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A Note on the Broadcast Channel With Stale
State Information at the Transmitter
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Abstract— This paper shows that the Maddah-Ali–Tse (MAT)
scheme, which achieves the symmetric capacity of two example
broadcast channels with strictly causal state information at the
transmitter, is a simple special case of the Shayevitz–Wigger (SW)
scheme for the broadcast channel with generalized feedback,
which involves block Markov coding, Gray–Wyner compression,
superposition coding, and Marton coding. Focusing on the
class of symmetric broadcast channels with state, we derive an
expression for the maximum achievable symmetric rate using
the SW scheme. We show that the MAT results for the
two-receiver case can be recovered by evaluating this expression
for the special case in which superposition coding and Marton
coding are not used. We then introduce a new broadcast channel
example that shares many features of the MAT examples.
We show that another special case of our maximum symmetric
rate expression in which superposition coding is also used attains
a higher symmetric rate than the MAT scheme. The symmetric
capacity of this new example is not known, however.

Index Terms— Broadcast channel, channel with state, feedback,
source coding with side information.

I. INTRODUCTION

IT IS well known that a broadcast channel with random
state p(y1, y2|x, s)p(s) when the state S is known at the

decoders can be viewed as a broadcast channel with the same
input X but with outputs (Y1, S) and (Y2, S) [1, Ch. 7]. If the
state is also known strictly causally at the encoder, i.e., the
encoder at time i knows Si−1, then the setup can be viewed
as a broadcast channel with outputs (Y1, S) and (Y2, S) and
causal feedback of part of the outputs (see Fig. 1). Hence the
broadcast channel with state known at the decoders and strictly
casually at the encoder is intimately related to the broadcast
channel with generalized feedback [2], and it is expected that
results for one of these two settings can be readily translated
into results for the other.

Dueck was the first to show via an insightful example [3]
that feedback can enlarge the capacity region of the broadcast
channel. The key idea in Dueck’s example is for the encoder
to broadcast past common information about the channel
obtained through feedback. Even though the channel is
memoryless, knowledge of this stale common information at
the decoders helps them recover previous messages at a higher
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rate than without feedback. This key idea inspired
Shayevitz and Wigger to develop a block Markov coding
scheme for the broadcast channel with generalized
feedback [2]. In their scheme, new messages are sent in each
transmission block together with refinement information about
the previous messages based on the channel information
obtained through feedback. The refinement information is
obtained by compressing the previous codewords in a manner
similar to the Gray-Wyner system with side information [4].
The encoder uses Marton coding, superposition coding,
and coded time sharing to encode the messages and the
refinement information. Decoding is performed backwards
with the refinement information recovered in a block used to
recover the messages and the refinement information sent in
the previous block.

In a separate line of investigation which is motivated
by fading broadcast channels and network coding,
Maddah-Ali and Tse [5] demonstrated via two beautiful
example channels that strictly causal (stale) state information
at the encoder can enlarge the capacity region of the
broadcast channel with state when the state is also known at
the decoders. In the 2-receiver special case of their scheme,
which establishes the symmetric capacity of the example
channels, transmission is performed over three blocks. In the
first block, the message intended for the first receiver is sent
at a rate higher than what it can reliably decode. In the second
block, the message for the second receiver is sent again at
a rate higher than what it can decode. In the third block,
refinement information about the messages that depends on
the state information from the first two blocks is sent to both
receivers to enable them to decode their respective messages.

In this paper, we show that this Maddah-Ali–Tse (MAT)
scheme is a simple special case of a straightforward adaptation
of the Shayevitz–Wigger (SW) scheme. We consider a class
of symmetric broadcast channels with state that includes the
MAT 2-receiver examples as special cases and derive an
expression for its maximum achievable symmetric rate using
the SW scheme. We then consider the symmetric deterministic
broadcast channels with state, which again includes the
MAT examples as special cases. We further specialize our
expression for the maximum symmetric rate to the SW scheme
with no superposition coding or Marton coding, henceforth
referred to as the time-sharing scheme. We show that the
maximum symmetric rate for this time-sharing scheme is
optimal for the MAT 2-receiver examples and is in fact a
simple extension of their scheme. Observing that in both
of the MAT examples the channel is deterministic for each
state (in addition to being symmetric), we investigate the
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Fig. 1. Two receiver DM-BC with stale state information at the transmitter.

question of whether the time-sharing scheme is optimal for
all such deterministic channels. We construct a new example
in which the channel switches between a Blackwell broadcast
channel [6] and a skew symmetric version of it, and show that
another special case of the SW scheme that includes super-
position coding, henceforth referred to as the superposition
coding scheme, achieves a higher symmetric rate than the
time-sharing scheme. We do not know, however, if the
SW scheme in its full generality is optimal for this channel,
or for the aforementioned deterministic class in general.

The rest of the paper is organized as follows. In the
following section, we provide the needed definitions.
In Section III, we adapt the Shayevitz–Wigger scheme to the
broadcast channel with stale state information and derive an
expression for the maximum achievable symmetric rate when
the channel is symmetric. In Section IV, we specialize
this expression to the time-sharing scheme for the
symmetric deterministic channels and evaluate the expression
to show that the time-sharing scheme is optimal for the
Maddah-Ali–Tse examples. In Section V, we specialize our
maximum symmetric rate expression to the superposition
coding scheme for symmetric deterministic channels and
introduce the Blackwell broadcast channel with state. We show
that the maximum symmetric rate using the superposition
coding scheme is strictly higher than using the time-sharing
scheme. We also obtain an upper bound on the symmetric
capacity for this example.

II. DEFINITIONS

A 2-receiver DM-BC with generalized feedback consists
of an input alphabet X , two output alphabets (Y1,Y2),
a feedback alphabet Ỹ , and a conditional pmf p(y1, y2, ỹ|x).
A (2nR1, 2nR2 , n) code for the DM-BC with generalized feed-
back consists of (i) two message sets [1 : 2nR1] and [1 : 2nR2 ];
(ii) an encoder that assigns a symbol xi (m1, m2, ỹi−1) to
each message tuple (m1, m2) ∈ [1 : 2nR1 ] × [1 : 2nR2 ] and
received sequence ỹi−1 for i ∈ [1 : n], and (iii) two decoders.
Decoder 1 assigns an estimate m̂1 ∈ [1 : 2nR1 ] or an error
message e to each received sequence yn

1 . Decoder 2 assigns
m̂2 ∈ [1 : 2nR2 ] or an error message e to each received
sequence yn

2 .
A 2-receiver DM-BC with random state consists of an input

alphabet X , two output alphabets (Y1,Y2), a discrete mem-
oryless state S ∼ p(s), and a conditional pmf p(y1, y2|x, s).
We consider the case in which the decoders know the state and

the encoder knows the state strictly causally (or stale state in
short) depicted in Fig. 1.

A (2nR1, 2nR2 , n) code for this setup consists of (i) two
message sets [1 : 2nR1 ] and [1 : 2nR2 ], (ii) an encoder
that assigns a symbol xi(m1, m2, si−1) to each message tuple
(m1, m2) ∈ [1 : 2nR1 ] × [1 : 2nR2 ] and received sequence si−1

for i ∈ [1 : n], and (iii) two decoders. Decoder 1 assigns an
estimate m̂1 ∈ [1 : 2nR1 ] or an error message e to each received
sequence (yn

1 , sn). Decoder 2 assigns m̂2 ∈ [1 : 2nR2 ] or an
error message e to each received sequence (yn

2 , sn).
For both setups, the probability of error is defined as

P(n)
e = P{M̂1 ̸= M1 or M̂2 ̸= M2}.

Similarly, in both cases, a rate tuple (R1, R2) is said to be
achievable if there exists a sequence of (2nR1 , 2nR2 , n) codes
such that P(n)

e → 0 as n → ∞. The capacity region is defined
as the closure of the set of all achievable rate tuples.

Remark 1: From the above definitions, the latter setup can
be viewed as a special case of the former. To see this, let
(X, Y1, Y2, Ỹ ) be the random variables associated with the first
setup, and (X ′, Y ′

1, Y ′
2, S) be the random variables associated

with the second setup. Then set X = X ′, Y1 = (Y ′
1, S),

Y2 = (Y ′
2, S), and Ỹ = S. Under this mapping, any coding

scheme for the latter case is also a coding scheme for the
former case.

In this paper, we will consider only the following special
classes of channels.

Definition 1 (Symmetric 2-Receiver DM-BC With Random
State): A 2-receiver DM-BC with random state is said to be
symmetric if Y1 = Y2 = Y , S = {1, . . . , |S|}, and there exists
a bijective function π : S → S such that

pS(s) = pS(π(s)),

pY1|X,S(y|x, s) = pY2|X,S(y|x,π(s)).

Definition 2 (Symmetric Deterministic 2-Receiver DM-BC
With Random State): A symmetric 2-receiver DM-BC with
random state is said to be deterministic if the outputs
are deterministic functions of the input and the state,
i.e., Y1 = y1(X, S) and Y2 = y2(X, S).

The examples in [5] and our new example in Section V all
belong to this class of symmetric deterministic DM-BC with
random state.
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III. MAXIMUM SYMMETRIC RATE FOR THE

SHAYEVITZ–WIGGER SCHEME

The Shayevitz–Wigger achievable rate region for the
2-receiver DM-BC with generalized feedback is given in the
following.

Theorem 1: A rate pair (R1, R2) is achievable for the
2-receiver DM-BC with generalized feedback if

R1 ≤ I (U0, U1; Y1, V1|Q)

− I (U0, U1, U2, Ỹ ; V0, V1|Q, Y1),

R2 ≤ I (U0, U2; Y2, V2|Q)

− I (U0, U1, U2, Ỹ ; V0, V2|Q, Y2),

R1 + R2 ≤ min
i∈{1,2}

I (U0; Yi , Vi |Q)

+
∑

i=1,2

I (Ui ; Yi , Vi |Q, U0) − I (U1; U2|Q, U0)

− max
i∈{1,2}

I (U0, U1, U2, Ỹ ; V0|Q, Yi )

−
∑

i=1,2

I (U0, U1, U2, Ỹ ; Vi |Q, V0, Yi ),

R1 + R2 ≤
∑

i=1,2

I (U0, Ui ; Yi , Vi |Q) − I (U1; U2|Q, U0)

−
∑

i=1,2

I (U0, U1, U2, Ỹ ; V0, Vi |Q, Yi )

for some function x(u0, u1, u2, q) and pmf

p(q)p(u0, u1, u2|q)p(ỹ|x, y1, y2, q)

·p(v0, v1, v2|u0, u1, u2, ỹ, q).

We now consider the following straightforward corollary of
this theorem.

Corollary 1: A rate pair (R1, R2) is achievable for the
2-receiver DM-BC with random state when the state is known
at the decoders and strictly causally known at the encoder if

R1 ≤ I (U0, U1; Y1, V1|Q, S)

− I (U0, U1, U2; V0, V1|Q, Y1, S), (1)

R2 ≤ I (U0, U2; Y2, V2|Q, S)

− I (U0, U1, U2; V0, V2|Q, Y2, S), (2)

R1 + R2 ≤ min
i∈{1,2}

I (U0; Yi , Vi |Q, S)

+
∑

i=1,2

I (Ui ; Yi , Vi |Q, U0, S)− I (U1; U2|Q, U0)

− max
i∈{1,2}

I (U0, U1, U2; V0|Q, Yi , S)

−
∑

i=1,2

I (U0, U1, U2; Vi |Q, V0, Yi , S), (3)

R1 + R2 ≤
∑

i=1,2

I (U0, Ui ; Yi , Vi |Q, S)− I (U1; U2|Q, U0)

−
∑

i=1,2

I (U0, U1, U2; V0, Vi |Q, Yi , S) (4)

for some function x(u0, u1, u2, q) and pmf

p(q)p(u0, u1, u2|q)p(v0, v1, v2|u0, u1, u2, s, q).

This corollary follows immediately from Remark 1. We give
a brief outline of the achievability scheme for the region in
the corollary. The details follow [2, proof of Theorem 1].
In Sections IV and V we give more detailed descriptions
of two special cases of this scheme. For simplicity, we
describe the scheme only for Q = ∅. The scheme uses block
Markov coding to communicate b − 1 messages to the first
receiver and b − 1 messages to the second receiver in
b n-transmission blocks. In each block, superposition coding
and Marton coding are used to communicate a new message
pair with refinement information about the previous code-
words. The auxiliary random variable U0 represents the “cloud
center” in superposition coding, and encodes the part of the
messages and refinements that is recovered by both decoders.
The auxiliary random variables U1 and U2 represent the part
of the messages and refinements that are recovered only by
decoder 1 and decoder 2, respectively. The common and
private refinement messages are generated by compressing the
previous codewords and feedback (U0, U1, U2, S) in a manner
similar to the lossy Gray–Wyner system with side information
(Y1, S) and (Y2, S). The goal of compression here, however,
is for each decoder to generate V1 and V2. The auxiliary
random variable V0 helps in recovering V1 and V2. Backward
decoding [1, Ch. 16] is used to recover the refinements and
messages. In each block, decoder j = 1, 2 generates an
output Vj for the current block using its observation (Y j , S) as
side information and the refinement messages recovered in the
next block. It then uses (Y j , Vj , S) to recover the message in
the current block and the refinement messages for the previous
block. This procedure continues until each decoder recovers
all its intended b − 1 messages.

For the rest of this paper, we consider only the symmetric
rate for the 2-receiver symmetric DM-BC with random state
defined in Section II.

Definition 3 (Maximum Symmetric Rate): Let R be the
achievable rate region in Corollary 1 and Rsym be the
maximum symmetric rate achievable with the scheme of
Corollary 1, that is, the supremum of R such that (R, R) ∈ R.
Also, let Rsum be the maximum sum-rate, that is, the supremum
of R1 + R2 such that (R1, R2) ∈ R.

Because of the restriction to symmetric channels and their
symmetric rates, we show in Theorem 2 that it suffices to
consider only auxiliary random variables and functions that
satisfy the following symmetry property.

Definition 4 (Symmetric Auxiliary Random Variables):
Assume without loss of generality that U1 = U2 = U
and V1 = V2 = V . A set of auxiliary random
variables (U0, U1, U2,V0, V1, V2, Q) and function
X = x(U0, U1, U2, Q) is said to be symmetric for a symmetric
2-receiver DM-BC with random state if Q = {1, . . . , |Q|}
and there exists a bijective function π̃ : Q → Q such that

pQ(q) = pQ(π̃(q)),

p(u0, u1, u2|q) = p(u0, u2, u1|π̃(q)),

x(u0, u1, u2, q) = x(u0, u2, u1, π̃(q)),

p(v0,v1,v2|u0,u1,u2,q,s) = p(v0,v2,v1|u0,u2,u1,π̃(q),π(s)),

where π(s) is as defined in Definition 1.
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For the symmetric 2-receiver DM-BC, the maximum
symmetric rate achievable using the coding scheme of
Corollary 1 can be greatly simplified.

Theorem 2: The maximum achievable symmetric rate for
the symmetric 2-receiver DM-BC with stale state using the
coding scheme of Corollary 1 is

Rsym = max min
{

0.5I (U0; Y1, V1|Qsym, S)

+ I (U1; Y1, V1|Qsym, U0, S)

− 0.5I (U1; U2|Qsym, U0)

− 0.5I (U0, U1, U2; V0|Qsym, Y1, S)

− I (U0, U1, U2; V1|Qsym, V0, Y1, S),

I (U0, U1; Y1, V1|Qsym, S) − 0.5I (U1;U2|Qsym, U0)

− I (U0, U1, U2; V0, V1|Qsym, Y1, S)

}
, (5)

where the maximization is over symmetric auxiliary
random variables and function satisfying the structure given
in Corollary 1.

Proof: Suppose Rsum is achievable with a set of
auxiliary random variables (U0, U1, U2, V0, V1, V2, Q) with
Q ∈ [1 : N] and a function X = x(U0, U1, U2, Q). The sum
of the individual bounds (1) and (2) is always greater than or
equal to bound (4) on the sum-rate. Hence,

Rsum = min
{

min
i∈{1,2}

I (U0; Yi , Vi |Q, S)

+
∑

i=1,2

I (Ui ; Yi , Vi |Q, U0, S) − I (U1; U2|Q, U0)

− max
i∈{1,2}

I (U0, U1, U2; V0|Q, Yi , S)

−
∑

i=1,2

I (U0, U1, U2; Vi |Q, V0, Yi , S),

∑

i=1,2

I (U0, Ui ; Yi , Vi |Q, S) − I (U1; U2|Q, U0)

−
∑

i=1,2

I (U0, U1, U2; V0, Vi |Q, Yi , S)

}
. (6)

To show that there exists a set of symmetric aux-
iliary random variables that attains this sum-rate, first
construct the following set of auxiliary random variables and
function

Q′ ∈ [N + 1 : 2N],
pQ ′(q) = pQ(q − N) for q ∈ [N + 1 : 2N],
pU ′

0,U
′
1,U

′
2,V

′
0,V

′
1,V

′
2|Q ′,S(u0, u1, u2, v0, v1, v2|q, s)

= pU0,U1,U2,V0,V1,V2|Q,S(u0,u2,u1,v0,v2,v1|q−N,π(s)),

X = x(U ′
0, U ′

2, U ′
1, Q′ − N). (7)

We show that the following equalities hold.

I (U ′
0, U ′

1; Y1, V ′
1|Q′, S) = I (U0, U2; Y2, V2|Q, S),

I (U ′
1; Y1, V ′

1|Q′, U0, S) = I (U2; Y2, V2|Q, U0, S),

I (U ′
0; Y1, V ′

1|Q′, S) = I (U0; Y2, V2|Q, S),

I (U ′
1; U ′

2|Q′, U ′
0) = I (U1; U2|Q, U0),

I (U ′
0, U ′

1, U ′
2; V ′

0, V ′
1|Q′, Y1, S)

= I (U0, U1, U2; V0, V2|Q, Y2, S),

I (U ′
0, U ′

1, U ′
2; V ′

1|Q′, V ′
0, Y1, S)

= I (U0, U1, U2; V2|Q, V0, Y2, S),

I (U ′
0, U ′

1, U ′
2; V ′

0|Q′, Y1, S)

= I (U0, U1, U2; V0|Q, Y2, S). (8)

Consider the first equality in (8),

I (U ′
0, U ′

1; Y1, V ′
1|Q′, S)

=
∑

s∈S

2N∑

q=N+1

pQ ′(q)pS(s)I (U ′
0, U ′

1; Y1, V ′
1|Q′ =q, S =s)

(a)=
∑

s∈S

2N∑

q=N+1

pQ ′(q)pS(s)I (U0,U2;Y2,V2|Q =q−N, S =π(s))

=
∑

π(s)∈S

N∑

q=1

pQ(q)pS(π(s))I (U0, U2; Y2, V2|Q =q, S =π(s))

= I (U0, U2; Y2, V2|Q, S).

We prove step (a) by showing that the conditional pmf
of ((U ′

0, U ′
1, V ′

1, Y1)|(Q′, S) = (q, s)) is equal to the con-
ditional pmf of ((U0, U2, V2, Y2)|(Q, S) = (q − N,π(s))).
We establish a more general result that the conditional pmf
of ((U ′

0, U ′
1, U ′

2, V ′
0, V ′

1, V ′
2, X, Y1, Y2)|(Q′, S) = (q, s)) is

the same as the conditional pmf of ((U0, U2, U1, V0, V2, V1,
X, Y2, Y1)|(Q, S) = (q−N,π(s)), which can be also used to
show the rest of the equalities in (8). Since

(V ′
0, V ′

1, V ′
2) → (U ′

0, U ′
1, U ′

2, Q′) → X → (Y1, Y2)

form a Markov chain when S is given, the conditional pmf of
((U ′

0, U ′
1, U ′

2, V ′
0, V ′

1, V ′
2, X, Y1, Y2)|(Q′, S) = (q, s)) is

pU ′
0,U

′
1,U

′
2|Q ′,S(u0, u1, u2|q, s)

·pV ′
0,V

′
1,V

′
2|U ′

0,U
′
1,U

′
2,Q ′,S(v0, v1, v2|u0, u1, u2, q, s)

·pX |U ′
0,U

′
1,U

′
2,Q ′,S(x |u0, u1, u2, q, s)

·pY1,Y2|X,S(y1, y2|x, s)
(a)= pU0,U1,U2|Q,S(u0, u2, u1|q−N,π(s))

·pV0,V1,V2|U0,U1,U2,Q,S(v0, v2, v1|u0, u2, u1, q−N,π(s))

·pX |U0,U1,U2,Q,S(x |u0, u2, u1, q−N,π(s))

·pY1,Y2|X,S(y2, y1|x,π(s))
(b)= pU0,U2,U1|Q,S(u0, u1, u2|q−N,π(s))

·pV0,V2,V1|U0,U2,U1,Q,S(v0, v1, v2|u0, u1, u2, q−N,π(s))

·pX |U0,U2,U1,Q,S(x |u0, u1, u2, q−N,π(s))

·pY2,Y1|X,S(y1, y2|x,π(s)).
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Step (a) holds by the symmetry of channels in Definition 1
and the definition of the auxiliary random variables in (7).
By changing the order of variables as in step (b),
we get the conditional pmf of ((U0, U2, U1, V0, V2, V1,
X, Y2, Y1)|(Q, S) = (q−N,π(s))).

The rest of the equalities in (8) can be proved in a similar
manner.

Now we compose a new set of auxiliaries that “time-share”
between Q and Q′. Let

Qsym =
{

Q with probability 0.5,

Q′ with probability 0.5.

It can be easily shown that the resulting set of auxiliary
random variables is symmetric.

It follows from (8) that for j ∈ {1, 2},

I (U0, U j ; Y j , Vj |Qsym, S) = 0.5
∑

i=1,2

I (U0, Ui ; Yi , Vi |Q, S),

I (U j ; Y j , Vj |Qsym, U0, S) = 0.5
∑

i=1,2

I (Ui ; Yi , Vi |Q, U0, S),

I (U0; Y j , Vj |Qsym, S) = 0.5
∑

i=1,2

I (U0; Yi , Vi |Q, S),

I (U1; U2|Qsym, U0) = I (U1; U2|Q, U0),

I (U0, U1, U2; Vj |Qsym, V0, Y j , S)

= 0.5
∑

i=1,2

I (U0, U1, U2; Vi |Q, V0, Yi , S),

I (U0, U1, U2; V0|Qsym, Y j , S)

= 0.5
∑

i=1,2

I (U0, U1, U2; V0|Q, Yi , S). (9)

The sum-rate achievable with Qsym is

SR = min
{

min
i∈{1,2}

I (U0; Yi , Vi |Qsym, S)

+
∑

i=1,2

I (Ui ; Yi , Vi |Qsym, U0, S)− I (U1; U2|Qsym, U0)

− max
i∈{1,2}

I (U0, U1, U2; V0|Qsym, Yi , S)

−
∑

i=1,2

I (U0, U1, U2; Vi |Qsym, V0, Yi , S),

∑

i=1,2

I (U0, Ui ; Yi , Vi |Qsym, S) − I (U1; U2|Qsym, U0)

−
∑

i=1,2

I (U0, U1, U2; V0, Vi |Qsym, Yi , S)

}
. (10)

We now show that SR ≥ Rsum. By using (9), it can be
easily shown that the second term inside the minimum in (10)
is the same as the second term inside the minimum in (6).
We now show that the first term inside the minimum in (10)
is greater than or equal to the first term inside the minimum

in (6). We start with the first term in (10).

min
i∈{1,2}

I (U0; Yi , Vi |Qsym, S)

+
∑

i=1,2

I (Ui ; Yi , Vi |Qsym, U0, S) − I (U1; U2|Qsym, U0)

− max
i∈{1,2}

I (U0, U1, U2; V0|Qsym, Yi , S)

−
∑

i=1,2

I (U0, U1, U2; Vi |Qsym, V0, Yi , S)

(a)= 0.5
∑

i=1,2

I (U0; Yi , Vi |Q, S)

+
∑

i=1,2

I (Ui ; Yi , Vi |Q, U0, S) − I (U1; U2|Q, U0)

− 0.5
∑

i=1,2

I (U0, U1, U2; V0|Q, Yi , S)

−
∑

i=1,2

I (U0, U1, U2; Vi |Q, V0, Yi , S)

≥ min
i∈{1,2}

I (U0; Yi , Vi |Q, S)

+
∑

i=1,2

I (Ui ; Yi , Vi |Q, U0, S) − I (U1; U2|Q, U0)

− max
i∈{1,2}

I (U0, U1, U2; V0|Q, Yi , S)

−
∑

i=1,2

I (U0, U1, U2; Vi |Q, V0, Yi , S),

where (a) holds from (9). Therefore, the maximum
sum-rate is achievable with symmetric auxiliary random
variables.

Finally we show that Rsym = 0.5Rsum and is achievable
with symmetric auxiliary random variables.

In general, 0.5Rsum ≥ Rsym. So we only need to show
that 0.5Rsum ≤ Rsym. Equivalently, we show that the rate pair
(0.5Rsum, 0.5Rsum) is achievable. Using (8), we can show that
with symmetric auxiliaries and function, the upper bound on
R1 in (1) and the upper bound on R2 in (2) are equal. Let
them be denoted by Rm , that is,

R1 ≤ I (U0, U1; Y1, V1|Qsym, S)

−I (U0, U1, U2; V0, V1|Qsym, Y1, S) := Rm ,

R2 ≤ I (U0, U2; Y2, V2|Qsym, S)

−I (U0, U1, U2; V0, V2|Qsym, Y2, S) := Rm .

To show that the rate pair (0.5Rsum, 0.5Rsum) is achievable,
we only need to show that 0.5Rsum ≤ Rm . The inequalities on
the rate sum in (3) and (4) are automatically satisfied because
we are given that rate-sum Rsum is achievable. To show
0.5Rsum ≤ Rm , first add two inequalities (1) and (2)
and get one inequality for any achievable sum-rates,
i.e. R1 + R2 ≤ 2Rm . Since Rsum is achievable, we get
Rsum ≤ 2Rm .
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Therefore, Rsym = Rsum/2 and can be written as

Rsym = 1
2

max min
{

min
i∈{1,2}

I (U0; Yi , Vi |Qsym, S)

+
∑

i=1,2

I (Ui ; Yi , Vi |Qsym, U0, S) − I (U1; U2|Qsym, U0)

− max
i∈{1,2}

I (U0, U1, U2; V0|Qsym, Yi , S)

−
∑

i=1,2

I (U0, U1, U2; Vi |Qsym, V0, Yi , S),

∑

i=1,2

I (U0, Ui ; Yi , Vi |Qsym, S)− I (U1; U2|Qsym, U0)

−
∑

i=1,2

I (U0, U1, U2; V0, Vi |Qsym, Yi , S)

}
, (11)

where the maximization is over symmetric auxiliaries and
functions satisfying the structure in Corollary 1. The proof
is completed by further simplifying Rsym using the equalities
in (9).

For the rest of this paper, we consider only symmetric
deterministic 2-receiver DM-BC with random state as defined
in Section II.

IV. TIME-SHARING SCHEME

In this section, we show that the MAT coding scheme [5] is
a special case of the SW coding scheme [2] when adapted
to the symmetric deterministic DM-BC with random state
without superposition coding or Marton coding. We refer to
this special case as the time-sharing scheme. Specifically,
we specialize the auxiliary random variables in Theorem 2
as follows. Let Q ∈ {1, 2, 3} and pQ(1) = pQ(2) = α,
and pQ(3) = 1 − 2α, 0 ≤ α ≤ 0.5. Let p(q, u0, u1, u2) =
p(q)p(u0)p(u1)p(u2) and pU1(u) = pU2(u). Define

V1 = V2 = V0 =

⎧
⎪⎪⎨

⎪⎪⎩

Y2 if Q = 1,

Y1 if Q = 2,

∅ if Q = 3,

(12)

X =

⎧
⎪⎪⎨

⎪⎪⎩

U1 if Q = 1,

U2 if Q = 2,

U0 if Q = 3.

(13)

Denote the maximum symmetric rate achievable with the
above auxiliary random variables identification as Rsym−ts.
We now specialize Theorem 2 to establish the following
simplified expression for this maximum symmetric rate.

Proposition 1: The maximum symmetric rate for the
symmetric deterministic 2-receiver DM-BC with stale state
using the time-sharing scheme is

Rsym−ts = max
p(x)

C1 I (X; Y1, Y2|S)

2C1 + I (X; Y2|Y1, S)
,

where C1 = maxp(x) I (X; Y1|S).

Proof: Substituting (12) and (13) into (5), we obtain

Rsym−ts = max
α,p(u0),p(u1)

min
{(

1
2

− α

)
I (U0; Y1|S)

+ α I (U1; Y1|S) + α

2
I (U1; Y2|Y1, S),

(1 − 2α)I (U0; Y1|S) + α I (U1; Y1|S)

}
. (14)

We now find α and p(u0), p(u1) that achieve (14). Since
α ≤ 0.5, the coefficients in front of the I (U0; Y1|S) terms
in (14) are nonnegative and without loss of optimality we can
set p(u0) = arg max I (U0; Y1|S). Then,

Rsym−ts = max
α,p(x)

min{L(α), R(α)}, (15)

where

L(α) =
(

1
2

− α

)
C1+α I (X; Y1|S) + α

2
I (X; Y2|Y1, S),

R(α) = (1 − 2α)C1 + α I (X; Y1|S).

To find α and p(x) that maximize the minimum of the two
terms, we first fix the pmf p(x) and find α∗ that maximizes the
minimum of the two terms in terms of p(x). We then optimize
Rsym−ts in p(x).

For a fixed p(x), both L(α) and R(α) are linear
functions of α, and L(0) ≤ R(0) and L(0.5) ≥ R(0.5). Thus,
min{L(α), R(α)} attains its maximum value at α∗ such that
L(α∗) = R(α∗), namely,

α∗ = C1

2C1 + I (X; Y2|Y1, S)
. (16)

Replacing α∗ in (15) by (16) completes the proof.
To be self contained, we give an outline of the coding

scheme that achieves Rsym−ts. The time-sharing scheme uses
block Markov coding to send b−1 independent message pairs
(M1 j , M2 j ) ∈ [1 : 2nR1 ] × [1 : 2nR2 ], j ∈ [1 : b − 1] in
b n-transmission blocks.

Codebook Generation: We generate two codebooks, one for
the refinement messages and the other for the new messages
and the refinement messages.

Fix a pmf p(q, u0, u1, u2) = p(q)p(u0)p(u1)p(u2),
where pU0 = arg maxp(x) I (X; Y1|S) and pU1 = pU2 =
arg maxp(x) C1 I (X; Y1, Y2|S)/(2C1+ I (X; Y2|Y1, S)) (i.e., the
pmf that attains the upper bound in Proposition 1). Let
pQ(1) = pQ(2) = α∗ and pQ(3) = 1 − 2α∗, where α∗ =
C1/(2C1 + I (X; Y2|Y1, S)) evaluated with pX = pU1 . Let the
functions v0(x, s, q) and x(u0, u1, u2, q) be defined as in (12)
and in (13), respectively.

Randomly generate a time-sharing sequence qn ∼∏n
i=1 pQ(qi). To generate the codebook for compression,

randomly and independently generate 2nR̃′
0 sequences vn

0 (l),
l ∈ [1 : 2nR̃′

0 ], each according to
∏n

i=1 pV0|Q(v0i |qi). Parti-
tion the sequences into 2nR′

0 equal size bins B indexed by
k ∈ [1 : 2nR′

0 ].
To generate the codebook for transmission, randomly

and independently generate 2nR′
0 sequences un

0(k),
k ∈ [1 : 2nR′

0 ], each according to
∏n

i=1 p(u0i ).
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TABLE I

TIME-SHARING SCHEME

TABLE II

THE MAT 2-RECEIVERS SCHEME

Similarly, generate 2nR1 sequences un
1(m1), m1 ∈ [1 : 2nR1 ],

each according to
∏n

i=1 pU (u1i ), and 2nR2 sequences un
2(m2),

m2 ∈ [1 : 2nR2 ], each according to
∏n

i=1 pU (u2i ). Finally
generate xi (k, m1, m2) = x(u0i (k), u1i (m1), u2i (m2), qi ),
i ∈ [1 : n].

Encoding and Decoding: Encoding and decoding are
described with the help of Table I. The encoder transmits
xn(1, m11, m21) in block 1. In block j ∈ [2 : b], the refinement
message k j−1 is the bin index such that vn

0 (xn
j−1, sn

j−1, qn) ∈
B(k j−1), where v0i = v0(xi , si , qi ), i ∈ [1 : n]. If no such
sequence exists, choose k j−1 = 1. The encoder transmits
xn(k j−1, m1 j , m2 j ).

Backward decoding is used at each decoder (we set
(m1b, m2b) = (1, 1)).

1) Decoder 1 declares k̂b−1 is sent if it is the unique
message such that (un

0(k̂b−1), yn
1b, sn

b , qn) ∈ T (n)
ϵ . The

probability of error in recovering kb−1 tends to zero as
n → ∞ if R′

0 < (1 − 2α∗)C1.
2) Decoder 1 finds a sequence vn

0 (l̂b−1) ∈ B(k̂b−1) such
that (vn

0 (l̂b−1), yn
1,b−1, sn

b−1, qn) ∈ T (n)
ϵ .

3) Decoder 1 declares m̂1,b−1 is sent if
it is the unique message such that
(un

1(m̂1,b−1), v
n
0 (l̂b−1), yn

1,b−1, sn
b−1, qn) ∈ T (n)

ϵ . The
probability of error for this step tends to zero as n → ∞
if R′

0 > α∗ I (X; Y1|Y2, S) and R1 < α∗ I (X; Y1, Y2|S).
4) Decoder 1 repeats the same procedure until it recovers

all b − 1 messages, M1 j , j ∈ [1 : b − 1].
Decoder 2 performs decoding similarly.
Remark 2: Although the SW scheme, which achieves the

maximum symmetric rate in (14), uses block Markov coding,
coded time sharing, and backward decoding, it is not difficult
to see that this maximum symmetric rate can also be achieved
using the MAT scheme as illustrated in Table II. Instead of

using coded time sharing, the MAT scheme for 2-receiver case
[5, Sec. III] uses time-sharing over three sub-blocks such that

V1 = V2 = V0 =

⎧
⎪⎪⎨

⎪⎪⎩

Y2 in sub-block 1,

Y1 in sub-block 2,

∅ in sub-block 3,

X =

⎧
⎪⎪⎨

⎪⎪⎩

U1 in sub-block 1,

U2 in sub-block 2,

U0 in sub-block 3.

Recall that in the SW scheme with coded time sharing,
the encoder needs to wait until the end of each block to
generate the refinement message k (since it needs the entire
state sequence sn). The message k is then sent it in the
following block. In the time-sharing scheme over three
sub-blocks, the refinement message k is the bin index such
that vn

0 (xn1+n2 , sn1+n2) ∈ B(k), where n1 and n2 denote the
lengths of sub-blocks 1 and 2, respectively. The state sequence
sn1+n2 is available to the encoder at the end of sub-block 2.
Hence, the encoder can generate k at the end of sunblock 2
and send it in sub-block 3.

Remark 3: The MAT scheme for the 2-receiver case can
be extended to any number of receivers [5]. Although the
SW scheme is only for the 2-receiver case, it can be readily
extended to more receivers using the sub-blocks and auxiliary
random variables as we described for the 2-receiver case.

We now apply the time-sharing scheme to the two
examples in [5]. Note that these two examples satisfy
the additional condition that arg maxp(x) I (X; Y1|S) =
arg maxp(x) I (X; Y1, Y2|S), hence

Rsym−ts = C1C12

C1 + C12
, (17)

where

C1 = max
p(x)

I (X; Y1|S) and C12 = max
p(x)

I (X; Y1, Y2|S),

and is achievable with U0, U1, and U2 each distributed
according to arg maxp(x) I (X; Y1|S), and pQ(1) = pQ(2) =
C1/(C1 +C12), pQ(3) = 1−2C1/(C1 +C12) in (12) and (13).

Example 1 (Broadcast Erasure Channel [5], [7]): Consider
a DM-BC with random state with X ∈ {0, 1}, p(y1, y2|x) =
p(y1|x)p(y2|x), where Yi = X with probability 1 − ϵ and
Yi = e with probability ϵ for i = 1, 2, and S = (S1, S2),
where Si = 0 if Yi = X and Si = 1 if Yi = e for i = 1, 2.
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To evaluate the maximum symmetric rate in (17), note that
C1 = 1 − ϵ, C12 = 1 − ϵ2. Then,

Rsym−ts = 1 − ϵ2

2 + ϵ
. (18)

In [8], an outer bound on the capacity region for this example
was obtained based on the observation that this capacity region
cannot be larger than that of the physically degraded broadcast
channel with input X , outputs Y1 and (Y1, Y2), and with causal
feedback. Using the same technique, it was shown in [5] that
the bound on the symmetric capacity coincides with (18).

Example 2 (Finite Field Deterministic Channel [5]): Con-
sider the DM-BC

[
Y1
Y2

]
= H X,

where

H =
[

h11 h12
h21 h22

]
, X =

[
X1
X2

]
, and S = H.

Assume that H is chosen uniformly at random from the set
of full-rank matrices over a finite field. Further assume that
|Y1| = |Y2| = |Y|.

To evaluate the maximum symmetric rate in (17), note that
C1 = log |Y|, C12 = 2 log |Y|. Then,

Rsym−ts = 2 log |Y|
3

. (19)

Using the same converse technique as for Example 1,
it was shown in [5] that (19) is the symmetric capacity of
this channel.

Note that in the above two examples, the channel is deter-
ministic for each state. Is the time-sharing scheme then optimal
for all such channels? The example in the following section
shows that time-sharing scheme is not in general optimal for
this class of channels.

V. SUPERPOSITION CODING SCHEME

In the time-sharing scheme, we separately transmit new
message and their refinement. In this section, we consider
another special case of the scheme in Corollary 1 in which we
also use superposition coding. Specifically, we specialize the
auxiliary random variables in Theorem 2 as follows.
Let Q ∈ {1, 2} and PQ(1) = PQ(2) = 0.5. Let
p(q, u0, u1, u2) = p(q)p(u0)p(u1|u0)p(u2|u0) and
pU1|U0(u|u0) = pU2|U0(u|u0). Define

V1 = V2 = V0 =
{

Y2 if Q = 1,

Y1 if Q = 2,
(20)

X =
{

U1 if Q = 1,

U2 if Q = 2.
(21)

Denote the maximum symmetric rate achievable with the
above auxiliary random variables identification by Rsym−sp.
We now specialize Theorem 2 to establish the following
simplified expression for this maximum symmetric rate.

Proposition 2: The maximum achievable symmetric rate for
the symmetric deterministic 2-receiver DM-BC with stale state
using the superposition coding scheme is

Rsym−sp = max
p(u0,x)

min
{

0.5I (X; Y1|S) + 0.5I (U0; Y1|S),

0.5I (X; Y1|S) + 0.25I (X; Y2|Y1, U0, S)

}
.

Proof: This proposition is obtained by substituting (20)
and (21) into (5).

To be self contained, we give an outline of the coding
scheme that achieves Rsym−sp. The superposition coding
scheme again uses a block Markov coding in which b − 1
independent message pairs (M1 j , M2 j ) ∈ [1 : 2nR1] ×
[1 : 2nR2 ], j ∈ [1 : b − 1], are sent in b n-transmission
blocks.

Codebook Generation: We generate two codebooks, one for
the refinement messages and the other for the new messages
and the refinement messages. Fix a pmf p(q, u0, u1, u2) =
p(q)p(u0)p(u1|u0)p(u2|u0), where pU0,U1 = pU0,U2 = pU,X
that attains the upper bound in Proposition 2. Let Q ∈ {1, 2}
and pQ(1) = pQ(2) = 0.5. Let the functions v0(x, s, q) and
x(u1, u2, q) be defined as in (20) and in (21), respectively.

Randomly generate a time-sharing sequence qn according
to

∏n
i=1 pQ(qi ). To generate the codebook for compression,

randomly and independently generate 2nR̃′
0 sequences vn

0 (l),
l ∈ [1 : 2nR̃′

0 ], each according to
∏n

i=1 pV |Q(vi |qi). Parti-
tion the sequences into 2nR′

0 equal size bins B indexed by
k ∈ [1 : 2nR′

0 ].
To generate the codebook for transmission, rate

splitting is used. Divide M1 into two independent messages
M1c at rate R1c and M1p at rate R1p. Similarly, divide M2 into
M2c at rate R2c and M2p at rate R2p . Hence R1 = R1c + R1p
and R2 = R2c + R2p . Randomly and independently
generate 2n(R′

0+R1c+R2c) sequences un
0(k, m1c, m2c), each

according to
∏n

i=1 pU0(u0i ). For each (k, m1c, m2c),
randomly and conditionally independently generate 2nR1p

sequences un
1(k, m1c, m2c, m1p), m1p ∈ [1 : 2nR1p ], each

according to
∏n

i=1 pU |U0(u1i |u0i(k, m1c, m2c)). Similarly,
randomly and conditionally independently generate 2nR2p

sequences un
2(k, m1c, m2c, m2p), m2p ∈ [1 : 2nR2p ],

each according to
∏n

i=1 pU |U0(u2i |u0i (k, m1c, m2c)).
Finally generate xi (k, m1, m2) = x(u1i(k, m1c, m2c, m1p),
u2i (k, m1c, m2c, m2p), qi ), i ∈ [1 : n].

Encoding and Decoding: Encoding and decoding are
described with the help of Table III. The encoder transmits
xn(1, m11, m21) in block 1. In block j ∈ [2 : b], the refinement
message k j−1 is the bin index such that vn

0 (xn
j−1, sn

j−1, qn) ∈
B(k j−1), where v0i = v0(xi , si , qi ), i ∈ [1 : n]. If no such
sequence exists, choose k j−1 = 1. The encoder transmits
xn(k j−1, m1 j , m2 j ).

Backward decoding is used at each decoder (we set
(m1b, m2b) = (1, 1)).

1) Decoder 1 recovers k̂b−1 from block b (block b operation
is treated differently as detailed in [2]).
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TABLE III

SUPERPOSITION CODING SCHEME

Fig. 2. Blackwell channel with state.

2) Decoder 1 finds a sequence vn
0 (l̂b−1) ∈ B(k̂b−1) such

that (vn
0 (l̂b−1), yn

1,b−1, sn
b−1, qn) ∈ T (n)

ϵ .
3) Decoder 1 declares that m̂1,b−1 = (m̂1c,b−1, m̂1p,b−1)

and k̂b−2 are sent if they are the unique message
pair such that (un

0(k̂b−2, m̂1c,b−1, m̂2c,b−1), un
1(k̂b−2,

m̂1c,b−1, m̂2c,b−1, m̂1p,b−1), vn
0 (l̂b−1), yn

1,b−1, sn
b−1, qn)

∈ T (n)
ϵ for some m̂2c,b−1. The probability of

error for this step tends to zero as n → ∞ if
R′

0 > 0.5I (X; Y2|Y1, S) and

R′
0 + R1 < 0.5I (U0; Y1|S) + 0.5I (X; Y1, Y2|S),

R′
0 + R2 < 0.5I (U0; Y2|S) + 0.5I (X; Y1, Y2|S),

R′
0 + R1 + R2 < 0.5I (U0; Y1|S) + 0.5I (X; Y1, Y2|S)

+ 0.5I (X; Y1, Y2|U0, S),

R′
0 + R1 + R2 < 0.5I (U0; Y2|S) + 0.5I (X; Y1, Y2|S)

+ 0.5I (X; Y1, Y2|U0, S),

2R′
0 + R1 + R2 < 0.5I (U0; Y1|S) + 0.5I (U0; Y2|S)

+ I (X; Y1, Y2|S).

4) Decoder 1 repeats the same process until decoder 1
recovers all b − 1 messages, M1 j , j ∈ [1 : b − 1].

Decoder 2 performs decoding similarly.
We now introduce a new example of a symmetric deter-

ministic broadcast channel with stale state for which the
superposition coding scheme outperforms the time-sharing
scheme.

Example 1 (Blackwell Channel With State): Consider the
symmetric DM-BC with random state depicted in Fig. 2, where
pS(1) = pS(2) = 0.5.

We first evaluate Rsym−ts. Let U0 ∼ Bern(0.5) and
U1 and U2 be independently and identically distributed accord-
ing to pU1(0) = p0, pU1(2) = p2, pU1(1) = 1 − p0 − p2.

We numerically maximize the expression for the maximum
symmetric rate in Proposition 1 in (p0, p2) to obtain

Rsym−ts = max
p0,p2

H (p0, 1 − p0 − p2, p2)

2 + 0.5 p̄0 Hb(p2/ p̄0) + 0.5 p̄2 Hb(p0/ p̄2)
= 0.5989

for p∗
0 = p∗

2 = 0.37325. Here, p̄0 = 1 − p0, p̄2 = 1 − p2, and
H (p0, 1− p0− p2, p2) is the entropy of U1.

We now show that superposition coding can achieve a
symmetric rate greater than Rsym−ts. Let U0 ∈ {0, 1, 2, 3} and
pU0(0) = pU0(1) = q1, pU0(2) = pU0(3) = (1 − 2q1)/2,
0 ≤ q1 ≤ 0.5. Let pU1|U0(u|u0) = pU2|U0(u|u0) and

pU1|U0(u|u0) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1β̄1 if (u, u0) = (0, 0) or (1, 1),

β1 if (u, u0) = (2, 0) or (2, 1),

ᾱ1β̄1 if (u, u0) = (1, 0) or (0, 1),

α2β̄2 if (u, u0) = (0, 2) or (1, 3),

β2 if (u, u0) = (2, 2) or (2, 3),

ᾱ2β̄2 if (u, u0) = (1, 2) or (0, 3).

Choose (V0, V1, V2) and X as in (20)-(21).
Maximizing the symmetric rate in Proposition 2 over q1

and 0 ≤ α1,α2,β1,β2 ≤ 1, we obtain Rsym−sp ≥ 0.6103 at
q∗

1 = 0.5, α∗
1 = 0.13628 and β∗

1 = 0.23025, which is
greater than the symmetric rate achieved using the time-
sharing scheme.

To investigate the optimality of the achievable symmet-
ric rate using superposition coding, we consider the same
physically degraded broadcast channel with state in [5] with
input X and outputs (Y1, Y2) and Y2. The capacity region of
this channel is the set of rate pairs (R1, R2) such that

R1 ≤ I (X; Y1, Y2|S, U),

R2 ≤ I (U ; Y2|S),

where |U | ≤ min{|X |, |Y1||S|, |Y2||S|} + 1.
Hence, the symmetric capacity is upper bounded as

Csym ≤ max
p(u)p(x |u),

|U |≤4

min{I (U ; Y2|S), I (X; Y1, Y2|S, U)}. (22)

We can show that the upper bound is greater than
0.653 numerically using the substitutions: U ∼ Bern(0.5),
pX |U (0|0) = pX |U (1|1) = 0.832, pX |U (2|0) = pX |U (2|1) =
0.168, pX |U(1|0) = pX |U (0|1) = 0. Thus, the upper bound
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in (22) is greater than the inner bound using the superposition
coding scheme of Rsym−sp ≥ 0.6103.

We now show that this upper bound in (22) is less than or
equal to 2/3 but equality cannot hold, which implies that the
upper bound is strictly less than 2/3. Consider

max
p(u,x)

min{I (U ; Y2|S), I (X; Y1, Y2|S, U)}
(a)= max

p(u,x)
min{H (Y2|S)−H (Y2|S, U), H (Y1, Y2|S, U)}

(b)
≤ max

p(u,x)
min{H (Y2|S)−H (Y2|S, U), 2H (Y2|S, U)}

(c)
≤ max

p(x)

2H (Y2|S)

3
(d)≤ 2

3
,

where (a) holds because the Blackwell channel with state
is deterministic and (b) holds since H (Y1, Y2|S, U) ≤
H (Y1|S, U) + H (Y2|S, U) = 2H (Y2|S, U). Step (c) can
be shown as follows. Suppose H (Y2|S) − H (Y2|S, U) >
2H (Y2|S)/3, then 2H (Y2|S, U) < 2H (Y2|S)/3. Therefore at
least one of the two terms is less than or equal to 2/3H (Y2|S).
Step (d) holds since |Y2| = 2, and equality holds iff
Y2 ∼ Bern(0.5). Now suppose equality holds for (b), (c),
and (d), and then, from equality for (d), Y2 ∼ Bern(0.5),
which implies that X = Y1 = Y2 ∼ Bern(0.5). Then, from the
equality for (c), H (X |S, U) = 1/3 and from equality for (b),
H (X |S, U) = 2H (X |S, U) = 0, which is a contradiction.
Thus, equality cannot hold for (b), (c), and (d). We conclude
that Csym < 2/3.

VI. CONCLUSION

We derived a simplified expression for the maximum
symmetric rate achievable using the Shayevitz–Wigger scheme
for the symmetric broadcast channel with random state
when the state is known at the receivers and only strictly
causally at the transmitter. We considered a time-sharing
special case of the SW scheme for symmetric deterministic
broadcast channels and showed that it attains the symmetric
capacity of the Maddah-Ali–Tse examples. We then introduced
the Blackwell channel with state example and showed that
a superposition coding special case of the SW scheme can
achieve a higher symmetric rate than the time-sharing scheme.

There are several open questions that would be interesting
to explore further, including the following.

• We showed that the time-sharing scheme is not optimal
for the class of deterministic channels as defined in
Section II. For what general class of channels is it
optimal?

• Is the symmetric rate achieved using the superposi-
tion coding scheme for the Blackwell channel with
state example optimal? Can a higher symmetric rate be
achieved using Marton coding?

• For what general class of channels is the symmetric rate
achieved using the SW scheme optimal?
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