Lecture Notes 10
Image Sensor Optics

- Imaging optics
 - Space-invariant model
 - Space-varying model
- Pixel optics
 - Transmission
 - Vignetting
- Microlens
Image sensor optics consist of (a) imaging optics and (b) pixel optics.
A generalized model for rotationally symmetric imaging optics

Imaging Optics: Camera Equation

\[I_{\text{ideal}}(x, y; \lambda) \equiv \pi \frac{T(\lambda)R(x, y; \lambda)}{1 + 4(1 + m)^2 (f/\#)^2} L_{\text{scene}} \left(\frac{x}{m}, \frac{y}{m}; \lambda \right) \]

- \(I_{\text{ideal}} \): ideal, unaberrated, geometric image irradiance distribution \((W/m^2) \)
- \(L_{\text{scene}} \): Lambertian object radiance distribution \((W/sr \ m^2) \)

- \(m = -|z_i/z_o| \): magnification
- \(T \): transmittance
- \(R \): relative illumination factor (e.g., \(\cos^4 \) fall-off)
- \(f/\# = f/D \): f-number

Imaging optics map 2D object radiance distribution \((W/sr \ m^2) \) into 2D image irradiance distribution \((W/m^2) \)

Diffraction, which is caused at aperture edges, is the fundamental reason why a plane wave can not be focussed into a perfect geometric point.
Diffraction: Space Domain Description

Image formation process with incoherent illumination can be described in the space domain by a convolution operation

\[I_{\text{image}}(x, y; \lambda) = \text{PSF}(x, y; \lambda) \ast I_{\text{ideal}}(x, y; \lambda) \]

\(I_{\text{image}} \): blurred, aberrated, distorted image irradiance distribution
\(I_{\text{ideal}} \): ideal, unaberrated, geometric image irradiance distribution

PSF: point spread function, i.e., response of optical system in image plane to a point excitation in object plane
\(\ast \): convolution operator
Diffraction: Frequency Domain Description

Alternatively, image formation in shift-invariant systems can be viewed as a linear filtering process in the frequency domain

\[
F \{I_{image}(x, y; \lambda)\} = F \{\text{PSF}(x, y; \lambda)\} \cdot F \{I_{ideal}(x, y; \lambda)\} = \text{OTF}(f_x, f_y; \lambda) \cdot F \{I_{ideal}(x, y; \lambda)\}
\]

\[
I_{image}(x, y; \lambda) = F^{-1}\{\text{OTF}(f_x, f_y; \lambda) \cdot F \{I_{ideal}(x, y; \lambda)\}\}
\]

The optical transfer function (OTF) is normalized to preserve radiometry. Its magnitude is the modulation transfer function (MTF)

\[
\text{MTF}(f_x, f_y; \lambda) = |\text{OTF}(f_x, f_y; \lambda)| = \left. \frac{F \{\text{PSF}(x, y; \lambda)\}}{F \{\text{PSF}(x, y; \lambda)\}} \right|_{f_x=0, f_y=0}
\]
Example: Diffraction-limited Lens

\[\text{MTF}(f_r) = \frac{2}{\pi} (\varphi - \cos \varphi \sin \varphi) \text{ with } \varphi = \cos^{-1}(f_r \lambda f/\#) \text{ and } f_{r, \text{cutoff}} = \frac{1}{\lambda f/\#} \]
System MTF

If the system is linear and space-invariant, the system MTF (optics + sensor) in the frequency domain can then be easily computed

$$MTF_{system}(f_x, f_y; \lambda) = MTF_{optics}(f_x, f_y; \lambda) \cdot MTF_{geometric}(f_x, f_y) \cdot MTF_{diffusion}(f_x, f_y; \lambda)$$

To obtain the image spectrum we apply the MTF as a linear filter

$$I_{image}(f_x, f_y; \lambda) = MTF_{system}(f_x, f_y; \lambda) \cdot I_{object}(f_x, f_y; \lambda)$$
Modeling Real Imaging Lenses

Vignetting Distortion Illumination Effects

Wavefront Aberrations Point Spread Function (PSF) Modulation Transfer Function (MTF)

Image plane is segmented into isoplanatic regions: $\Omega_1, \Omega_2, \ldots, \Omega_n$
Let Ω_k, $k = 1, \ldots, n$ be aplanatic image segments, then

$$I_{image} (x, y; \lambda) = \sum_k \text{PSF}_{\Omega_k} (x, y; \lambda) \ast I_{\text{ideal},\Omega_k} (x, y; \lambda)$$

or

$$I_{image} (x, y; \lambda) = \mathcal{F}^{-1} \left\{ \sum_k \text{OTF}_{\Omega_k} (f_x, f_y; \lambda) \cdot \mathcal{F} \left\{ I_{\text{ideal},\Omega_k} (x, y; \lambda) \right\} \right\}$$

Example: Double Gauss f/2.0 Lens

Double Gauss f/2.0 Lens: MTF

Pixel Optics

Incident Photons

Pixel Transmittance

\[F^+(z') \quad F^-(z') \]
Layer 0

\[L_0 \]
Layer 1

\[L_1 \]
Layer j-1

\[L_{j-1,j} \]
Layer j

\[L_j \]
Layer m

\[L_m \]
Layer m+1

\[L_{m,m+1} \]

\[F^+(z'') \quad F^-(z) \]

Transmission

F. Abeles, Ann. de Phys. 5, pp. 596-640 (1950)
Example: Transmittance 0.18\(\mu\)m CMOS

Pixel transmittance is \(\lambda\)-dependent (even for dispersion-free materials)

Example: Transmittance 0.18μm CMOS

Pixel transmittance (λ-averaged) is approximately independent of angle

Pixel Vignetting

Pixel Vignetting: Effect of Pixel Height

Reduction in optical efficiency as a function of the number of metal layers in a 0.18\(\mu\)m standard CMOS process (f/1.8 imaging lens)

Pixel Vignetting: Effect of Technology Scaling

Reduction in optical efficiency for a standard APS pixel with a 30% fill-factor using 2 metal layers as a function of the feature size of CMOS technology

Optical Efficiency

- **Definition:**
 - Optical efficiency (OE) is the ratio of the photons incident of the substrate and the photons incident on the pixel surface.

- **Sources of photon loss:**
 - Back-reflections in dielectric stack (air-SiO$_2$, SiO$_2$-Si)
 - Photons absorbed in dielectric stack (SiON)
 - \(\Rightarrow \) Pixel transmittance \(T(\lambda,\theta) \)
 - Photons scattered away from pixel (pixel cross-talk)
 - Photons rejected by metal
 - \(\Rightarrow \) Pixel vignetting \(V(x,y,\theta) \)

- **Description:**
 - \(OE(x,y,\lambda,\theta) = T(\lambda,\theta) V(x,y,\theta) \)
Microlens

- Focus light onto photo-sensitive region – increases effective fill factor from 25-40% to 60-80% (and sensitivity by $\geq 2X$)
- Less effective if photosensitive area is irregularly shaped

Microlens Fabrication

- Lens material requirements:
 - Highly transparent in the visible light region
 - Index of refraction > 1.59
 - Can be applied below $500^\circ C$
 - No degradation or aging
 - Semiconductor processing compatible
 - Can be patterned with feature size commensurate with the pixel size
- Lens materials are typically i-line or DUV resists
- Base materials are acrylic-based resists, polyimide resists, epoxy resists, polyorganosiloxane, polyorganosilicate
Microlens and the Main Lens

- Microlens is optimized for a specific main lens system
- Rays incident on the microlens form a cone with $\text{NA} = \sin \varphi$
- NA varies as a function of the size and position of the exit pupil
- Principle ray at the periphery of the sensor has an angle δ, chief ray angle (CRA), between the ray and the optical axis (δ depends on the position of the pixel on the sensor)

Microlens and F-Number

- High F-number: rays are parallel (NA ≈ 0)
- Low F-number: rays arrive at an angle (NA large) – microlens effectiveness low

Micro lens: How to concentrate photons

Shallow Pixel

Deep Pixel
Micro lens: How to concentrate photons

Shallow Pixel

Deep Pixel
Micro lens: How to concentrate photons

\[\text{Shallow Pixel} \]

\[NA = \sqrt{\frac{1}{1+4(f/#)^2}} \]

\[\text{Deep Pixel} \]

\[NA' = \sqrt{\frac{1}{1+4(f/#')^2}} \]
Micro lens: How to concentrate photons

Shallow Pixel

\[f / \# = \frac{f_{\mu \text{Lens}}}{D_{\mu \text{Lens}}} \]

Deep Pixel

\[f / \#' = \frac{f'_{\mu \text{Lens}}}{D_{\mu \text{Lens}}} \]
Micro lens: How to concentrate photons

- Conservation of etendue
 \[G = 2NA_{\text{imaging}}w_{\text{pixel}} = 2NA_{\mu\text{lens}}w_{\text{diode}} \]

- Etendue limits light collection efficiency (NA)
 \[\Rightarrow \] Bigger NA allows bigger etendue

- Concentration depends on ratio of NA of microlens and imaging lens
 \[\Rightarrow \] For a 2x space concentration \((w_{\text{diode}} = w_{\text{pixel}}/2)\)
 \[\Rightarrow 2NA_{\mu\text{lens}} > NA_{\text{imaging}} \]

- Diffraction limits spot size (f-number)
 \[\Rightarrow \] Smaller f-number allows smaller spot size
Micro lens: Concentration

Pixel Position

- For large CRA (pixel away from the center of the lens, or exit pupil close to the sensor), ray may not focus on the photo-sensitive region
- Effect: non-uniform sensitivity profile across image sensor

Micro lens: Redirection (w/o offset)

Micro lens: Redirection (with offset)

Pixel width: 3\(\mu\)m
Pixel Height: 8\(\mu\)m

\[
\text{Optical Efficiency} = f_{\text{ml}} \tan(\theta)
\]

Optical Efficiency: Summary

- Without microlens:
 \[\text{OE}(x,y,\lambda,\theta) = T(\lambda,\theta) \ V(x,y,\theta) \]

- With microlens:
 \[\text{OE}(x,y,\lambda,\theta) = T(\lambda,\theta) \ V(x,y,\theta) \ ML(x,y,\theta) \]
 *where \(ML(x,y,\theta) \) represents a correction factor to account for the concentration and/or redirection performed by the microlens
Improving OE

- Optimizing dielectric stack thickness
- Make sure dielectrics are not light absorbing
- Utilize different dielectric materials to achieve total internal reflection
- Add an airgap between pixels (total internal reflection)