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Abstract—This paper introduces the notion of exact common
information, which is the minimum description length of the
common randomness needed for the exact distributed generation
of two correlated random variables (X,Y). We introduce the
quantity G(X;Y) = minx_,w,v H(W) as a natural bound
on the exact common information and study its properties and
computation. We then introduce the exact common information
rate, which is the minimum description rate of the common
randomness for the exact generation of a 2-DMS (X,Y). We
give a multiletter characterization for it as the limit G(X; Y)=
limp.500(1/n)G(X™; Y™). While in general G(X;Y) is greater
than or equal to the Wyner common information, we show that
they are equal for the Symmetric Binary Erasure Source. We do
not know, however, if the exact common information rate has a
single letter characterization in general.

I. INTRODUCTION

What is the common information between two correlated
random variables or sources? This is a fundamental question in
information theory with applications ranging from distributed
generation of correlated sources [1] and secret keys [2] to joint
source channel coding [3], among others. One of the most
studied notions of common information is due to Wyner [1].
Let (X x Y, p(z,y)) be a 2-DMS (or correlated sources (X,Y)
in short). The Wyner common information J(X;Y) between
the sources X and Y is the minimum common randomness
rate needed to generate (X,Y’) with asymptotically vanishing
total variation. Wyner established the single-letter characteri-
zation

J(X;Y) = min _I(W;X,)Y).

Wi XaW-Y

In this paper we introduce the notion of exact common infor-
mation, which is closely related in its operational definition
to the Wyner common information. While the Wyner setup
assumes block codes and approximate generation of the 2-
DMS (X,Y), our setting assumes variable length codes and
exact generation of (X,Y). As such, the relationship between
our setup and Wyner’s is akin to that between the zero-
error and the lossless source coding problems. In the source
coding problem the entropy of the source is the limit on both
the zero-error and the lossless compression. Is the limit on
the exact common information rate the same as the Wyner
common information? We show that they are the same for
the Symmetric Binary Erasure Source (SBES) as defined in
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Section II. We do not, however, know if they are equal in
general.

The rest of this paper is organized as follows. In the next
section we introduce the exact distributed generation problem
and define the exact common information. We introduce the
“common-entropy” quantity G(X;Y) = minx_w—y H(W)
as a natural bound on the exact common information and study
some of its properties. In Section III, we define the exact
common information rate for a 2-DMS. We show that it is
equal to the limit G(X;Y) = lim, 00 (1/n)G(X™ Y™) and
that it is in general greater than or equal to the Wyner common
information. One of the main results in this paper is to show
that G(X;Y) = J(X;Y) for the SBES. A consequence of this
result is that the quantity G(X*; Y*) can be strictly smaller
than kG(X,;Y), that is, the per-letter common entropy can
be reduced by increasing the dimension. We then introduce
the notion of approximate common information rate, which
relaxes the condition of exact generation to asymptotically
vanishing total variation and show that it is equal to the Wyner
common information. As computing the quantity G(X;Y)
involves solving a non-convex optimization problem, in Sec-
tion IV we present cardinality bounds on W and use them to
find an explicit expression for G(X;Y) when X and V" are
binary. Due to space limitation, we do not include many of the
proofs. A complete version of this paper is posted on arXiv.

II. DEEINITIONS AND PROPERTIES
Consider the distributed generation setup depicted in Fig-
ure 1. Alice and Bob both have access to common randomness
W. Alice uses W and her own local randomness to generate
X and Bob uses W and his own local randomness to generate
Y such that (X, Y) ~ px,v(z,y). We wish to find the limit on
the least amount of common randomness needed to generate
(X,Y) exactly.
More formally, we define a simulation code (W, R) for this
setup to consist of
o A common random variable W ~ pw (w). As a measure
of the amount of common randomness, we use the per-
letter minimum expected codeword length R over the set
of all variable length prefix-free zero-error binary codes
C ¢ {0,1}* for W, i.e., R = min¢ E(L), where L is the
codeword length of the code C for W.
o A stochastic decoder p gy, (xz|w) for Alice and a stochas-

tic decoder p,;,lw(y|w) for Bob such that X and ¥ are
conditionally independent given W,



Y
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Fig. 1. Setting for distributed generation of correlated random variables. For

exact generation, (X, V) ~ px v (z,v).

The random variable pair (X,Y) is said to be exactly
generated by the simulation code (W,R) if py ¢ (2,y) =
px,y(z,y). We wish to find the exact common information
R* between the sources X and Y, which is the infimum over
all rates R such that the random variable pair (X,Y’) can be
exactly generated.
Remark: The exact common information R* (and the exact
common information rate defined in the next section) can be
also defined through a “zero error” version of the Gray-Wyner
system [4]. This approach, however, is neither operationally
better motivated than the above setup nor yields better insights
or results. Hence, we will not pursue this alternative setup any
further.

Define the following quantity, which can be interpreted as
the “common entropy” between X and Y,

G(X;Y) = H(W). (N

WX SWoy
Remark: We can use min instead of inf in the definition of
G(X;Y) because the cardinality of W is bounded as we will
see in Proposition 5, hence the optimization for computing
G(X;Y) is over a closed set.

Following the proof of Shannon’s zero-error compression
theorem, we can readily show the following.

Proposition 1.
GX;Y) <R <GX;Y)+ 1

Computing G(X;Y) is in general quite difficult (sce Sec-
tion IV). In some special cases, we can find an explicit
expression for it.

Example 1 The Symmetric Binary Erasure Source (X,Y)
with parameter p (SBES(p)) is defined by

X ~ Bern(1/2),

o {X wp. 1 —p,
e W.p. D,

where p is the erasure probability for the source. It can be
shown that for the SBES(p),

G(X;Y)=min{l,H(p) + 1 — p}.

Note that the Wyner common information for this source is [5]

J(X;Y) = 1 if p <0.5,
U Y H(p) ifp>0.5.

In the following we present some basic properties of
G(X;Y).
A. Properties of G(X;Y)
1) G(X;Y) > 0 with equality if and only if X and Y are
independent.
2) G(X;Y) > J(X;Y).
3) Data-processing Inequality: f U — X — Y forms a
Markov chain, then G(U;Y) < G(X;Y).
4) Define G(X;Y|Z) = 3 ,czp2(2)G(X;Y|Z = 2).
Then G(X;Y) < H(Z)+ G(X;Y|Z).
5) If there exist functions f(X) and g(Y) such that Z =
f(X)=g(Y), then G(X;Y) = H(Z) + G(X;Y|Z).
6) Let T(X) be a sufficient statistic of X with respect to ¥’
([6], pg. 305). Then G(X;Y) = G(T(X);Y). Further,
if W achieves G(X;Y), we have H(W) < H(T(X)).
Thus a noisy description of X via W may potentially
have a smaller entropy than the minimal sufficient statis-
tic, which is a deterministic description.

11I. EXACT COMMON INFORMATION RATE

The distributed generation setup in Figure 1 can be readily
extended to the n-letter setting in which Alice wishes to gener-
ate X™ from common randomness W,, and her local random-
ness and Bob wishes to generate Y™ from W,, and his local
randomness such that pgn g (27, y") ~ [T, pxy (6, ).
We define a simulation code (W, R,n) for this setup in the
same manner as for the one-shot case.

We say that Alice and Bob can exactly generate the 2-
DMS (X,Y) at rate R if for some n > 1, there exists a
(Wy, R,n) simulation code that exactly generates (X™,Y™)
(since we assume prefix-free codes for Wy, we can simulate
for arbitrarily large lengths via concatenation of successive
codewords). We wish to find the exact common information
rate R* between the sources X and Y, which is the infimum
over all rates R such that the 2-DMS (X,Y’) can be exactly

generated.
Define the “joint common entropy”
TN = i . 2
GX™Y™) Wit X7 Wy H{(Wn) @

It can be readily shown that lim, e (1/n)G(X™Y™) =
infen(1/n)G(X™ Y™). Hence, we can define the limiting
quantity
G(X;Y)= lim lG(X”;Y").
n—oo N
We are now are ready to establish the following multiletter

characterization for the exact common information rate.

Proposition 2 (Multiletter Characterization of R*). The exact
common information rate between the components X and Y
of a 2-DMS (X,Y) is

R* = G(X;Y).



As expected the exact common information rate is greater
than or equal to the Wyner common information.

Proposition 3.

G(X;Y) > J(X;Y).

In the following section, we show that they are equal for
the SBES in Example 1. We do not know if this is the case
in general, however.

A. Exact Common Information of the SBES

We will need the following result regarding computing the
Wyner common information for the SBES.

Lemma 1. To compute J(X;Y) for the SBES(p), it suffices
to consider

W — X wp. 1—py,
€ wp. p1,
and
Y = w w.p. 1 — P2,
€ w.p. pa,

Jor some py and pa satisfying p1 + p2 — p1p2 = p.

The proof follows by [5], Appendix A.
We now present the main result on exact common informa-
tion rate in this paper.

Theorem 1. If (X,Y) is an SBES, then G(X;Y) = J(X;Y).

Proof: Tn general G(X;Y) > J(X;Y). We will now
provide an achievability scheme to show that for SBES,
G(X;Y) < J(X;Y).

Choose a W as defined in Lemma 1 and define

- d ifWe{0,1},
W =
{e ifW=e,
v {d ifY e {0,1},
e fY=e

Note that Y™, denoting the location of the erasures, is iid.
Bern(p) (with 1 + e, 0 + d) and independent of X™.
Furthermore, Y™ is a function of X™ and Y™,

Codebook Generation: Generate a codebook C consisting of
oI (YiW)+e) sequences ™ (m), m € [1 : 20U SWI+€)] | that
“covers” almost all the §™ sequences except for a subset of
small probability &(¢). By the covering lemma (7], page 62),
such a codebook exists for large enough n.

This lets us associate every covered sequence ™ with a
unique @™ = " (§") € C such that (§", a") € T,

Define the random variable

W — w™(§™) if §™ is covered by C,
" g™ if ™ is not covered.

3

Note that W, is a function of Y™ and that the set of erasure
coordinates in W, is a subset of those in Y,
Channel Simulation Scheme:

1) The central node generates W,, defined in (3) and sends
it to both encoders. :

2) Encoder 2 (Bob) generates Y™ ~ pynyy, (g™|a™)

3) The central node generates and sends to both encoders
a message M comprising i.i.d. Bern(1/2) bits for only
those coordinates i of X™ where W, (i) = d. Thus
H(M) <n(l—p1+4d(e)).

4) Encoder 1 (Alice) generates the remaining bits of X™
not conveyed by M using local randomness. Then X™
is independent of Wy, Y™ and is i.i.d. Bern(1/2).

5) Encoder 2 generates Y" = YWy, X™) =
Y™(W,, M). He only needs the bits X; such that
Y’i = d, which are available via M.

To complete the proof, note that X — (W,, M) — Y™

forms a Markov chain. Therefore,

G(X™Y™) < HWy, M)+ 1< HW,) + H(M) +1
< H(E() + (1 - SO HWa [ Wr € 0)
+ 8(e)H (W, | Wy & C) +n(1 —p1 +6(e)) + 1
< HG©) + (1- 8(e) log [C]
+ d(¢) log |)7”| +n(l—p1+6(e))+1
=n(I(Y; W) +1—p1+6(e))
D n(I(W; X, Y) + 8(e)),

—

where (a) follows by the grouping lemma for entropy, since
P{W, ¢ C} = P{Y™ not covered} = 6(c); (b) follows since
entropy is upper bounded by log of the alphabet size; and (c)
follows from the definition of mutual information and some
algebraic manipulations.

If we let n — oo, we obtain G(X;Y) < I(W;X,Y) +
d(e) for any € > 0. Minimizing I(W; X,Y’) over all W from
Lemma 1 completes the proof. a

Note that the single letter characterization of the
Wyner common information for the 2-DMS (X*,Y*) ~
Hf:l px,v(zi,y;) is k times that of the 2-DMS (X;Y), that
is, min I(W; X*,Y*) = kmin I(W; X,Y). The same prop-
erty holds for the Gdcs—Korner-Witsenhausen common infor-
mation [8], and for mutual information. In the following we
show that G(XF*; Y*) can be strictly smaller than kG(X;Y).
Hence, it is possible to realize gains in the “common entropy”
when we increase the dimension.

By the fact that for the SBES(p), G(X;Y) = H(p) for
p > 1/2 and G(X;Y) = min{l, H(p) + 1 — p}, there exists
a p such that G(X;Y) < G(X;Y). Hence, we can show
by contradiction that there exists a 2-DMS (X,Y") such that
G(X?%,Y?) < 2G(X;Y). We can also give an explicil exam-
ple of a 2-DMS (X,Y) such that G(X?%Y?) < 2G(X;Y).

Let
o= 13 0]

Then, by Proposition 8 in Section IV, we have G(X;Y) =
H(1/3), where H(p), 0 < p < 1, is the binary entropy



function. Note that we can write
179 1/9 1/9 1/9
1/9 0 1/9 0
1/9 1/9 0 0
1/9 0 0 0

bxzyz =

1/4] M1]° 1

:g1/40+§01/3
9 |1/4| o] T 9 [o] |1/3
1/4| |0 ol [1/3

o] [o]* 0] [o]*

1]1] {o] 10| |1

T3 lol [1] T9l1] |0

ol lo ol [0

Let W ~ pw(w) = [4/9,3/9,1/9,1/9], then

ZPW (w)pxz2jw (=

that is, X2 — W — Y2 form a Markov chain. Thus,

G(X%Y?) < H(W)
< 2H(1/3) = 2G(X;Y).

Pxz, Y2 1y Iw)py2|W( 2|'LU),

B. Approximate common information rate

Consider the approximate distributed generation setting in
which Alice and Bob wish to generate 2-DMS (X,Y) with
vanishing total variation

n
lim [pgn ga(@™y™) = [T oy (20,99 gy =0

i=1
We define a (W,,, R, n)-simulation code for this setting in the
same manner as for exact distributed generation. We define
the approximate common information rate %, between the
sources X and Y as the infimum over all rates R such that
the 2-DMS (X,Y’) can be approximately generated.

We can show that the approximate common information rate

is equal to the Wyner common information.

Proposition 4.
Ry =
Proof: Achievability: Achievability follows from Wyner’s
coding scheme [1]. Choose W, ~ Unif[l : 2"%] and
associate each w, € W, with a codeword of fixed length
£(wn) = [nR]. Decoders 1 (Alice) and 2 (Bob) first decode
W, and then use Wyner's coding scheme to generate X™ rm,
respectively. Any rate R > J(X;Y) is admissible and will
guarantee the existence of a scheme such that (X7, V™) is
close in total variation to (X™,Y™). Thus Ry, < J(X;Y).
Converse: Suppose that for any € > 0, there exists a
(Wn, R,n) simulation code that generates (X™ ¥™) whose
pmf differs from that of (X™,Y™) by at most ¢ in total
variation. Then we have

nR> H(W,) > I(X", Y™ W)
— (X, Yy X970, Y91

J(X;Y).

(@) & 5 5
> ZI(X,,,Yq;W) —nd(e)

g=1
=nl(Xq, Yo; W,Q) — nI(Xq, Yo; Q) — nd(c)

© N oA

> nl(Xq,Yo; W, Q) — nd(c)
(o)

§ nJ(X;Y) —nd(e),

where (@), (b) follow from Lemma 20 and Lemma 21 respec-
tively in [9] since the pmf of (X n V) differs from that of
(X™,Y™) by at most ¢ in total variation; and (¢) follows from
the continuity of J(X;Y). [ |
Remark: Note that if we replace the total variation constraint
in Proposition 4 by the stronger condition

"yt =(1- N @

for some pmf r(z™,y™) over X" x Y, the required ap-
proximale common information rate R§n becomes equal to
the exact common information G(X;Y). To show this, note
that R%p < G(X;Y) is trivial because the exact distributed
generation constraint is stronger than (4).

To show R, > G(X;Y), start with any (Wy,R,n)
simulation code that generates (X . Y") satisfying (4). Let

pxnyn (T )Dgn o (@™ y™) +er(a™,y"

Wi = {W_'n i wp. 1—c¢
(X™Y"™) ~r(z”

We construct a (W), R',n) code that generates (X™,Y™)

exactly and satisfies R’ < R+ &(e). If the decoders receive

W,, = Wi, they follow the original achievability scheme to

generate (X", Y™) satisfying (4). If W, = (X", ¥™), then

the decoders simply output X™ and Y™, respectwely Now,

HW!) < H(e) + (1 — e)H(Wp) + elog [ X|"|V|™
= H(Wp,) + nd(e).

Therefore, R’ < (1/n)(H(W},) +1) = R+ 3(e) + 1/n =
R + 6(¢) for n large enough. Thus R%p > G(X;Y).

y") wp. e

IV. COMPUTING G(X,;Y)

The optimization problem for determining G(X,;Y) is in
general quite difficult, involving the minimization of a concave
function over a complex markovity constraint. In this section
we provide some results on this optimization problem. We
provide two bounds on the cardinality of W, establish two
useful extremal lemmas, and use these results to analytically
compute G(X;Y) for binary alphabets. We then briefly dis-
cuss a connection to a problem in machine learning.

We first establish the following upper bound on cardinality.

Proposition 5. To compute G(X;Y), it suffices to consider
W with cardinality [W| < | X||V|.

We now state an extremal lemma regarding the optimization
problem for G(X;Y) that will naturally lead to another
cardinality bound.



Lemma 2. Given px y(z,y), let W attain G(X;Y'). Then for
w1 # wo, the supports of pyw (-jw1) and pyw(-|we) must
be different.

Lemma 2 yields the following cardinality bound.

Proposition 6. To compute G(X;Y) for a given pmf

px,v(x,y), it suffices to consider W with cardinality |W| <
2mm(|X| 1Y) — 1.

The following shows that the bound in Proposition 6 is tight.

Example 2 Let (X,Y) be a SBES(0.1). Since px,y(0,1) =
px,v(1,0) = 0, the markovity constraint X —» W — Y
implies that the only W with [W| = 2 is W = X see
[5], Appendix A, Hence, G(X;Y) < H(X) = 1. However,
H(Y) = H(0.1) + 0.1 < 1. Thus, the optimal W* that
achieves G(X;Y) requires |W*| = 3, making the bound in
Proposition 6 tight.
The following is another extremal property of G(X;Y).

Proposition 7. Suppose W aitains G(X;Y). Consider a non-
empty subset W CW. Let (X'Y") be defined by the pmf

pw (W)
25 e o
Then H(X";Y') = HW|W € W').

We now use the above results to analytically compute
G(X,;Y) for binary alphabets, i.e., when |X| = |Y| = 2.

Proposition 8. Let X ~ Bern(p) and

Pyix = [g g}

for some o, € [0,1],6=1—a,3 = 1— . Let W achieve
G(X;Y). Then either

pxry (2,y) =

Py|w = [g (1)] y Pwix = [(1) 1 f/g/&] , and
W ~ Bern (73 (1- B/d)) ,
or

Py\w = [(1) g} y Pwix = [] ;/ozﬁ/ﬁ (1)] , and

W ~ Bern (p(1 — a/f)) .

The proof of this proposition uses Lemma 2 as well as
the cardinality bound |W| < 3 derived from Proposition 6. It
considers all possible cases for W and finally concludes that
(W] = 2 suffices.

Remark (Relationship to machine learning): Computing
G(X;Y) is closely related to positive matrix factorization,
which has applications in recommendation systems, e.g., [10].
In that problem, onc wishes to factorize a matrix M with
positive entries in the form M = AB, where A and B are
both matrices with positive entries. Indeed, finding a Markov
chain X — W — Y for a fixed px,y is akin to factorizing

,)Px|W(m|w)pY|w(?/lw)-

Py|x = PY|WPW|X and numerical methods such as in [11]
can be used. Rather than minimizing the number of factors
as is done in positive matrix factorization literature, it may
be more meaningful for recommendation systems to minimize
the entropy of the factors W. Computing G(X;Y) for large
alphabets appears to be very difficult, however.

V. CONCLUSION

We introduced the notion of exact common information for
correlated random variables (X,Y) and bounded it by the
common entropy quantity G(X;Y). For the exact generation
of a 2-DMS, we established a multiletter characterization of
the exact common information rate. While this multiletter
characterization is in general greater than or equal to the
Wyner common information, we showed that they are equal
for the SBES. The main open question is whether the exact
common information rate has a single letter characterization in
general. Is it always equal to the Wyner common information?
Is there an example 2-DMS for which the exact common
information rate is strictly larger than the Wyner common
information? It would also be interesting to further explore
the application to machine learning.

We also remark that our setting and results can be readily
extended to the coordination via communication problem [12].
In the arXiv version of this paper, we show that for the SBES,
the set of achievable rates for exact coordination coincides
with that for coordination under the total variation constraint.
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