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Synthesis of High Dynamic Range Motion
Blur Free Image From Multiple Captures

Xingiao (Chiao) Liy Member, IEEEand Abbas El GamaFellow, IEEE

~ Abstract—Advances in CMOS image sensors enable hig_h-speedand in a manner similar to a digital memory and can thus
image readout, which makes it possible to capture multiple images pe operated continuously at very high frame rates [4]-[6]. A
within a normal exposure time. Earlier work has demonstrated the CMOS image sensor can also be integrated with other camera

use of this capability to enhance sensor dynamic range. This paper functions on the same chip ultimately leading to a single-chi
presents an algorithm for synthesizing a high dynamic range, mo- p y 9 9 p

tion blur free, still image from multiple captures. The algorithm  digital camera with very small size, low power consumption,
consists of two main procedures, photocurrent estimation and sat- and additional functionality [7]—[10]. In [11], it is argued that
uration and motion detection. Estimation is used to reduce read the high frame-rate capability of CMOS image sensors coupled
noise, and, thus, to enhance dynamic range at the low illumina- it the integration of processing with capture can enable the

tion end. Saturation detection is used to enhance dynamic range fficient impl tati f il and standard vid
at the high illumination end as previously proposed, while mo- eliicient Impiementatons or many: Stil anc-standard video

tion blur detection ensures that the estimation is not corrupted imaging applications that can benefit from high frame rates,
by motion. Motion blur detection also makes it possible to extend most notably, dynamic range extension.
exposure time and to capture more images, which can be used to  CMOS image sensors generally suffer from lower dynamic
further enhance dynamic range at the low illumination end. Our 446 than CCDs due to their high readout noise and nonunifor-
algorithm operates completely locally; each pixel's final value is . -
computed using only its captured values, and recursively, requiring mity. To address_thls proble_m, several methods have been pro-
the storage of only a constant number of values per pixel inde- Posed for extending CMOS image sensor dynamic range. These
pendent of the number of images captured. Simulation and ex- include well-capacity adjusting [12], multiple capture [13], [14],
perimental resglts demonstrate the enhanced signal-.to-noisg ratio [15], time to saturation [17], [18], spatially-varying exposure
Egm';)t’hiygggr'ﬁhﬁnge’ and the motion blur prevention achieved [1g) |ogarithmic sensor [19], [20], and local adaptation [21].
' With the exception of multiple capture, all other methods can
Index Terms—CMOS image sensor, dynamic range extension, only extend dynamic range at the high illumination end. Mul-
motion blur restoration, motion detection, photocurrent estima-  tjn|e capture also produces linear sensor response, which makes
tion, saturation detection. . ) ) :
it possible to use correlated double sampling (CDS) for fixed
pattern noise (FPN) and reset noise suppression, and to perform
|. INTRODUCTION conventional color processing. Implementing multiple capture,
cameras usQoyvever, requires very high frame-ra_te non_destr_uptive_readout,
e\pguch has only recently become possible using digital pixel sen-
s (DPS) [6].
nd he idea behind the multiple-capture scheme is to acquire
geveralimages at different times within exposure time—shorter-
osure-time images capture the brighter areas of the scene,
ile longer-exposure-time images capture the darker areas of
i 2 scene. A high dynamic-range image can then be synthesized
%én the multiple captures by appropriately scaling each pixel's
t

OST of today's video and digital

charge-coupled-device (CCD) image sensors [1], wh
the charge collected by the photodetectors during expos
time is serially read out resulting in slow readout speed a
high power consumption. Also, CCDs are fabricated in a no
standard technology, and as a result, other analog and dig
camera functions such as A/D conversion, image processi
and compression, control, and storage cannot be integrated
the sensor on the same chip. Recently developed CMOS im
sensors [2], [3], by comparison, are read out nondestructiv

t sample before saturation (LSBS). In [22], it was shown that
Is scheme achieves higher signal-to-noise ratio (SNR) than
other dynamic range-extension schemes. However, the LSBS
. . ) . Igorithm does not take full advantage of the captured images.
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Vdd several other readout transistors (see Fig. 1). The photodiode
is reset before the beginning of capture. During exposure, the
. Reset photodiode converts incident light into photocurréni(t), for
Light —i [ 0 <t < T, whereT is the exposure time. This process is quite
\/\ linear, and, thusipy,(t) is a good measure of incident light in-
\/\‘ Readout Q(T) tensity. Since the photocurrent is too small to measure directly,
. Circuit — it is integrated onto the photodiode parasitic capadii@gt,q.
it 0 and the charg€(T") (or voltage) is read out at the end of expo-
ph 7 e ZX --a-- Cliode sure time. Dark current,. and additive noise corrupt the output
| signal charge. The noise can be expressed as the sum of three
L independent components:
* Shot noise/(T), which is normalized (zero mean) Poisson
Fig. 1. CMOS image-sensor pixel diagram. distributed. We assume here that the photocurrent is large
enough and, thus, shot noise can be approximated by a
Gaussiarl/ (T') ~ N (0, qfOT(iph(t) + i4c) dt), whereg is
the electron charge.
Reset noise (including offset FPM) ~ N (0, 02,).
JReadout circuit noisé’(T) (including quantization noise)
Jwith zero mean and varianc..
Thus, the output charge from a pixel can be expressed as

to enhance dynamic range at the high-illumination end as pre-
viously discussed, while motion blur detection ensures that the
estimation is not corrupted by motion. Motion blur detection’
also makes it possible to extend exposure time and to captuf
more images, which can be used to further enhance dynami
range at the low illumination end. Our algorithm operates com-
pletely locally, each pixel’s final value is computed using only T
its captured values, and recursively, requiring the storage of only Q(T) = / (ipn(t) +iqe) dt + U(T) + V(T) + C
a constant number of values per pixel independent of the number 0

of images captured. . .
. . . providedQ(7T) < Qsat, the saturation charge, also referred to
We present three estimation algorithms. aswell capacity

* An optimal recursive algorithm when reset noise and offset |t the photocurrent is constant over exposure time, SNR is
FPN are ignored. In this case, only the latest estimate aggjen py

the new sample are needed to update the pixel photocurrent
estimate. oy tpn T’
* An optimal nonrecursive algorithm when reset noise and SNR(ipn) = 201og1 Va(iph +ia)T + 0% + 02
FPN are considered.
A suboptimal recursive estimator for the second case, whiblote that SNR increases withyy, first at 20 dB per decade
is shown to yield mean-square error close to the nonrecursiveen reset and readout noise variance dominates, and then at

@)

algorithm without the need to store all the samples. 10 dB per decade when shot noise variance dominates. SNR also
The later recursive algorithm is attractive since it requires tliecreases witfT". Thus, itis always preferred to have the longest
storage of only a constant number of values per pixel. possible exposure time. Saturation and change in photocurrent

The motion-detection algorithm we describe in this paper ddue to motion, however, makes it impractical to make exposure
tects change in each pixel’s signal due to motion or changetime too long.
illumination. The decision to stop estimating after motion is de- Dynamic range is a critical figure of merit for image sensors.
tected is made locally and is independent of other pixels signdids defined as the ratio of the largest nonsaturating photocurrent
The rest of the paper is organized as follows. In Section I the smallest detectable photocurrent, typically defined as the
we describe the image-sensor signal and noise model we stsndard deviation of the noise under dark conditions. Using the
sume throughout the paper. In Section IIl, we describe our higkensor model, dynamic range can be expressed as
dynamic-range image-synthesis algorithm. In Section IV, we ) )
present 'the three gstlmatlon algorlthms'. In Section V, we presernyr — og logy, ‘mj = 201log;, ‘Qsat LgcT _. )
our motion-detection algorithm. Experimental results are pre- min VaiaT + o} + o2
sented in Section VI.

Note that dynamic range decreases as exposure time increases
due to the adverse effects of dark current. To increase dynamic
II. IMAGE-SENSORMODEL range, one needs to either increase well capagity, and/or

: . . . decrease read noise.
In this section, we describe the CMOS image-sensor opera-

tion and signal-and-noise model we use in the development and
analysis of our synthesis algorithm. We use the model to define
sensor SNR and dynamic range. We first illustrate the effect of saturation and motion on image

The image sensor used in an analog or digital camera caapture using the examples in Figs. 2 and 3. The first plot in
sists of a 2-D array of pixels. In a typical CMOS image senséiig. 2 represents the case of a constant low light, where pho-
[3], each pixel consists of a photodiode, a reset transistor, @odurrent can be well estimated fro@(7). The second plot

Il. HIGH-DYNAMIC -RANGE IMAGE SYNTHESIS
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@

(©
Fig. 3. (a) Ideal image. (b) Long-exposure-time image. (c) Short-exposure-
Qe F=-========----> [ — time image. (d) Image produced using our algorithm.

(d)

(c) Fig. 2(b). The algorithm we describe in this paper uséshe
samples before saturation to estimate photocurrent at the begin-
ning of exposure, so for the high light pixel example in Fig. 2,
photocurrent is estimated using the images and2r, while
the photocurrent for the low light pixel is estimated using the
Fig. 2. Q(¢) versust for three lighting conditions. (a) Constant low light. fOl.Jr |mag§s. Motion blur m.the third case can be rEduc?d .by
(b) Constant high light. (c) Light changing. using the first capture to estimate photocurrent at the beginning
of exposure timé,;, (0). Applying our algorithm to the example
in Fig. 3, we getthe image (d), which is almost blur free and less
o noisy.
represents the case of a constant high light, wig€) = Qsas, Our algorithm operates om > 1 images! captured at times
ar_md the photocurrent cannot be \_/veII estimated f@_ﬁf). The 7,27, ..., nT = T, as follows:
third plot is for the case when light changes during exposu
time, e.g., due to motion. In this case, photocurrent at the bg—
ginning of exposure timé,, (0) again cannot be well estimated
from Q(T'). To avoid saturation and the changeigf(¢) due
to motion, exposure time may be shortened, e.gr,itoFig. 2.
Since in conventional sensor operations, exposure time is
globally for all pixels, this results in reduction of SNR, espe-
cially for pixels with low light. This point is further demon-
strated by the images in Fig. 3, where a bright square object
moves diagonally across a dark background. If exposure time is
setlong to achieve high SNR, it results in significant motion blur
as shown in Fig. 3(b). On the other hand, if exposure time is set
short, SNR deteriorates resulting in the noisy image of Fig. 3(c). NoNE X i
An important feature of several CMOS image-sensor archi- Use thephotocurrent estimation algorithrto find
portant feature ot severa 9¢ . Ippq fromQ((k + 1)7) andl and set = k + 1.
tectures is nondestructive readout [23], [24]. Using this feature kt1 : k
together with high-speed readout, several images can be cap-Repeat steps 3 and 4 urtil= n.
tured without resetting during exposure. This is illustrated in the The following two sections provide details of the estimation
examples in Fig. 2, where each pixel signal is sampled 2, and detection parts.
37, andT = 47. The estimation method described in [14] uses

the LSBS to estimate photocurre@ (") in Fig. 2(a),Q(27) 1Actually the algorithm operates on+ 1 images, the first image, which is

in Fig. 2(b)], and does n_Ot a;ddress motion blur. Applying thiiﬁ_nored here, is taken at= 0 and is used to reduce reset noise and offset FPN
method to the example in Fig. 3, we get the same image asa#itiscussed in detail in Section IV.

T 27 3T T

Capture first image, sét = 1.
For each pixel: Use thehotocurrent estimation algorithm
to find the photocurrent estimafe from Q(7).
3) Capture next image.
s‘,%t For each pixel: Use thaotion-detection algorithro check
if motion/saturation has occurred.
i) Motion/saturation detectedSet final photocurrent
estimate

I, = I.

i) No Motion/saturation detected or decision deferred
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IV. PHOTOCURRENTESTIMATION minimizes

Dynamic range at the low-illumination end can be enhanced o2 = E(fk )2
using multiple captures by appropriatalyeragingeach pixel's
photocurrent samples to reduce readout noise. Since the sessbject to
noise depends on the signal and the photocurrent samples are de-
pendent, equal weight averaging may not reduce readout noise E(Iy) =i.
and can in fact be worse than simply using the LSBS to estimate
photocurrent. In this section, we use linear mean-square ergor
(MSE) estimation to derive the optimal weights to be used in ) . )
the averaging. We first formulate the problem. We then present €€, We ignore reset noise and offset FPN, i.e.(5et 0.
estimation algorithms for three cases: 1) when reset noise 4nff" though this assumption is not realistic for CMOS sensors,
offset FPN are ignored: 2) when reset noise and FPN are condidS réasonable for high-end CCDs using very high-resolution
ered: and 3) a recursive estimator for case 2) without the nép converters. As we shall see, the optimal estimate in this

to store all the samples. Simulation results are presented &AG€ €an be castin a recursive form, which is not the case when

the performance of the three algorithms is compared in the I588€t NOiSe is considered. , ,
subsection. To derive the best estimate, define the pipdlotocurrent

Estimation Ignoring Reset Noise and FPN

samplesas
A. Problem Formulation k
. . U:
We assume + 1 pixel charge sample@,, captured at times . Qr . J; A
0, 7, 27, ..., nT = T and define the pixel current= i, +iq.. I, = e . T forl <k <n.

Thekth ch le is th [ b I .
© charge sample 1s thus given by Thus, given the sampldd, Io, ..., I}, we wish to find the

k best unbiased linear estimate of the paramgtée., weights
Qe=1ikr+» Uj+Vi+C,  foro<k<n () o o, ... ol suchthat
j=1 .
whereV}, is the readout noise of thgh samplel/; is the shot I = Z agk)fj
noise generated during the time inter¢gl — 1)7, j7], andC j=1

is the reset noisel/;, Vi, andC are independent zero-meannat minimizes
random variables with X
&2 = E(I}, — i)*
2 2
E(Vi) =0y >0, for0<k<n

) ) subject to
= qir, fori<j<k, and

oty
E(C?) =02 E(Iy) = i. (5)

9

We wish to estimate the photocurrefitom then+1 samples. 1€ MSE®] is given by
This is a parameter-estimation problem that can be formulated g2 ZE(fk —i)?
using several criteria, such as likelihood ratio and MSE [25].

2 2
Maximum-likelihood estimation achieves the smallest proba- k "M\ 62 ag»k) o2
bility of error, but is generally difficult to derive and leads to = 2 Z | =T ) T2 ®6)
nonlinear solutions that are not easy to implement in practice. In i=1 =i

this paper we adapt the standard linear minimum mean-squ
parameter estimation (MMSE) methods (e.g., [25]) to our p
ticular noise model.
Due to motion and/or saturation, the estimation may not use k
all then + 1 samples. The detection algorithm presented in the F' agk), aék)7 ag“)) =07+ A Z a](-k) -1 (7
next section determines the LSBS/motion to be included in the j=1
estimation. Denoting the last sample to be included by <
k < n, the linear MMSE problem is formulated as follows.
At time k7, we wish to find the best unbiased linear esti-

s is a convex optimization problem with a linear constraint
Asin (5). To solve it, we define the Lagrangian

where) is the Lagrange multiplier.
The optimal weights can be found using the conditions

mate, I, of i given{Qo, Q1, ..., Qx}, i.e., we wish to find OF OF OF T
(k) (k) () such that VE = =0
Qg 5 Gy 5 ..., Gy SUC 8a§k) 8a§k) aaék)
k k
~ X k
e= 0@ 4) >oa =1 (®)
=0 Jj=1

2For the coeﬁicienn§">, we use superscrigk) to represent the number of  In this case, there is no need for sam@lgatt = 0, therefore, weights start
captures used and use subscript as the index of the coefficients for each capm'th.a(l’“).
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and we get [26] Therefore, we redefinghotocurrent samplé;, as
i izl ) = Qr—wQo
J ]Cf a L ——4
ai) ]agk) j_l () —I— U (Z IT) I, = o , fori1<k<n (16)
=1

) such thatl,, corresponds to an estimate witmwaightedCDS
where2 < j <k operation. Compared with a conventional CDS operation [1],
Now, to see that the optimal estimate can be castin a recursivieere
form, we define a new set of weighiis, such that . Or—Qo

b=1 =" 4

bj =jbi + — ] bj_1+ i i i
i =J9%1 j—1 j—1 noise due to CDS. In a conventional CDS as in (17), the readout

noise power is always doubled, while in a weighted CDS as in

j—1 . . . -

the weightingw has the effect of reducing the additional readout
JUU <Z ﬁ), forj >2 (10) gnngy I
JV

=1

anday“) can be represented in termsigfas (16), the readout noise powerlist w, where0 < w < 1, as
%) b . given in (14).
a; " = 7 for1<j <k The pixel current estimate given the firstsamples can be
> by expressed as
=1
The optimal photocurrent estimaig can be written in are- I = Afik
cursive form in terms oby, the latest photocurrent samplg,
and the previous estimafg_; as where
P P (k) (k) (1] "
I = Ie1 + he (I — Tr—1) (11) Ay = [b1 by” - by } and
where - S 1T
. Ik:[ll I - Ik] .
b ) - o
hy = g—" and g = Z b;. The optimal coefficient vectoA , is given by
k 1=1 o2 —1
_ ol A
The MSE®? can also be expressed in a recursive form as Ay = <Mk -2 T Dk ) 2 L (18)
2 2
Jk—1 72 1 2\ Oy 2 Oy where
o7 = 1L 7 — [ (2b b b: :
ET g Tt <( = (kT)2> r, L1 17
(12) 2 3 k
This is important because; will be used later in the motion- 1 2 2 2
detection algorithm. B 2 3 k
The first estimatof; is approximated by; . In (10) and (12), My = 1 2 3 3
UU = ¢iT is approximated using the latest estimate, df., i.e., 2 3 k
of = gl 7. We found that this approximation yields MSE very
2 3 k
close to the optimal case, i.e., whéis known. 1 2 2 :
L 2 3 :
C. Estimation Considering Reset Noise and FPN 1
_ From (3) and (4), to minimize the MSE of the best estimator 2
I, we need L= |3
00 _ y02 L0 2
~ = 2aq, + 2 a or =0 )
8@8“ 0 Jz::(] j C i k ]
which gives Fw 4 1 w w W
2 3 k
® _ [, 13 wtl w w
ay w ]Ez:l a; (13) w 5 3 ;
Dy, = w w+ 1 w
where w 9 3 &
02
octov L 2 3 k-
Bring (13) into (4), we have and )\ is the Lagrange multiplier for the unbiased constraint.
k k In [26], we show that the above solution cannot be expressed
Iy = Z a§~’“)Qj = Z ag-k)(Qj — wQo). (15) inarecursive form, and, thus, finditlg requires the storage of

the vectod;, and inverting & x k matrix.
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D. Recursive Algorithm

Now, we restrict ourselves to recursive estimates, i.e., es

mates of the form
Iy = Loy + b (I — T_y)
where again
ik _ Qr — UJQO.
kT
The coefficienth;, can be found by solving the equations
d®2  dE(I, —i)? .
= =0 and EI, =1.

dhy dhy R
Define the MSE off,, as

A} = E(I —i)* = Yo
and the covariance betweép and/; as

Or =By —i)(Ix —i) = (1= hy) =

(ko? + (1 +w)od) (19)

k
(1 — }Lk)hk,1 2 2
]{J(l{; — 1)7_2 UV + hkAk (20)
The MSE offk can be expressed in termsz&ﬁ, and®; as

2(k = 1)(1 = hi)hy

1
Or_1

O? = (1 — hy)?®%_, + ? Or_1
2hg—1(1 — hg)hy
- k(lk EE o +hIAZ. (21)
To minimize the MSE, we require that
a9 _
dhr
which gives
P2 — (k—1) Op_1 + ?Lk_lo'%/z
hy, = k-1 k LT kk=1)r 22)

2hy_1032,

2(k—1
R Fe=D + A%
Note thathy, ©, and®, can all be recursively updated.

To summarize, the suboptimal recursive algorithm is

follows.
 Set initial parameter and estimate values as follows:

hy =1
i (Q1 — wQo)

2 B 174

-
2 1 2

AZ_TUT (1+w)oy

1= 2

-

7 = A7
0, =A2

« Ateach iteration, the parameter and estimate values are u

dated as follows:

i = (Qk - U)QO)
k kTt
A%: = k272 (]{70'[2] + (1 + w)o—‘z/)
k—1 he_102
hy, = (Pi—l_(k)@k*l—i_ﬁ

2h) 102,

‘I)i 17 A= Ok-1+ k(k—l)TV2 + Ai

- k
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Fig. 4. Distribution of estimation weights among total 32 samples used in the
nonrecursive and recursive algorithms.

k—1 1—hp)he_
O :(1—hk)_k Op_1 — —(k(k _k)l)izl J%f

O = (1 — hy,)?®2_, + 20,0 — W2 A2

+ he AR

Iy =Ty + hi(Ip — Ij—1).

Note that to find the new estimafg using this suboptimal re-
cursive algorithm, only three parametédrs, ®, andOy, the old
estimatel;,_;, and the new sample valug are needed. Thus,
only a small amount of memory per pixel is required indepen-
dent of the number of images captured.

E. Simulation Results

In this subsection, we present simulation results that
demonstrate the SNR improvements using the nonrecursive

aa?gorithm described in Section IV-C, the recursive algorithm in

Section IV-D, and the multiple capture scheme in [14].
The simulation results are summarized in Figs. 4-6. The
sensor parameters assumed in the simulations are as follows

Qsat = 18750 e-

19 = 0.1 A
oy =60 e-
oc =62e-
T =32ms
T=1ms

Fig. 4 plots the weights for the nonrecursive and recursive al-
gBrithms in Sections IV-C and D, respectively. Note that with a
typical readout noise rms (60 én this example), later samples

are weighted much higher than earlier ones since later samples
have higher SNR. As read noise decreases, this becomes more
pronounced—the best estimate is to use the last sample only
(i.e., A =10, ..., 0, 1]T)if sensor read noise is zero. On the
other extreme, if shot noise can be ignored, then, the best es-
timate is averaging (i.eAx = [1/k, ..., 1/k]T). Also note

that weights for the nonrecursive algorithm can be negative. It
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90 ' ' ‘ : ' ' higher, due to the reduction in read noise. The improvement

) ‘ ’ 2 W is most pronounced at low light. In this example, sensor with
single capture yields dynamic range of 47 dB. Using our al-
gorithm, dynamic range is extended to 85 dB—an increase of
30 dB at the high illumination end and 8 dB at the low illumi-
nation. In general, the dynamic-range extension achievable at
the low-illumination end depends on the read noise power and
1 number of samples used in the estimation—the higher the read
noise and the more samples are used, the greater the dynamic
range is extended. On the other hand, the dynamic range ex-
tension achievable at the high-illumination end depends on the
sensor readout time—the faster the readout, the greater the dy-
1 namic range is extended.

80f No estimation

wn D ~
=] (=3 (=3
T T

Readout Noise RMS (e-)

N
(=]

s L - s s L V. MOTION/SATURATION DETECTION
5 10 15 20 25 30 35

Number of Samples k The derivation of the recursive linear-estimation algorithm in
i . . . thfe previous section assumed ti(@) is constant and that satu-

g. 5. Simulated equivalent readout noise rms value versus number of . . . .
samplesk. ration does not occur befofker. In this section, we describe an
algorithm for detecting change in the valuei¢f) due to mo-
tion or saturation before the new image is used to update the
photocurrent estimate. Since the statistics of the noise are not
1 completely known and no motion model is specified, it is not
possible to derive an optimal detection algorithm. Our algorithm
] is, therefore, based on heuristics. By performing the detection
step prior to each estimation step we form a blur free high dy-
namic range image from the+ 1 captured images.

The algorithm operates on each pixel separately. Aftekthe
capture, the best MSE linear estimate of;,, and its MSE®?,
are computed as detailed in Section 1V-D. If the current stays
constant, the next observatidf,, would be

30
0

45 T T T T T
*~ Linear estimation

sk —9= Single Capture

DR=47dB

DR=85dB

k+1

Uj
fpre =i+ j=1 Vk+1 - ’U)V() (1 — ’U))C

Lan (k+ )T (k+ )T (k+ )T

(23)

10 and the best predictor (fiffl is I;, with the prediction MSE

iph (FA) given by

Fig. 6. Estimation enhances the SNR and dynamic range. ~ ) ) L 2
Mo =B (s -7 ) = () st
2k 2hy
- C)
Pl T R e

is preferred to weight the later samples higher since they have
higher SNR, and this can be achieved by using negative weights
for some of the earlier samples under the unbiased estimate con-

stra_in (sum of the weights e_quals one). _ whereA?, ©, @2, andh,, are given in (19)- (22), respectively.
Fig. 5 compares the equivalent readout noise rms at low 'I'Thus, to decide whether the input sigialhanged between

lumination level corresponding tQ,, = 2 fA as a functior_l timekr and(k-+1)7, we compardy1 = (Qni1—wQo)/((k+
of the number of samplés for conventional sensor operatlonl)T) with I,.. A simple decision rule would be to declare that
and using the nonrecursive and the recursive estimation algQsiion has occurred if

rithms. As can be seen, the equivalent readout noise after the

last sample is reduced from 86 e- when no estimation is used to |jk+1 _ jk| > mApre (25)

35.8 e- when the nonrecursive estimator is used and to 56.6 e-

when the recursive estimator is used. Also note the drop in thaed to usel,, as the final estimate of otherwise to usefk+1

equivalent readout noise rms due to the weighted CDS useddrupdate the estimate 0),fi.e.,fk+1. The constantn > 0 is

our algorithms. chosen to achieve the desired tradeoff between SNR and motion
Fig. 6 plots SNR versusfor conventional sensor operationblur. The higher then, the more the motion blur if changes

where the last samplg, is used, and using our estimation alwith time, but also the higher the SNRiifis a constant, and

gorithm. Note that by using our algorithm, SNR is consistentlyice versa.

2
O'U
+1)272 (24)
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Fig. 7. Six of the 65 images of the high dynamic scene capturec
nondestructively at 1000 frames/s. {a= 0 ms. (a)t = 0 ms. (b)t = 10 ms.
()t =20 ms. (dYt = 30 ms. (e} = 40 ms. (f)t = 50 ms.

One potgnt_la! problem with this har_d deCISIOh ru'_e 1S thalt—'ig. 8. High-dynamic-range image synthesized using the LSBS algorithm.
gradual drift ini can cause accumulation of estimation error

resulting in undesired motion blur. To address this problem, we
propose the following “soft” decision rule.
Motion-detection algorithnor each pixel, after thgk+1)st
capture.
1) If |Ixy1 — Ii] < m1Ap, then declare thato motion
detectedUseka to updatefk_H andse.™ =0,L~ = 0.
2) If [Tp1 — Ix| > maApres L1 = Liax, OF L™ = Lyay, then
declare thamotion detectedUse I, as the final estimate
of 4.
3) Ifm1Apre < Txy1— I < mal e, thendefer the decision
andsetLt = LT +1,L~ = 0.
4) If —malApre < Iiyr — I < —miApee, thendefer the
decisionand setL~ = L~ + 1, LT = 0.
The counterd.t, L~ record the number of times the decision
is deferred, anf < m, < ms andl,,.. are chosen to tradeoff
SNR with motion blur.

VI. EXPERIMENTAL RESULTS

In this section, we present experimental results performe
using a PC-based high-speed CMOS imaging system [27] d
signed around the 10 000 frames/s CMOS DPS chip. ,

The high-dynamic-range scene used in the experiment com-
prised a doll house under direct illumination from above, and,':ég- 9. High-dynamic-range motion blur free image synthesized from the 65
rotating model airplane propeller. We captured 65 frames of the 9°s
scene at 1000 frames/s nondestructively, and uniformly spaced
over a 64-ms exposure time. Fig. 7 shows some of the imageshe dark areas. Fig. 9 shows the high-dynamic-range motion
captured. Note that as exposure time increases, the details intihe free image synthesized from the 65 captures using the al-
shadow area (such as the word “Stanford”) begin to appear whijerithm discussed in this paper. Note that the dark background
the high-illumination area suffers from saturation and the aresamuch smoother due to reduction in readout and FPN, and the
where the propeller is rotating suffers from significant motiomotion blur caused by the rotating propeller in Fig. 8 is almost
blur. completely eliminated.

We first applied the LSBS algorithm [14] to the 65 images to To illustrate the operation of our algorithm, in Fig. 10 we plot

obtain the high dynamic range image in Fig. 8. While the imadgke sampled and estimated photocurrents for three pixels under

indeed contains many of the details in both low and high illudifferent illumination levels. Note how motion blur is prevented
mination areas, it suffers from motion blur and is quite noisy the third pixel using the motion-detection algorithm.
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Fig. 10. Readout values (marked by-*) and estimated values (solid lines) for (a) pixel in the dark area, (b) pixel in bright area, and (c) pixel with varying

illumination due to motion.

VIl. CONCLUSION

The high frame-rate capability of CMOS image sensors (1l
makes it possible to nondestructively capture several imageg)
within a normal exposure time. The captured images provide
additional information that can be used to enhance the perfor13
mance of many still and standard video imaging applicationsiy
[11]. The paper describes an algorithm for synthesizing a high
dynamic range, motion blur free image from multiple captures.
The algorithm consists of two main procedures, photocurrents
estimation and motion/saturation detection. Estimation is used
to reduce read noise, and, thus, enhance dynamic range at tqa
low illumination end. Saturation detection is used to enhance
dynamic range at the high illumination end, while motion
blur detection ensures that the estimation is not corrupted b)m
motion. Motion blur detection also makes it possible to extend
exposure time and to capture more images, which can be used
to further enhance dynamic range at the low illumination end. !
Experimental results demonstrate that this algorithm achieves
increased SNR, enhanced dynamic range, and motion blur
prevention. (ol

ACKNOWLEDGMENT

The authors would like to thank T. Chen, H. Eltoukhy,
A. Ercan, S. Lim, and K. Salama for their feedback.

(10]

REFERENCES

A. J. Theuwissen,Solid-State Imaging With Charge-Coupled De-
vices Norwell, MA: Kluwer, May 1995.

E. R. Fossum, “Active pixel sensors: Are CCDs dinosaupsdc. SPIE
vol. 1900, pp. 2-14, Feb. 1993.

] ——, “CMOS image sensors: Electronic camera-on-cHigEE Trans.

Electron Devicesvol. 44, pp. 1689-1698, Oct. 1997.

A. Krymski, D. Van Blerkom, A. Andersson, N. Block, B. Mansoorian,
and E. R. Fossum, “A high speed, 500 frames/s, 1824024 CMOS
active pixel sensor,” ifProc. 1999 Symp. VLSI Circujtdune 1999, pp.
137-138.

N. Stevanovic, M. Hillegrand, B. J. Hostica, and A. Teuner, “A CMOS
image sensor for high speed imaging,'Dig. Tech. Papers 2000 IEEE
Int. Solid-State Circuits ConfFeb. 2000, pp. 104-105.

S. Kleinfelder, S. H. Lim, X. Liu, and A. El Gamal, “A 10 000 frames/s
CMOS digital pixel sensor,JEEE J. Solid-State Circuitsvol. 36, pp.
2049-2059, Dec. 2001.

M. Loinaz, K. Singh, A. Blanksby, D. Inglis, K. Azadet, and B. Ackland,
“A 200mW 3.3V CMOS color camera IC producing 352 288 24b
video at 30 frames/s,” iDig. Tech. Papers 1998 IEEE Int. Solid-State
Circuits Conf, Feb. 1998, pp. 168-169.

S. Smith, J. Hurwitz, M. Torrie, D. Baxter, A. Holmes, M. Panaghiston,
R. Henderson, A. Murray, S. Anderson, and P. Denyer, “A single-chip
306 x 244-pixel CMOS NTSC video camera,” iDig. Tech. Papers
1998 IEEE Int. Solid-State Circuits ConFeb. 1998, pp. 170-171.

S. Yoshimura, T. Sugiyama, K. Yonemoto, and K. Ueda, “ A 48
kframes/s CMOS image sensor for real-time 3-D sensing and motion
detection,” inDig. Tech. Papers 2001 IEEE Int. Solid-State Circuits
Conf, Feb. 2001, pp. 94-95.

T. Sugiyama, S. Yoshimura, R. Suzuki, and H. Sumi, “A 1/4-inch
QVGA color imaging and 3-D sensing CMOS sensor with analog frame
memory,” in Dig. Tech. Papers 2002 IEEE Int. Solid-State Circuits
Conf, Feb. 2002, pp. 434-435.



LIU AND EL GAMAL: SYNTHESIS OF HIGH DYNAMIC RANGE MOTION BLUR FREE IMAGE

(11]

(12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

[21]

[22]

(23]

[24]

[25]

(26]

539

S. H. Lim and A. El Gamal, “Integration of image capture and pro- [27] A.Ercan, F. Xiao, X. Liu, S. H. Lim, A. El Gamal, and B. Wandell, “Ex-

cessing—Beyond single chip digital camerarbc. SPIE vol. 4306, pp.
219-226, Mar. 2001.

S. J. Decker, R. D. McGrath, K. Brehmer, and C. G. Sodini, “A 256
x 256 CMOS imaging array with wide dynamic range pixels and col-
lumn-parallel digital output,IEEE J. Solid-State Circuits/ol. 33, pp.
2081-2091, Dec. 1998.

0. Yadid-Pecht and E. Fossum, “Wide intrascene dynamic range CMC ~
APS using dual sampling/EEE Trans. Electron Devicesol. 44, pp.
1721-1723, Oct. 1997.

D. Yang, A. El Gamal, B. Fowler, and H. Tian, “A 640 512 CMOS
image sensor with ultra-wide dynamic range floating-point pixel leve
ADC,” IEEE J. Solid-State Circuifwvol. 34, pp. 1821-1834, Dec. 1999.
O. Yadid-Pecht and A. Belenky, “Autoscaling CMOS APS with cus
tomized increase of dynamic range,” ig. Tech. Papers 2001 IEEE
Int. Solid-State Circuits ConfFeb. 2001, pp. 100-101.

M. Aggarwal and N. Ahuja, “High dynamic range panoramic imaging,
in Proc. 8th IEEE Int. Conf. Computer Visipwol. 1, 2001, pp. 2-9.

W. Yang, “A wide-dynamic range, low power photosensor arraylicn

perimental high speed CMOS image sensor system and applications,” in
Proc. IEEE Sensors 200®rlando, FL, June 2002, pp. 15-20.

Xingiao (Chiao) Liu (S'97-M’02) received the B.S.
degree in physics from the University of Science and
Technology of China, Anhui, China, in 1993, and the
M.S. and Ph.D. degrees in electrical engineering from
Stanford University, Stanford, CA, in 1997 and 2002,
respectively.

In the summer of 1998, he worked as a Research
Intern at Interval Research Inc., Palo Alto, CA, on
image sensor characterization and novel imaging
system design. He is currently with Canesta Inc.,
San Jose, CA, developing 3-D image sensors. At

Stanford, his research was focused on CMOS image sensor dynamic range

Tech. Papers 1994 IEEE Int. Solid-State Circuits CoR&b. 1994, pp. and SNR enhancement via innovative circuit design, and statistical signal

230-231.
E. Culurciello, R. Etienne-Cummings, and K. Boahen, “Arbitrated ad-
dress event representation digital image sensorDim Tech. Papers
2001 IEEE Int. Solid-State Circuits ConFeb. 2001, pp. 92-93.

M. Loose, K. Meier, and J. Schemmel, “A self-calibrating single-chip
CMOS camera with logarithmic responstEEE J. Solid-State Circuits
vol. 36, pp. 586-596, Apr. 2001.
S. Kavadias, B. Dierickx, D. Scheffer, A. Alaerts, D. Uwaerts, and
Bogaerts, “A logarithmic response CMOS image sensor with on-ch
calibration,”IEEE J. Solid-State Circuitsvol. 35, pp. 1146-1152, Aug.
2000.
T. Delbruck and C. A. Mead, “Analog VLSI phototransduction,” Cali-
fornia Institute of Technology, Pasadena, CNS Memo no. 30, May
1994.
D. Yang and A. El Gamal, “Comparative analysis of SNR forimage se
sors with enhanced dynamic rangeroc. SPIE vol. 3649, pp. 197-211,

processing algorithms.

Abbas ElI Gamal (S'71-M'73-SM'83-F'00)
received the B.S. degree in electrical engineering
from Cairo University, Cairo, Egypt, in 1972, the
M.S. degree in statistics, and the Ph.D. degree in
electrical engineering, both from Stanford Univer-
sity, Stanford, CA, in 1977 and 1978, respectively.
From 1978 to 1980, he was an Assistant Professor
of Electrical Engineering at the University of
Southern California, Los Angeles. He joined the
Stanford faculty in 1981, where he is currently a
Professor of Electrical Engineering. From 1984

1999. to 1988, while on leave from Stanford, he was Director of LS| Logic Re-
X. Liu and A. El Gamal, “Photocurrent estimation from multiple non-search Lab, Sunnyvale, CA, later, Cofounder and Chief Scientist of Actel
destructive samples in a CMOS image sensBrgc. SPIE vol. 4306, Corporation, Sunnyvale, CA. From 1990 to 1995, he was a Cofounder and
pp. 450-458, 2001. Chief Technical Officer of Silicon Architects, Mountainview, CA, which was
——, “Simultaneous image formation and motion blur restoration viacquired by Synopsis. He is currently a Principal Investigator on the Stanford
multiple capture,” irProc. ICASSP20QYol. 3, Salt Lake City, UT, May programmable Digital Camera project. His research interests include digital
2001, pp. 1841-1844. o o imaging and image processing, network information theory, and electrically
H. SorensonParameter Estimation, Principles and ProblemdNew  configurable VLSI design and CAD. He has authored or coauthored over
York: Marcell Dekker, 1980. 125 papers and 25 patents in these areas.

X. Liu, “CMOS image sensors dynamic range and SNR enhancementviaDr. E| Gamal serves on the board of directors and advisory boards of sev-

statistical signal processing,” Ph.D. dissertation, Stanford Univ., Stagral IC and CAD companies. He is a member of the ISSCC Technical Program
ford, CA, 2002. Committee.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


