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Synthesis of High Dynamic Range Motion
Blur Free Image From Multiple Captures

Xinqiao (Chiao) Liu, Member, IEEE,and Abbas El Gamal, Fellow, IEEE

Abstract—Advances in CMOS image sensors enable high-speed
image readout, which makes it possible to capture multiple images
within a normal exposure time. Earlier work has demonstrated the
use of this capability to enhance sensor dynamic range. This paper
presents an algorithm for synthesizing a high dynamic range, mo-
tion blur free, still image from multiple captures. The algorithm
consists of two main procedures, photocurrent estimation and sat-
uration and motion detection. Estimation is used to reduce read
noise, and, thus, to enhance dynamic range at the low illumina-
tion end. Saturation detection is used to enhance dynamic range
at the high illumination end as previously proposed, while mo-
tion blur detection ensures that the estimation is not corrupted
by motion. Motion blur detection also makes it possible to extend
exposure time and to capture more images, which can be used to
further enhance dynamic range at the low illumination end. Our
algorithm operates completely locally; each pixel’s final value is
computed using only its captured values, and recursively, requiring
the storage of only a constant number of values per pixel inde-
pendent of the number of images captured. Simulation and ex-
perimental results demonstrate the enhanced signal-to-noise ratio
(SNR), dynamic range, and the motion blur prevention achieved
using the algorithm.

Index Terms—CMOS image sensor, dynamic range extension,
motion blur restoration, motion detection, photocurrent estima-
tion, saturation detection.

I. INTRODUCTION

M OST of today’s video and digital cameras use
charge-coupled-device (CCD) image sensors [1], where

the charge collected by the photodetectors during exposure
time is serially read out resulting in slow readout speed and
high power consumption. Also, CCDs are fabricated in a non-
standard technology, and as a result, other analog and digital
camera functions such as A/D conversion, image processing,
and compression, control, and storage cannot be integrated with
the sensor on the same chip. Recently developed CMOS image
sensors [2], [3], by comparison, are read out nondestructively
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and in a manner similar to a digital memory and can thus
be operated continuously at very high frame rates [4]–[6]. A
CMOS image sensor can also be integrated with other camera
functions on the same chip ultimately leading to a single-chip
digital camera with very small size, low power consumption,
and additional functionality [7]–[10]. In [11], it is argued that
the high frame-rate capability of CMOS image sensors coupled
with the integration of processing with capture can enable the
efficient implementations of many still and standard video
imaging applications that can benefit from high frame rates,
most notably, dynamic range extension.

CMOS image sensors generally suffer from lower dynamic
range than CCDs due to their high readout noise and nonunifor-
mity. To address this problem, several methods have been pro-
posed for extending CMOS image sensor dynamic range. These
include well-capacity adjusting [12], multiple capture [13], [14],
[15], time to saturation [17], [18], spatially-varying exposure
[16], logarithmic sensor [19], [20], and local adaptation [21].
With the exception of multiple capture, all other methods can
only extend dynamic range at the high illumination end. Mul-
tiple capture also produces linear sensor response, which makes
it possible to use correlated double sampling (CDS) for fixed
pattern noise (FPN) and reset noise suppression, and to perform
conventional color processing. Implementing multiple capture,
however, requires very high frame-rate nondestructive readout,
which has only recently become possible using digital pixel sen-
sors (DPS) [6].

The idea behind the multiple-capture scheme is to acquire
several images at different times within exposure time—shorter-
exposure-time images capture the brighter areas of the scene,
while longer-exposure-time images capture the darker areas of
the scene. A high dynamic-range image can then be synthesized
from the multiple captures by appropriately scaling each pixel’s
last sample before saturation (LSBS). In [22], it was shown that
this scheme achieves higher signal-to-noise ratio (SNR) than
other dynamic range-extension schemes. However, the LSBS
algorithm does not take full advantage of the captured images.
Since read noise is not reduced, dynamic range is only extended
at the high illumination end. Dynamic range can be extended at
the low illumination end by increasing exposure time. However,
extending exposure time may result in unacceptable blur due to
motion or change of illumination.

In this paper, we describe an algorithm for synthesizing a high
dynamic range image from multiple captures while avoiding
motion blur. The algorithm consists of two main procedures,
photocurrent estimation and motion/saturation detection. Esti-
mation is used to reduce read noise, and, thus, enhance dynamic
range at the low-illumination end. Saturation detection is used
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Fig. 1. CMOS image-sensor pixel diagram.

to enhance dynamic range at the high-illumination end as pre-
viously discussed, while motion blur detection ensures that the
estimation is not corrupted by motion. Motion blur detection
also makes it possible to extend exposure time and to capture
more images, which can be used to further enhance dynamic
range at the low illumination end. Our algorithm operates com-
pletely locally, each pixel’s final value is computed using only
its captured values, and recursively, requiring the storage of only
a constant number of values per pixel independent of the number
of images captured.

We present three estimation algorithms.

• An optimal recursive algorithm when reset noise and offset
FPN are ignored. In this case, only the latest estimate and
the new sample are needed to update the pixel photocurrent
estimate.

• An optimal nonrecursive algorithm when reset noise and
FPN are considered.

• A suboptimal recursive estimator for the second case, which
is shown to yield mean-square error close to the nonrecursive
algorithm without the need to store all the samples.
The later recursive algorithm is attractive since it requires the

storage of only a constant number of values per pixel.
The motion-detection algorithm we describe in this paper de-

tects change in each pixel’s signal due to motion or change in
illumination. The decision to stop estimating after motion is de-
tected is made locally and is independent of other pixels signals.

The rest of the paper is organized as follows. In Section II,
we describe the image-sensor signal and noise model we as-
sume throughout the paper. In Section III, we describe our high-
dynamic-range image-synthesis algorithm. In Section IV, we
present the three estimation algorithms. In Section V, we present
our motion-detection algorithm. Experimental results are pre-
sented in Section VI.

II. I MAGE-SENSORMODEL

In this section, we describe the CMOS image-sensor opera-
tion and signal-and-noise model we use in the development and
analysis of our synthesis algorithm. We use the model to define
sensor SNR and dynamic range.

The image sensor used in an analog or digital camera con-
sists of a 2-D array of pixels. In a typical CMOS image sensor
[3], each pixel consists of a photodiode, a reset transistor, and

several other readout transistors (see Fig. 1). The photodiode
is reset before the beginning of capture. During exposure, the
photodiode converts incident light into photocurrent , for

, where is the exposure time. This process is quite
linear, and, thus, is a good measure of incident light in-
tensity. Since the photocurrent is too small to measure directly,
it is integrated onto the photodiode parasitic capacitor
and the charge (or voltage) is read out at the end of expo-
sure time. Dark current and additive noise corrupt the output
signal charge. The noise can be expressed as the sum of three
independent components:

• Shot noise , which is normalized (zero mean) Poisson
distributed. We assume here that the photocurrent is large
enough and, thus, shot noise can be approximated by a
Gaussian , where is
the electron charge.

• Reset noise (including offset FPN) .
• Readout circuit noise (including quantization noise)

with zero mean and variance .
Thus, the output charge from a pixel can be expressed as

provided , the saturation charge, also referred to
aswell capacity.

If the photocurrent is constant over exposure time, SNR is
given by

SNR (1)

Note that SNR increases with , first at 20 dB per decade
when reset and readout noise variance dominates, and then at
10 dB per decade when shot noise variance dominates. SNR also
increases with . Thus, it is always preferred to have the longest
possible exposure time. Saturation and change in photocurrent
due to motion, however, makes it impractical to make exposure
time too long.

Dynamic range is a critical figure of merit for image sensors.
It is defined as the ratio of the largest nonsaturating photocurrent
to the smallest detectable photocurrent, typically defined as the
standard deviation of the noise under dark conditions. Using the
sensor model, dynamic range can be expressed as

DR (2)

Note that dynamic range decreases as exposure time increases
due to the adverse effects of dark current. To increase dynamic
range, one needs to either increase well capacity, and/or
decrease read noise.

III. H IGH-DYNAMIC -RANGE IMAGE SYNTHESIS

We first illustrate the effect of saturation and motion on image
capture using the examples in Figs. 2 and 3. The first plot in
Fig. 2 represents the case of a constant low light, where pho-
tocurrent can be well estimated from . The second plot
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Fig. 2. Q(t) versust for three lighting conditions. (a) Constant low light.
(b) Constant high light. (c) Light changing.

represents the case of a constant high light, where ,
and the photocurrent cannot be well estimated from . The
third plot is for the case when light changes during exposure
time, e.g., due to motion. In this case, photocurrent at the be-
ginning of exposure time again cannot be well estimated
from . To avoid saturation and the change of due
to motion, exposure time may be shortened, e.g., toin Fig. 2.
Since in conventional sensor operations, exposure time is set
globally for all pixels, this results in reduction of SNR, espe-
cially for pixels with low light. This point is further demon-
strated by the images in Fig. 3, where a bright square object
moves diagonally across a dark background. If exposure time is
set long to achieve high SNR, it results in significant motion blur
as shown in Fig. 3(b). On the other hand, if exposure time is set
short, SNR deteriorates resulting in the noisy image of Fig. 3(c).

An important feature of several CMOS image-sensor archi-
tectures is nondestructive readout [23], [24]. Using this feature
together with high-speed readout, several images can be cap-
tured without resetting during exposure. This is illustrated in the
examples in Fig. 2, where each pixel signal is sampled at, ,

, and . The estimation method described in [14] uses
the LSBS to estimate photocurrent [ in Fig. 2(a),
in Fig. 2(b)], and does not address motion blur. Applying this
method to the example in Fig. 3, we get the same image as in

(a) (b)

(c) (d)

Fig. 3. (a) Ideal image. (b) Long-exposure-time image. (c) Short-exposure-
time image. (d) Image produced using our algorithm.

Fig. 2(b). The algorithm we describe in this paper usesall the
samples before saturation to estimate photocurrent at the begin-
ning of exposure, so for the high light pixel example in Fig. 2,
photocurrent is estimated using the images atand , while
the photocurrent for the low light pixel is estimated using the
four images. Motion blur in the third case can be reduced by
using the first capture to estimate photocurrent at the beginning
of exposure time . Applying our algorithm to the example
in Fig. 3, we get the image (d), which is almost blur free and less
noisy.

Our algorithm operates on images,1 captured at times
, as follows:

1) Capture first image, set .
2) For each pixel: Use thephotocurrent estimation algorithm

to find the photocurrent estimate from .
3) Capture next image.
4) For each pixel: Use themotion-detection algorithmto check

if motion/saturation has occurred.

i) Motion/saturation detected: Set final photocurrent
estimate

ii) No Motion/saturation detected or decision deferred:
Use thephotocurrent estimation algorithmto find

from and and set .

5) Repeat steps 3 and 4 until .

The following two sections provide details of the estimation
and detection parts.

1Actually the algorithm operates onn + 1 images, the first image, which is
ignored here, is taken att = 0 and is used to reduce reset noise and offset FPN
as discussed in detail in Section IV.
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IV. PHOTOCURRENTESTIMATION

Dynamic range at the low-illumination end can be enhanced
using multiple captures by appropriatelyaveragingeach pixel’s
photocurrent samples to reduce readout noise. Since the sensor
noise depends on the signal and the photocurrent samples are de-
pendent, equal weight averaging may not reduce readout noise
and can in fact be worse than simply using the LSBS to estimate
photocurrent. In this section, we use linear mean-square error
(MSE) estimation to derive the optimal weights to be used in
the averaging. We first formulate the problem. We then present
estimation algorithms for three cases: 1) when reset noise and
offset FPN are ignored; 2) when reset noise and FPN are consid-
ered; and 3) a recursive estimator for case 2) without the need
to store all the samples. Simulation results are presented and
the performance of the three algorithms is compared in the last
subsection.

A. Problem Formulation

We assume pixel charge samples captured at times
and define the pixel current .

The th charge sample is thus given by

for (3)

where is the readout noise of theth sample, is the shot
noise generated during the time interval , and
is the reset noise. , , and are independent zero-mean
random variables with

for

for and

We wish to estimate the photocurrentfrom the samples.
This is a parameter-estimation problem that can be formulated
using several criteria, such as likelihood ratio and MSE [25].
Maximum-likelihood estimation achieves the smallest proba-
bility of error, but is generally difficult to derive and leads to
nonlinear solutions that are not easy to implement in practice. In
this paper we adapt the standard linear minimum mean-square
parameter estimation (MMSE) methods (e.g., [25]) to our par-
ticular noise model.

Due to motion and/or saturation, the estimation may not use
all the samples. The detection algorithm presented in the
next section determines the LSBS/motion to be included in the
estimation. Denoting the last sample to be included by,

, the linear MMSE problem is formulated as follows.
At time , we wish to find the best unbiased linear esti-

mate, , of given , i.e., we wish to find
such that2

(4)

2For the coefficienta , we use superscript(k) to represent the number of
captures used and use subscript as the index of the coefficients for each capture.

minimizes

subject to

B. Estimation Ignoring Reset Noise and FPN

Here, we ignore reset noise and offset FPN, i.e., set .
Even though this assumption is not realistic for CMOS sensors,
it is reasonable for high-end CCDs using very high-resolution
A/D converters. As we shall see, the optimal estimate in this
case can be cast in a recursive form, which is not the case when
reset noise is considered.

To derive the best estimate, define the pixelphotocurrent
samplesas

for

Thus, given the samples , we wish to find the
best unbiased linear estimate of the parameter, i.e., weights

such that3

that minimizes

subject to

(5)

The MSE is given by

(6)

This is a convex optimization problem with a linear constraint
as in (5). To solve it, we define the Lagrangian

(7)

where is the Lagrange multiplier.
The optimal weights can be found using the conditions

(8)

3In this case, there is no need for sampleQ att = 0, therefore, weights start
with a .
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and we get [26]

where (9)

Now, to see that the optimal estimate can be cast in a recursive
form, we define a new set of weights, such that

for (10)

and can be represented in terms ofas

for

The optimal photocurrent estimate can be written in a re-
cursive form in terms of , the latest photocurrent sample,
and the previous estimate as

(11)

where

and

The MSE can also be expressed in a recursive form as

(12)

This is important because will be used later in the motion-
detection algorithm.

The first estimator is approximated by . In (10) and (12),
is approximated using the latest estimate of, , i.e.,
. We found that this approximation yields MSE very

close to the optimal case, i.e., whenis known.

C. Estimation Considering Reset Noise and FPN

From (3) and (4), to minimize the MSE of the best estimator
, we need

which gives

(13)

where

(14)

Bring (13) into (4), we have

(15)

Therefore, we redefinephotocurrent sample as

for (16)

such that corresponds to an estimate with aweightedCDS
operation. Compared with a conventional CDS operation [1],
where

(17)

the weighting has the effect of reducing the additional readout
noise due to CDS. In a conventional CDS as in (17), the readout
noise power is always doubled, while in a weighted CDS as in
(16), the readout noise power is , where , as
given in (14).

The pixel current estimate given the firstsamples can be
expressed as

where

and

The optimal coefficient vector is given by

(18)

where

...

and is the Lagrange multiplier for the unbiased constraint.
In [26], we show that the above solution cannot be expressed

in a recursive form, and, thus, finding requires the storage of
the vector and inverting a matrix.
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D. Recursive Algorithm

Now, we restrict ourselves to recursive estimates, i.e., esti-
mates of the form

where again

The coefficient can be found by solving the equations

and

Define the MSE of as

(19)

and the covariance between and as

(20)

The MSE of can be expressed in terms of and as

(21)

To minimize the MSE, we require that

which gives

(22)

Note that , , and can all be recursively updated.
To summarize, the suboptimal recursive algorithm is as

follows.
• Set initial parameter and estimate values as follows:

• At each iteration, the parameter and estimate values are up-
dated as follows:

Fig. 4. Distribution of estimation weights among total 32 samples used in the
nonrecursive and recursive algorithms.

Note that to find the new estimate using this suboptimal re-
cursive algorithm, only three parameters,, and , the old
estimate , and the new sample value are needed. Thus,
only a small amount of memory per pixel is required indepen-
dent of the number of images captured.

E. Simulation Results

In this subsection, we present simulation results that
demonstrate the SNR improvements using the nonrecursive
algorithm described in Section IV-C, the recursive algorithm in
Section IV-D, and the multiple capture scheme in [14].

The simulation results are summarized in Figs. 4–6. The
sensor parameters assumed in the simulations are as follows

e-

fA

e-

e-

ms

ms

Fig. 4 plots the weights for the nonrecursive and recursive al-
gorithms in Sections IV-C and D, respectively. Note that with a
typical readout noise rms (60 ein this example), later samples
are weighted much higher than earlier ones since later samples
have higher SNR. As read noise decreases, this becomes more
pronounced—the best estimate is to use the last sample only
(i.e., ) if sensor read noise is zero. On the
other extreme, if shot noise can be ignored, then, the best es-
timate is averaging (i.e., ). Also note
that weights for the nonrecursive algorithm can be negative. It
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Fig. 5. Simulated equivalent readout noise rms value versus number of
samplesk.

Fig. 6. Estimation enhances the SNR and dynamic range.

is preferred to weight the later samples higher since they have
higher SNR, and this can be achieved by using negative weights
for some of the earlier samples under the unbiased estimate con-
strain (sum of the weights equals one).

Fig. 5 compares the equivalent readout noise rms at low il-
lumination level corresponding to fA as a function
of the number of samples for conventional sensor operation
and using the nonrecursive and the recursive estimation algo-
rithms. As can be seen, the equivalent readout noise after the
last sample is reduced from 86 e- when no estimation is used to
35.8 e- when the nonrecursive estimator is used and to 56.6 e-
when the recursive estimator is used. Also note the drop in the
equivalent readout noise rms due to the weighted CDS used in
our algorithms.

Fig. 6 plots SNR versusfor conventional sensor operation,
where the last sample is used, and using our estimation al-
gorithm. Note that by using our algorithm, SNR is consistently

higher, due to the reduction in read noise. The improvement
is most pronounced at low light. In this example, sensor with
single capture yields dynamic range of 47 dB. Using our al-
gorithm, dynamic range is extended to 85 dB—an increase of
30 dB at the high illumination end and 8 dB at the low illumi-
nation. In general, the dynamic-range extension achievable at
the low-illumination end depends on the read noise power and
number of samples used in the estimation—the higher the read
noise and the more samples are used, the greater the dynamic
range is extended. On the other hand, the dynamic range ex-
tension achievable at the high-illumination end depends on the
sensor readout time—the faster the readout, the greater the dy-
namic range is extended.

V. MOTION/SATURATION DETECTION

The derivation of the recursive linear-estimation algorithm in
the previous section assumed that is constant and that satu-
ration does not occur before . In this section, we describe an
algorithm for detecting change in the value of due to mo-
tion or saturation before the new image is used to update the
photocurrent estimate. Since the statistics of the noise are not
completely known and no motion model is specified, it is not
possible to derive an optimal detection algorithm. Our algorithm
is, therefore, based on heuristics. By performing the detection
step prior to each estimation step we form a blur free high dy-
namic range image from the captured images.

The algorithm operates on each pixel separately. After theth
capture, the best MSE linear estimate of, , and its MSE ,
are computed as detailed in Section IV-D. If the current stays
constant, the next observation would be

(23)

and the best predictor of is with the prediction MSE
given by

(24)

where , , , and are given in (19)– (22), respectively.
Thus, to decide whether the input signalchanged between

time and , we compare
with . A simple decision rule would be to declare that

motion has occurred if

(25)

and to use as the final estimate of, otherwise to use
to update the estimate of, i.e., . The constant is
chosen to achieve the desired tradeoff between SNR and motion
blur. The higher the , the more the motion blur if changes
with time, but also the higher the SNR ifis a constant, and
vice versa.
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Six of the 65 images of the high dynamic scene captured
nondestructively at 1000 frames/s. (a)t = 0 ms. (a)t = 0 ms. (b)t = 10 ms.
(c) t = 20 ms. (d)t = 30 ms. (e)t = 40 ms. (f)t = 50 ms.

One potential problem with this “hard” decision rule is that
gradual drift in can cause accumulation of estimation error
resulting in undesired motion blur. To address this problem, we
propose the following “soft” decision rule.

Motion-detection algorithm: For each pixel, after the st
capture.

1) If , then declare thatno motion
detected. Use to update and set , .

2) If , , or , then
declare thatmotion detected. Use as the final estimate
of .

3) If , thendefer the decision
and set , .

4) If , thendefer the
decisionand set , .

The counters , record the number of times the decision
is deferred, and and are chosen to tradeoff
SNR with motion blur.

VI. EXPERIMENTAL RESULTS

In this section, we present experimental results performed
using a PC-based high-speed CMOS imaging system [27] de-
signed around the 10 000 frames/s CMOS DPS chip.

The high-dynamic-range scene used in the experiment com-
prised a doll house under direct illumination from above, and a
rotating model airplane propeller. We captured 65 frames of the
scene at 1000 frames/s nondestructively, and uniformly spaced
over a 64-ms exposure time. Fig. 7 shows some of the images
captured. Note that as exposure time increases, the details in the
shadow area (such as the word “Stanford”) begin to appear while
the high-illumination area suffers from saturation and the area
where the propeller is rotating suffers from significant motion
blur.

We first applied the LSBS algorithm [14] to the 65 images to
obtain the high dynamic range image in Fig. 8. While the image
indeed contains many of the details in both low and high illu-
mination areas, it suffers from motion blur and is quite noisy

Fig. 8. High-dynamic-range image synthesized using the LSBS algorithm.

Fig. 9. High-dynamic-range motion blur free image synthesized from the 65
images.

in the dark areas. Fig. 9 shows the high-dynamic-range motion
blur free image synthesized from the 65 captures using the al-
gorithm discussed in this paper. Note that the dark background
is much smoother due to reduction in readout and FPN, and the
motion blur caused by the rotating propeller in Fig. 8 is almost
completely eliminated.

To illustrate the operation of our algorithm, in Fig. 10 we plot
the sampled and estimated photocurrents for three pixels under
different illumination levels. Note how motion blur is prevented
in the third pixel using the motion-detection algorithm.



538 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 50, NO. 4, APRIL 2003

(a) (b)

(c)

Fig. 10. Readout values (marked by “+”) and estimated values (solid lines) for (a) pixel in the dark area, (b) pixel in bright area, and (c) pixel with varying
illumination due to motion.

VII. CONCLUSION

The high frame-rate capability of CMOS image sensors
makes it possible to nondestructively capture several images
within a normal exposure time. The captured images provide
additional information that can be used to enhance the perfor-
mance of many still and standard video imaging applications
[11]. The paper describes an algorithm for synthesizing a high
dynamic range, motion blur free image from multiple captures.
The algorithm consists of two main procedures, photocurrent
estimation and motion/saturation detection. Estimation is used
to reduce read noise, and, thus, enhance dynamic range at the
low illumination end. Saturation detection is used to enhance
dynamic range at the high illumination end, while motion
blur detection ensures that the estimation is not corrupted by
motion. Motion blur detection also makes it possible to extend
exposure time and to capture more images, which can be used
to further enhance dynamic range at the low illumination end.
Experimental results demonstrate that this algorithm achieves
increased SNR, enhanced dynamic range, and motion blur
prevention.
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