1(17; )7)+I(\7;Z)—I(ﬁ;\7)

—(IU: )+ 1(V: 2) = 1(U; V) = I(Ty,;; Y|U).
Since p(u,v,x) is maximizing I(U;Y) + I(V; Z) —
I(U;V) under the fixed p(x), we must have
I(T; j; Y|U) = 0. Therefore I(T;;; YU = ui) =0
holds as well.
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3)

In Appendix III, we prove the following:

P(X = xolU = u;, T;,j = 0)

£P(X = xolU =u;, Tij = 1),
PX =x1|U =u;, Ty =0)

#PX =x|U=u;, Tij = 1),

but for any x ¢ {xo, X1},
P(X =x|U=u;, T;,; =0)=P(X =x|U =u;, T;,j =1).

Recall that we assumed there is some y such that
q(y|x0) # g(y|x1). In Appendix III, we show that

P(Y =y|U =u;, T;,; =0) # P(Y =y|U=u;, T;,j =1).

This implies that ¥ and T;,; are not conditionally inde-
pendent given U = u;. Therefore I(T} ;; )7|U = uj) #
0, which is a contradiction.

The proof of this part begins by noting that the definition
of h(x) implies that for any (u, v, x),

h(x) < log(p(u,v)) — fulx) — go(x).
Therefore, for any (u, v, x),

log(p(u, v)) = fu(x) + go(x) + h(x).
Thus,

log(p(u,v)) = max (f,, (x)+ go(x) + h(x)). )

Note that the first partial derivative of H(U,V) —
HU,Y)— H(V, Z) with respect to p(u,v,x) is pro-
portional to

—log p(u,0) — 1+ D q(ylx)log p(u, y) + 1

y

+ 2 q(x) log pv,2) +1

= —log p(u, ) + fu(x) + go(x) + 1.

Assume that the triple (#, v, x) is such that p(u, v, x) >
0. Take some arbitrary u’ and v’. Reducing p(u, v, x) by
an € > 0 and increasing p(u’, v’, x) by the same € does
not affect p(x), hence should not increase H (U, V) —
HU,Y) — H(V,Z). After such a perturbation X is
no longer a deterministic function of (U, V). Neverthe-
less H(U,V) — H(U,Y) — H(V, Z) cannot increase.
Therefore the first derivative of H(U,V) — H(U,Y) —
H(V, Z) with respect to p(u, v, x) must be greater than
or equal to the first derivative of H(U, V) - H(U,Y) -
H(V, Z) with respect to p(u’,v’, x). Thus,

—logp(u,v) + fulx) + gu(x) + 1
> —log P(u/, U/) + fu(x) + gor(x) + 1.

In other words, for any arbitrary u’ and »’, we have

log p(u, v) — fulx) — go(x)
<log p(u',v") — fur(x) — gu(x).
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Therefore

log P(u, v) — fu(x) - gu(x) <
min(log p',0") — fur(x) = g (x)) = h(x).

Thus, log p(u,v) < fu(x) + gv(x) + h(x) whenever
p(u, v, x) > 0. This together with (9) imply that

log(p(u, 0)) = max[ fu (x) + gv(x) + h(x)],
and

p(xolu,v) =1 for some xg € X
= xo € argmaxy [, (x) + go(x) + h(x).

Proof of Theorem 2: From the set of pmfs p(u, v, w, x)
that maximize the expression A/(W; Y)+ (1 — A)I(W:; Z) +
I(U; YWY+ I(V; Z|W) — I(U; VIW), let po(u, v, w, x) be
the one that achieves the largest value of I1(W; Y)+ I (W; Z).
In Appendix III, we show that one can find p(#, D, @, %) such
that

o MW;Y)+(=DIW; Z)+IU; YIW)+I(V; ZIW)—

I(U; VW) is equal to /II(W Y) + (- /I)I(W 7) +
1T YW+ I(V; Z\W) — 1(U; V|W)

o« I(W:Y)+ I(W; Z) is equal to 1(W; Y)+ 1(W; Z)

o |U] < min(1X], [V]),

o |V| < min(|X], [Z]),

.« WX,

o« H(X|U,V,W)=0.

Thus the constraints in the first and second parts are satisfied
by p(i, v, w,x). The second and third parts of Theorem 1
imply that p(&, D, w,x) automatically satisfies the third and
fourth part of Theorem 2. In Appendix IV, we show that the
fifth part of Theorem 2 holds for any joint pmf that maximizes
the expression AT(W;Y) + (1 — DI(W; Z) + I[(U; Y|W) +
I(V; Z|W)—I(U,; V|W), and at the same time has the largest
possible value of 1(W; Y)+ I(W; Z). Thus it must also hold
for p(W, v, 0, X).

B. Insufficiency of Marton’s Coding Scheme Without a
Superposition Variable

Proof of Theorem 3: The direction C,, C Cp, is trivial,
since the corner points of the time-division region are achiev-
ableby U =X,V =@ and U =@, V = X, respectively. Thus
it remains to show that Cj, € C}, Consider a binary-input
degraded broadcast channel in C}},. The maximum of Ri+AR,
(for A > 1) over the region given by equations (6)-(8) is equal
to max (.0 I (U YY)+ A1V, Z) — I(U; V). We claim that
this is equal to max(C;, AC2), where C1 = maxpu) [(X;Y)
and Cz = max,(y) I (X; Z). This would establish the first part
of the claim since the maximum of Ry + AR, for A < 1 (when
the weight of the weaker receiver is smaller than the weight
of the stronger receiver) is clearly C1 = max(Cy, AC2).

To show that max p(u,p,x) I (U; Y)+AI(V; Z) - 1(U; V) =
max(C;, ACy) when 2 > 1, let p(u,»,x) be a maximizer
for the expression maxp(u,»,x) 1(U; Y)+AI(V; Z)—1(U; V).
Without loss of generality we can assume that || = |V| =2
and that X is a function of (U, V). Since X is a function of
(U, V) without loss of generality we can assume that either
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X=U,X=V,X=U@®YV (the XOR mapping) or X = U A
V (the AND mapping). If X = U, then I (U; Y)+AI(V; Z)—
IU;V)<I(X;Y)<C).Similarly when X =V, I(U; Y)+
AV Z)—I(U;, V) < AI(X; Z) < 2Cy. The next case is
when X = U @ V. But Remark 4 shows that this pattern
cannot happen.

The only remaining case is when X = U A V. Thus, P(X =
O)=PU=0,V=0+PU=1,V=0+PWU =0,V =
1). Let us define

PU=i,V=j o
aij ZLM—XWJ) for (i, j)=(0,0), (0, 1) and (1,0).
Note that

IU Y)Y+ AV 2) - TU; V)
=I1(U;Y|V)+AI(V;Z)—I(U; VI|Y)
=[I(X;Y|V)+ AI(V; Z)] - 1(U; V|Y).

Since we are assuming that the inner bound given by equations
(6)-(8) is equal to the true capacity region, it has to be the
case that 7 (U; V|Y) = 0. Otherwise, the true capacity region
attains a larger value for the maximum of Ry + ARz. Thus
I(U;V|Y = y) = 0 for all y (note that we had assumed
that p(y|x) > O for all x, y and hence p(y) > 0 for all y).
The joint pmf of (U, V) conditioned on ¥ =y is as follows:
PU =i,V = jIY =) =a;PX =0Y =y) for ¢, j) =
0,0), (0,1) and (1, 0). Further, P(U =1,V = 1Y = y) =
P(X = 1|Y = y). Since (U, V) are conditionally independent,
we have P(U =0,V =0y = y)PWU =1,V =1]Y =y) =
P(U =0,V =1]Y = y)P(U =1,V =0|Y = y). Thus,

ageP(X = 0]Y = »)P(X = 1|Y =)
= agra10P(X = 0]Y = y)2

Since p(y|x) > 0 for all (x,y) € (X, V), P(X =0]Y = y) >
0. Therefore agP(X = 1Y = y) = agja10P(X = 0lY = y)
or in other words

ao

PX=0Y=y)= ——.
001010 + 000

Therefore P(X = 0|Y = y) has to be equal to the above value
for all y. Therefore X is independent of Y. Thus, I(U;Y) <
IX;Y)=0and I1(V;2) < I(V;Y) < I(X;Y) = 0. But
this is a contradiction. This completes the proof for the first
part of the claim.

We now prove the second part of the claim, i.e., if the
private message capacity region is the time-sharing region,
it has to be the case that any p(x) maximizing I(X;Y)
has to be also a maximizer for I(X; Z). More generally if
we denote pg = P(X = 0), then for any po € [0, 1],
I1(X;Z)/C2 = I(X;Y)/Cy, where C; = maxp) {(X;Y)
and Cp = maXp(y) 1(X; Z).

To show this, take some pg € [0, 1] where 1(X; Z)/C; <
I1(X;Y)/C;.Let A = C/C>. Note that for this value of 4, the
maximum of R;+AR; is equal to max(Cy, ACy) = C1 = ACs.
We want to show that max ,, )[1(X; Y|V)+41(V; Z)] > Cy,
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and this is a contradiction. Note that
max I(X;Y|V)+21I(V; Z)
pv,x)
= max AM(X; 2)+[I(X; Y|V) = AI(X; Z|V)]

pv,x)
= maxAI(X Z)+ max [I(X Y|V) = AI(X; Z|V)]
px)
e m(axlll(X Z)+ Qi[I(X Y)—I(X; Z)],
px
where € is the upper concave envelope operator; the upper
concave envelope of a function f, i.e., €[f] is the smallest
concave function that lies above f throughout the domain
of f.

We claim that the upper concave envelope of the curve
P(X = 0) — €U(X;Y)— AI(X; Z)] is strictly positive
throughout the interval (0, 1). To see this, observe that there is
some po € [0, 1] where I(X;Y) > AI(X; Z), thus the curve
of P(X =0) — I(X; Y)—AI(X; Z) is strictly positive at pg €
[0, 1]. Next note that the upper concave envelope of a curve
is always greater than or equal to the curve itself; thus the
upper concave envelope of P(X =0) + I(X;Y) —AI(X; Z)
is non-negative at 0 and 1 and strictly positive at pg. Any
concave function that is non-negative at 0 and 1, and strictly
positive at pg is strictly positive throughout the interval (0, 1).

Consider the p(x) that maximizes 17 (X; Z). At this p(x),
we have C[I(X;Y) — AI(X; Z)] > 0. Therefore

max I(X;Y|V)+ AI(V; Z)

plx)
=A(X; Z2)+C(X;Y) - A(X; Z)]
=AC, +ClI(X;Y) — AI(X; D)]
> AC).
Thus,

max [I(X Y|V)+ AI(V; Z)] > ACy = C).

p,x)

This contradiction completes the proof.

C. A Simple Direct Proof for Optimality of Superposition
Coding Along Certain Directions

Proof of Theorem 4: We show that

max (AgRo + A1R1 4+ A2 R2)
(Ro, Ri, R2)eC(q(y,zlx))
< max (AoRo + A2R2),

max
(Ro,R2)€Cq (g (3,zlx))

max (AoRo + 21 R1)).

(Ro, R1)€Cqy (g(v,21x))

Take an arbitrary code (My, M1, M2, X", €). Assume with-
out loss of generality that H(M,) < H(My), i.e., Ry < Ry.
Let W = MoMp, X = X, ¥ = Y", Z = Z". Note that
q(¥,7Z|x) is the n-fold version of g(y,z|x). Let us look at
Ca,(q(3,7]%)), evaluated at the joint pmf p(, X):

Ro < 1(W; Z),
R < I(X:Y|W),
Ro+ Ry < I(X:Y).
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Note that by Fano’s inequality,

I(W;Z) = (Mo, M2 Z")
= H(My) + H (M) — ney,
I(X;YIW) = I(X"; Y"| Mo, M2)
= H (M) — ne,,
IX;Y) = 1(X"; Y")
> I1(Mo, My, Y™)
= H(Mo) + H(M;) — H(Mo, My|Y")
> H(Mo) + H(M)) — ne,

for a sequence €, that tends to zero as n approaches infinity.
Therefore, Ry = H(Mo) + H(M2) — ne, = n(Ro + R2) —
ne, and Ry = H(M)) — H(M2) = n(R) — Ry) — ney
is in C4(q(3,2I%)). Since ¢(¥,7]x) is the n-fold version
of g(y,z|x) and Cy,(g(¥,Z]%)) is the degraded message set
capacity region for ¢ (¥,7]%), we must have: Cq, (¢ (3, 21%)) =
n-Ca (q (, z}x)), where the multiplication here is pointwise.
Thus, (Ro/n, R]/n) € Ca(g(y,zlx)). Letting n — o0
we conclude that (Ry + Ra2, Ry — R2,0) € Cu,(q(y, zlx)).
Furthermore AgRo+41 R1+42Ry < Ag(Rop+R2)+41(R1—R2)
since Ag — A1 > A;. This completes the proof.

An Alternative Proof: We note that one can prove the
theorem using a rate transfer argument to exchange between
the common rate and the individual rates. In other words if
(Ro, R1, Ry) is in the capacity region of a broadcast channel,
then (Ro+min{Ry, R2}, R —min{R;, R,}, Ry —min{R;, R2})
is also in the capacity region. Since Ao > A1 + Az, we
have that Ag(Rg + min{R;, R2}) + 41(R; — min{R1, Ro}) +
A (R; — min{Ry, R2}) > AoRo + L1R; + A2Ry. Thus if
(Ro, R1, Ry) maximizes AgRo + A1 R1 + A2 Rz, so does (Ro +
min{R;, Ry}, Ry —min{R|, Ry}, R»—min{Rj, R>}). This com-
pletes the proof since either Ry — min{R, Rz} = 0 or R —
min{Ry, R} = 0. The idea is to basically use A9 > A1 + A2
to transfer one of individual message rates completely to the
common message rate. To do this, one requires a code with
small maximum error probability, rather than one with small
average probability of error. To show this one can apply a
result of Willems [11] who shows that the maximal probability
of error capacity region is equal to the average probability of
error capacity region. Willems’s proof of his result, however,
is rather involved. The first proof is a simple direct argument
based on the characterization of the capacity region of a
degraded BC [9].

APPENDIX I

Suppose po(u, v, w,x) is a joint pmf that maximizes
MW Y)+ A =DIW;2) + LU YIW) + I(V; ZIW) —
I(U; VW), and among all such joint pmfs has the largest
value of 7(W;Y) + I(W; Z). In this appendix, we show that
there exists a pmf p(&, 0, i, x) such that
o AMW; V)+A-=IW; Z)+1(U; YIW)+I(V: ZIW)—
I(U; VIW) is equal to /II(W Y) + {1 - DLW, 7) +
1(U; Y|W) + I(V; Z|W) —1(: V|W)

. I(W Y)+ I(W; Z) is equal to 1(W: Y)+](W Z)

o 1] < min(|X], 1Y),
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o [V| =min(|X[, |Z]),

o WAL

« HX|U,V, W) =0.
We begin by reducing the cardinality of W. Assume that
W] > |X| and p(w) # 0 for all w. Then, there must exist
a non-zero function L : W — R where E[L(W)|X] = 0. Let
us perturb po(u, v, w, x) along L as follows:

pew,v,w,x,y,z) = polu,v,w, x,y,2) - [1 +eL(w)],

where € is in some interval [—€1, €2] where

_ . 1 _ . 1

A Lm0 L)’ = wiLiwy<o [L)|
Observe that p(u, v, x, y, z|lw) = pou, v, x, y, z|w), and we
are only perturbing the marginal pmf of W. Further note that

Pe(x,y,2) = pox,y,2) - [1 + €E[L(W)|X = x]1,

and thus the constraint E[L(W)|X] = 0 implies that the
marginal pmf of (X, Y, Z) remains constant as we vary €. We
will use lemmas from [10] to compute derivatives of entropy
expressions as a function of e.

Consider the expression AI(W;Y) + (1 — D)I(W; Z) +
IHU; YIW)4+1(V; ZIW)=1(U; VIW) at pe(u,v, w, x, v, 2).
It can be verified that the expression is a linear function of ¢
under this perturbation.? Since a maximum of this expression
occurs at € = 0, which is a point strictly inside the interval
[—€1, €2], it must be the case that this expression is a constant
function of €. Next consider the expression I (W; Y)+I(W; Z)
at pe(u,v, w,x,y,2). It can be verified that the expression
is a linear function of ¢ under this perturbation.* Note that
pou, v, w,x) is a joint pmf that has the largest value of
I(W;Y) + I(W; Z) among all joint pmfs that maximize
AW Y)+ (A =DIW; Z) + LU YIW) + I(V; Z|W) —
I(U; VIW). Thus a maximum of I(W;Y) + I(W; Z) occurs
at € = 0, which is a point strictly inside the interval [—€1, €2].
But this can only happen when I(W;Y) + I(W;Z) is a
constant function of €. Now, taking ¢ = —€; or ¢ = &,
gives us a joint pmf with the same values of AI(W;Y) +
A=DIW; D)+ 1U; YIW)+I(V; ZIW)—I(U; V|W) and
I(W;Y)+ I(W; Z), but with a smaller support on W. Using
this argument, one can reduce the cardinality of W to |X|.

Next, we show how one can reduce the cardinality of U to
find p(w, v, @, %) such that

o« MW, )+ -1 (W, D+ U YWY+ I(V; ZIW)—

I(U; V|W) is equal to M(W Y) + (1 - NI(W; Z) +
1(U: YIW) + 1(V; Z|W) —1(U; V|W)

o« IW;Y)+ I(W; Z) is equal to 1(W; Y)+I(W Z)

o || < min(|X], V),

. W =X
We can_repeat a similar procedure to impose the con-
stramt |V| < min(| X, |Z]). Imposing the extra constraint
H(X|U v, W) = 0 is discussed at the end.

3To see this, note that I(W;Y) = H(Y) — H(Y|W). The term H(Y)
is fixed because the marginal pmf of Y is fixed. The term H(Y|W) =
2w Pe()H(Y|W = w) is linear in € since H(Y|W = w) is invariant under
the perturbation and p¢(w) is linear in e¢. Thus I(W; Y) is linear in €. All
the other terms (U Y|W), 1(V: Z|W), I(U: V|W) that are conditioned on
W are linear in ¢ for a similar reason.

4The reason is similar to that discussed in the previous footnote.
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If |X]| < |Y], establishing the cardinality bound of |X| on
U suffices. This cardinality bound is proved in Theorem 1
of [10] using perturbations of the type L : U x W — R
where E[L(U, W)|W, X] = 0. Note that these perturbations
preserve the marginal pmf of p(w, x), and thus also I (W; Y)+
I(W; Z). The interesting case is therefore when |X| > |))|.
Assume that U] > |V|. If for every w € W, p(u|w) # O for
at most || elements u, we are done, since we can relabel the
elements in {/ to ensure that only an alphabet of size at most
| V| is used without affecting any of the mutual information
terms in the expression of interest. Hence, there must exist a
function L : U/ x W — R, where

E[LU, W)W, Y] =0,3(u, w): pou, w) #0, L(u, w) #0.

Let us perturb po(u, v, w, x) along the random variable L :

where € € [—¢€1, €2].

The first derivative of AI(W;Y) + (1 — DHI(W; Z) +
IWU; Y\W)+ I(V; Z|W) — I(U; V|W) with respect to ¢ at
€ = 0 should be zero. Note that

MW Y)+ (0 —=DIW: Z)+ 11U, Y W)
+1(V; Z|W) — 1(U; V|W)
=iA(HW)+ H(Y)— H(W,Y))
+(-NHW)+HZ)-HW,Z))
+HY WY+ H@Z, WYy—HU,Y, W)
—H\V,Z, WY+ HU,V,W) — H(W).

We can compute the first derivative of this expression using
part one of Lemma 2 of [10] and set it to zero:

2(HL(W) + HL(Y) — HL.(W, 1))
+(1 = D (HL(W) + H(Z) - HL (W, 2))
+HL(Y, W)+ HL(Z, W) — HL(U,Y, W)

_HL(V> Za W) + HL(Ua V; W) - HL(W) = 09

where Hp (W) denotes > E[LIW = w]p(w)log(l/p(w))
and similarly for the other terms. Using part two of Lemma 2
of [10], we have:

MW: )+ Q= NIW:Z)+ 1(U: Y|W)
HI(VLZIW) — 1(U; VIW)
=MW Y) + (1 = DIW; Z) + 1(U; Y|W)
+ 1V ZIW) = I(U; VW)
+ 2(—E[r(e - E[L|W])] — E[r(e - E[L|YT)]
+E[r(e - ELLIWY)])+(1—2)( —E[r(e - E[LIW]}]
—E[r(c -E[L|Z])] + E[r (e - E[L|WZ])])
—E[r(e - E[LIYW])] — E[r(e - E[L|ZW])]
+E[r(e - EILIUY W])] + E[r (e - EIL|V WZ])]
—E[r(e - E[LIUVW])] +E[r(e - E[L|W])],
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where r(x) = (1 4+ x)log(l + x). Since E[L(U, W)|WY] =0
and L is a function of (U, W), we have:
MW V) + (= DIW:; Z) + 1(U; YIW)

+I(V; ZIW) = 1(U; VW)

=AMW; )+ U =-DIW; 2)+ I(U; Y|W)

+I(V; Z|W) — I(U; VW)

+(1 = D(—E[r(c - E[L|Z])] +E[r(e - E[L|WZ])])

—E[r(e - E[L|IZW])] + E[r (e - E[L|IVWZ])].
To see this observe that E[L|WY] = 0 implies E[L|W] =
E[L|Y] =0 so the terms E[r(e - E[L|W])], E[r (e - E[L|Y])]
and E[r(e-E[L|WY])] vanish. Since L is a function of (U, W)
we have

E[r(e - E[LIUYW])] = E[r(e - E[L|UW])]

= E[r(e-E[LIUVW])],

so these terms cancel out cach other. Since r(x) = (1 +

x)log(l + x) is a convex function, we can use Jensen’s
inequality to obtain
E[r(e

"E[LIWZ])] = Ez[r(Ew[e - E[L|WZ]])]
= E[r(e - E[L|Z])].

Thus,

—E[r(e - E[L|Z])] +
—E[r(e - E[LIWZ])] +

E[r(e - E[LIWZ])]
E[r(e - E[LIVWZ])]

>0
>0

Therefore for any € € [—€], €2], we have
MW V) + (0= DIW; Z)+ 1T Y|W)
+I(V; ZIW) — 1(U; VW)
AW, VY+ 0 -DIW;, Z)+ 1(U; YIW)
+I(V; Z|W) —T(U; V|W).
This implies that 11 (W; ¥)+ (1 = )I(W; Z)+ I (U; Y|W) +
1(V; Z|W) — I(U V|W) is a constant function of €. The
maximum of I(W; ¥)+ I(W; Z) as a function of € occurs at
€ = 0. Therefore 11, (W;Y) + I (W; Z) = 0, where
pw,y)

IL(W; ¥y = P@)p ()’

> P, w, y)L(u, w)log

u,w,y

and similarly for other terms (see [10, Lemma 2]).
Using Lemma 2 of [10] again, one can observe that

[I(W: V) + 1(W:; Z)] = LI(W: Y) + 1(W: 2)]
= —E[r(e -E[L|Z])] + E[r(e - E[LIWZ])] = 0

But this can only happen if I(W;Y) + I(W; Z) is a constant
function of €. Now, taking ¢ = —€; or € = €, gives us an

auxiliary random variable pair , VT’) with smaller support

than that of (U, W). We can continue this process as long as
there exists w € W such that p(u|w) # O for more than |Y|
elements u.

It remains to show that one can impose the extra con-
straint H(X|U,V, W) = 0. Fix p(u, v, w). Consider the
expressions AI(W;Y) + (1 — DI(W;Z) + I(U;Y|W) +
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I(V; Z|W) — I(U; VIW) and I{W;Y)+ I(W; Z) as func-
tions of the conditional pmf of X given (U, V, W). Denote
it by r(x|u,v,w). We know that for instance the former
expression is maximized at p(x|u, v, w). Further, the extreme
points of the corresponding region for r(x|u, v, w) satisfy
r(x|u, v, w) € {0, 1}. Both expressions are convex functions
of r(x|u, v, w) because 1(W;Y) is convex in the conditional
pmf r(y|lw); similarly I(U;Y|W = w) is convex for any
fixed value of w. The term [(U; V|W) that appears with a
negative sign is constant since the joint pmf p(u, v, w) is
fixed.

We can express p(x|u,v,w) as a lincar combination of
the extreme points of the region formed by all condi-
tional pmfs r(x|u, v, w). Since the maximum of A/ (W;Y) 4
A= DIW;2) + TU; YIW) + I(V; ZIW) - T(U; VW)
occurs at some p(x|u,v,w) and the expression is con-
vex in r(x|u,v, w), the maximum must also occur at all
the extreme points showing up in the linear combination.
One can use the convexity of I(W;Y) + I(W;Z) in
r(x|u, v, w) to show that the value of I(W;Y) + I(W; Z)
at all these extreme points must be also equal to that at
pxlu, v, w).

APPENDIX I1

In this Appendix we close a gap in the proof of Theorem 1
by proving that P(X = x|U = u;) = P(X = x|U = u;)
for all i = 1,2,3,...,]U4| and x, and similarly P(X =
x|V =0;) =P(X = x|V =vj) forall j =1,2,3,..., V|
and x.

Note that P(X = x|U = u;) is equal to

S PV =0j|lU =u)P(X =x|U=u;,V =v;)
j

M
=D PV =0;|U = up) 3 P(T;j = k)1 (uz, 0)) = x]
j k=0

J
= > PV =0lU =up)(1 -
j

<) 1léo(i, ) =]

iJ
M €

+ D PV =0,|U = ui)zn—i;aklm(ui, bj) =x
j k=1 "

7[[,'—
_ Z]p(v = 01U = up)( 7;’)1

) totwi, 0) = x]

+ZZ]P’(V = 0j|U = u; )——akl Sk, vj) = x].

k=1 j
Also, note that
]P’(V:u]-,U:u,-)_ i
P(U = u;) P(U = u;)’

PV =0;|U =u;) =
Therefore,

]P’()?Z)HUZM,') ZW_)I[@’O(’M, ]) x]

a1k (u;, UJ) x]

DR RTET
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—Z]P’(T; [($o(ui, vj)=x]

“pi 0=

M
€
+m Eak Zl[fk(ui, vj)=xl.

J

But since vz, = Zfi] a,0F,, the profiles of the row i’s must
also satisfy the same property

M
D Wi vj) =x1= > ox » & wi,v)) = x].
j k=l
Therefore, IP’(X = x|U = u;) is equal to
z IP’(U—)IKO(MI’
z IP’(U

The equation P(X = x|V = vj) =P(X = x|V = ;) for
all j =1,2,3,...,|V| and x can be proved similarly.

v))=x14+0-0

l[éo(u:, vj) =x]=PX =x|U = u;).

APPENDIX ITI
Note that

P(X = x0|U =u;, T;,; = 0)
=P(X =xolU = u;, T;,; =0,V =0})
xP(V =v;|U =u;, T;,; =0)
+P(X = x0lU = u;, T j =0,V #0;)
xP(V # 01U = u;, T; j = 0).
Since under the event {(U, V) = (u,,vj)} and 7; ; =0, X =

xg, the term IP(X =x0|U =u;, T;; =0,V =0;) = 1. Since
(U, V) is independent of T; ;, we have

T,; =0)
T,;=0)
Lastly PX = x0)U = u;, T;; = 0,V # v;) is equal to
]P’(X = xolU = u;, V # v;) since under the event {(U =

ui, V.# vj)} X will be independent of 7; ; (note that the

random variables T. . are mutually independent of each other).
Therefore,

PV =v;|U = u,,
PV #0,lU =u,,

=PV =v;|U =u;),
=PV #v;|U = u;).

P(X = xolU = u;, T;,j = 0)
=P(X =x0lU = u;, V # 0))P(V # 0j|U = u;)

+P(V =v;|U = u;). (10)

Next, note that

P(X = xo|lU = u;, T;j = 1)
=PX =x|lU =u;, Tyj =1,V =0;)
xP(V = ojlU=u;, T;j; =1)
+P(X =x0|U = u;, Thj = 1,V #0;)
xP(V #0;|U = u;, Ti,j = 1).
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Since under the event {(g, V)= (ui,v;)}and T ; =1, X is
equal to xy, the term P(X = xo|U =u;, T; ; =1,V =v;) =
0. Following an argument like above, one can show that

P(X = xolU = u;, T j = 1)
=04+ P(X = x0|U = u;, V #0))P(V # 0;|U = ;). (11)

Comparing equations (10) and (11), and noting that P(V =
v;j|U = u;) > 0, we conclude that

P(X = xo0lU = u;, Th,j = 0) # P(X = xolU = u;, Ti,j = 1).

The proof for

PX =x)|U =u;, Tij =0) #PX =x1|U = w;, T;,j = 1)
is similar.
It remains to show that for any x ¢ {xo, x1},
P(X =x|U =u;,Tj =0) =P(X =x|U =u;, T;,; = 1).
Observe that
PX =x|U=u;, Ti;j =1)
—]P’(X—x|U—u,, =LV =0
x PV =0;|U =u;,T;j =1)

+PX =x|U =u;, T, =1,V #v;)

xP(V #v;|U =u;, T;; =1)
=0+P(X =x|U=u;, V#0))P(V # 0;]U = u;)
=P(X =x|U =u;, T;; =0).

APPENDIX IV
We prove the statement by contradiction. Assume that
P =ylU =u;, Tij = 0) = P(¥Y = y|U =u;, T = 1).
We have that P(Y = y|U = u;, T;,; = 0) is equal to
P(Y =y|U=u;, Ti,j =0, X =x0)P(X =xo|U =u;, T; j =0)
+P(Y =y|U=u;, T;; =0, X=x1)
x P(X =x1|U =u;, T;, j =0)
+ > (P =ylU=u;,T,;=0,X=x)
xeX , x¢{xp,x1}
x P(X =x|U=u;, T;,; =0))
=P(¥ =y|X =x0)P(X =x0|U =u;, T; j =0)
+P(Y =y|X =x))P(X =x1|U =u;, T, ; =0)
> (PE=yIX=x)P(X=x|U=u;, T;;=0)).
xeX, x¢{x0,x1}
Similarly, ]P’(Y =y|U =u;, T;j = 1) is equal to
P(Y =y|X =x0)P(X =x0|U =u;, T; j =1)
+P(Y =y| X =x)P(X =x1|U =u;, T; j=1)
+ > (P =y X=x)PX=x|U=u;, T;;=1)).
xeX , x¢{xg,x1)
It was shown in Appendix III that
P(X =x0|U =u;, T; j =0) # P(X =xo|U=u;, Ty j = 1),
P(X =x1|U =u;, T; j =0) # P(X =x;|U=u;, T; j = 1).
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However, for any x ¢ {xg, x1},
P(X=x|U=u;, T;; =0)=P(X =x|U=u;, T;; = 1). (12)
Thus, we must have
P(Y = y|X = x0)P(X = x0|U = u;, T j = 0)
+PY =y X =x)P(X =x1|U =u;, Ti,; = 0)
=P¥ =y|X =x0)P(X =x|U =u;,T;; =1)
+PY =y X =x)PX =x1|U =u;, T;; =1).
This implies that
P(X = xo)lU = u;, Tyj = 1) = P(X = xo|U = u;, T;.j = 0)
P(X =xi|U =u;, T =0) —P(X =x)|U =u;, Ty,j = 1)
_ PY =y|X =x1)
P(Y = y|X = xo)
Note that the numerator and denominator are negative by what

was proved in Appendix IIL.
On the other hand, we also have by equation (12):

> PE=xlU=u,T;=0)

1 -

xixglxo,x1}
=1- > PX=x|U=u,T,;=1).
x:x¢{xg,x1)
Thus,
P(X =x0|U =u;, Ty j =0) + P(X =x;|U =u;, T, ; =0)

=P(X=xo|lU=u;, T;j=1) + P(X =x1|U =u;, T;,; = ).

This implies that
P(X = xolU = u;, Trj = 1) = P(X = x0|U = u;,
P(X = x1|U = u;, T;; = 0) —
is equal to one. Hence,

PY =yl X =x1) _

PY =yIX =x0)
But we know that P(Y = y|X = xq) # P(Y = y|X = x1)

since the input values xg and x; are distinguishable by the Y
receiver, which is a contradiction.

Ti,j =0)
PX =x|U =u;, T;; =1)

APPENDIX V

The proof follows from the following two Lemmas.
Lemma 2. Assume that p*(u, v, w, x) is an arbitrary pmf
that maximizes AI(W; Y)Y+ (1 —DI(W; Z2)+ I(U; Y|W) +
I(V, Z|W) — I(U; V|W) and achieves the largest value of
T(W;Y) + I(W; Z) among all maximizing joint pmfs. For
every w, p*(x|w) must belong to the set T (q(y, z|x)) defined
as follows. Let T (q(y, z|x)) be the set of pmfs on X, t(x),
such that
P BN DA WD+ - DIW: 2)
O VW) +1(V: ZIW)~ 1T VIW)}
=S max W, vYy+1(V;Z2)—-1(U; V),
plu,o|x)1(x)g(y,zlx)
and I(W;Y) = I(W;Z) = 0 for any pmf p([, 7, ©|x)t (%)
that maximizes the expression Al (W Y) + (1 — /I)I(W Z) +
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LU, Y|W) + 1(V; Z|W) — 1(U; V|W). Please note that
the random variables U i V, W used in the definition of
T (q(y, z|x)) have nothing to do with U, V, W their alphabets
may be different. However, the random variables X , Y, Z take
values from the same sets as X, Y, Z.

Remark 9. Note that a pmf p(, v, W|X)t (x) that maximizes
the expression A1(W; ?) + (1 — )L)I(W; )+ I{U; Y|W) +
1(V; 2|VT’) —1(U:; ?lVT’) may not unique. Also we have used
maximum and not supremum since cardinality bounds on the
auxiliary random variables exist [10].

Lemma 3. Let q(y,z|x) be a general broadcast channel
and t(x) € T(q(y,z|x)). Consider the maximization prob-
lem: maxp(u,pix)y (g v,z U3 Y) + 1(V; Z) — I(U; V).
Assume that a maximum occurs at p*(u,v|x). Then the
following holds for random variables (U,V,X,Y,Z) ~
P, v|x)t(x)q(y, z|x):

N I(U Y) > I(U V,Z) forevery U - U — VXYZ;

o« I(V;2Z)>1(V.U,Y) forevery V-V — UXYZ.

A. Proof of Lemma 2

Assume that the marginal pmf of X given W = w does not
belong to 7 for some w. By the definition then, at least one
of the following must hold:

Case 1: Correspondmg to leW »(x|w) is the conditional
pmf p(&, D, w|x) such that

TU; YIW=w)+1I(V; ZIW =w) — I(U; VIW = w)
<MW Y)Y+ (1 = DIW: 2)+ I({U; Y|W)

+I(V; ZIW) — 1(U; VW), (13)

Case 2: Correspondmg to pX|W w(x|w) is the condmonal
pmf p(iz, D, W|x) such that

IU; YIW=w)4+1(V; ZIW=w)— I(U; VIW = w)
=AW V) + (1 - DIW: 2) + (T, YIW)
+I(V; ZIW) — 1(U; V|W),

p(, v, w|:)l7~x|w~:w(’\)Q()’>A|A)-

Define U, V, W jointly distributed with (U, V, W, X, Y, Z)
as follows: whenever W # w, the random variables_ Q =U,
V =V, W =W. For W = w, the Markov chain UVW —
X - U,V,W,Y, Z holds, and p(, v, w|x) = p(@,v, B[X).
Next, assume that U' = U, V =V, W =WW

If case 1 holds, we prove that A1 (W'; Y)+(1-)I(W'; Z)+
IULYIW) + IV ZIW) = TUS VW) > AL(W;Y) +
A =DIW; Z) + I(U; YIW) + I(V; ZIW) — I(U; VW),
which results in a contradiction. If case 2 holds, we prove that
MW D+A=-DIW; 2)+1U YWY+ IV, Z|W) —
TUS VW) =AW V) + A =DIW; Z)+ I(U; YIW) +
I(V; Z\W) — I(U; V|W) but that /(W Y)+ I(W;Z) >
I(W;Y)+ I(W; Z), which results in a contradiction.

Assume that case 1 holds. Since W' = WW, I(W';Y) =
I(W;Y) + I(W;Y|W) and T(W:;Z) = I(W;Z) +
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(W, Z|W). We need to show that

AW YIW) + (1= DI(W; ZIW) + I(U; YW, W)
+I(V; ZIW, W) — 1(U; VIW, W)
> TU; YWY+ I(V; ZIW) — T(U; VIW).
Recall that whenever W # w, the random variables U i \7,

and W are defined to be equal to U, V, and W, respectively.
Therefore we need to show that

P(W = w)[AT(W; YIW = w) + (1 — )I(W; Z|W = w)
+I(U, YW =w, WI(V; Z|W = w, W)
—1U; VW =w,W)] >
P(W = w)[I(U; YIW = w) + I(V; ZIW = w)
- I1(U; VIW = w)].
On the event {W = w} the random variables 5 V, W are
defined so that p(u v, w|x) = p(u, v, w|X). Furthermore the
marginal pmf of X is p*(x|W = w). Therefore, ](W YIW =
w) = I(W; Y) I(W ZIW =w) = 1(W; Z) 1({U;Y|W =
w, W) = I(U YIW) etc. Thus it remains to show that
A1(W: Y) + {1 - )L)](W; Z) + 1(U; Y|W)
+I(V: Z|W) — 1(U; VIW)
>IU;YIW=w)+ I(V; ZIW=w) — I(U; VI]W = w).
This holds because of equation (13). This concludes the proof
for case 1.

Now, assume that case 2 holds. Following the above proof
for case 1, we obtain

MW Y)Y+ (1= DIW;Z)+1U YIW)
+I(V, ZIW) — 1(U'; VI|W)
MW Y)+ (0 =)W, Z)+ 1(U; Y|W)
+I1(V; Z\W) — I(U; V|W).
Note that 7(W'; ¥) + 1(W'; Z) = I(W; ¥) + I(W; Y|W) +
IW:Z) + 1I(W; Z|W). Thus, we need to show that
I(W; YIW)+ I(W; Z|W) > 0. Note that
I(W; Y\W) + [(W; Z|W)
=P(W = w)(I(W; Y|W = w) + I(W: ZIW = w))
=P(W = w)(I(W; Y) + 1(W; Z)) > 0.

B. Proof of Lemma 3

Take an arbitrary U / satisfying U—>U— (V.,X,Y,2).
Let W=U,U =U, V=V. Since t(x) € T(g(y, z|x)), and
p*(u, v|x) maximizes I(U; Y)+ I1(V; Z) - I(U; V), we can
write:

IU; )+1(V,Z2) - 1(U: V)
> AW YY)+ (1 = DIW; Z)+ 1(U; Y|W)
+I(V; Z|W) - 1(T; VIW), (14)

anq\ furthermore if equality holds, we must have 7 (V_’V; Y) =
I(V_V; Z) = 0. We prove that this implies that /(U;Y) >
1(U;V,2).
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We can write:

IU; )+ 1(V; 2) - 1(U; V)
> (W Y)+ (1= DIW; Z) + 1(U: Y|W)
+I(V; Z|W) — 1(U; VW)
=MU:Y)+ QA -DIU: 2)+1U: Y|U)
+1(V; Z|U) — I(U; V|U).

Since U — U—>VXYZ, we have 1(U; ¥Y) = I(UU:Y) and
I1(U; V) =1(UU, V). This implies that

IU:Y)+ 1(V;Z) - I(U; V)
> U YY)+ (1 =DIU; 2)+ 1(V; Z|U),

or
[U;Y)+1(V; )2 U, V)+(1-)IT; Z)+1(V; Z,0),
or

(I =DIU;Y)> (1 —-NIU; Z)+ 1(V; U|Z).

In other words

A=MDIU;Y)Y=A =W, V,Z)+ArI(V;U|Z). (15)

Let us consider the following two cases:
e A < 1: In this case, equation (15) implies that

_ — A —
10U Y)=1(U;V,Z) + ml(V; UlZ).

This inequality implies the desired inequality I(U; Y) >
1{U;V, 2).

e A = 1. In this case, equation (15) implies that
I(V:U|Z) = 0. Furthermore equation (14) holds with
equality. Since r(x) € 7, we must have ](U Y) =
I(U; Z) = 0. The fact that 1, U|Z) = I(U;Y) =
1(U:; Z) = 0 implies that 1(U;Y) = I(U; Z,V) = 0.
Therefore the inequality I(U;Y) > I(U;Z,V) also
holds in this case.

In_each case, we are done. The inequality I(V; Z) =
I(V;Y,U) can be proved similarly.
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