Lecture Notes 2

Expectation

- Definition and Properties
- Mean and Variance
- Markov and Chebychev Inequalites
- Expectations involving two random variables
- Scalar MSE Estimation
- Scalar Linear Estimation
- Jointly Gaussian random variables

Expectation

- Let $X \in \mathcal{X}$ be a discrete r.v. with pmf $p_{X}(x)$ and let $g(x)$ be a function of x. The expectation (or expected value or mean) of $g(X)$ can be defined as

$$
\mathrm{E}(g(X))=\sum_{x \in \mathcal{X}} g(x) p_{X}(x)
$$

- For a continuous r.v. $X \sim f_{X}(x)$, the expected value of $g(X)$ can be defined as

$$
\mathrm{E}(g(X))=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

- Expectation is linear, i.e., for any constant a

$$
\mathrm{E}\left[a g_{1}(X)+g_{2}(X)\right]=a \mathrm{E}\left(g_{1}(X)\right)+\mathrm{E}\left(g_{2}(X)\right)
$$

In particular, $\mathrm{E}(a)=a$

- Remark: We know that a r.v. is completely specified by its cdf (pdf, pmf), so why do we need expectation?
- Expectation provides a summary or an estimate of the r.v. - a single number-instead of specifying the entire distribution
- It is far easier to estimate the expectation of a r.v. from data than to estimate its distribution
- Expectation can be used to bound or estimate probabilities of interesting events (as we shall see)

Mean and Variance

- The first moment (or mean) of $X \sim f_{X}(x)$ is

$$
\mathrm{E}(X)=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

- The second moment (or mean squared or average power) of X is

$$
\mathrm{E}\left(X^{2}\right)=\int_{-\infty}^{\infty} x^{2} f_{X}(x) d x
$$

- The variance of X is

$$
\operatorname{Var}(X)=\mathrm{E}\left[(X-\mathrm{E}(X))^{2}\right]=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}
$$

Hence $\mathrm{E}\left(X^{2}\right) \geq(\mathrm{E}(X))^{2}$

- The standard deviation of X is defined as $\sigma_{X}=\sqrt{\operatorname{Var}(X)}$, i.e., $\operatorname{Var}(X)=\sigma_{X}^{2}$
- In general, the k th moment (k a positive integer) is

$$
\mathrm{E}\left(X^{k}\right)=\int_{-\infty}^{\infty} x^{k} f_{X}(x) d x
$$

- Mean and Variance for Famous RVs:

Random Variable	Mean	Variance
$\operatorname{Bern}(p)$	p	$p(1-p)$
$\operatorname{Geom}(p)$	$\frac{1}{p}$	$\frac{1-p}{p^{2}}$
$\operatorname{Binom}(n, p)$	$n p$	$n p(1-p)$
$\operatorname{Poisson}(\lambda)$	λ	λ
$\mathrm{U}[a, b]$	$\frac{a+b}{2}$	$\frac{(b-a)^{2}}{12}$
$\operatorname{Exp}(\lambda)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^{2}}$
$\operatorname{Laplace}(\lambda)$	0	$\frac{2}{\lambda^{2}}$
$\mathcal{N}\left(\mu, \sigma^{2}\right)$	μ	σ^{2}

Expectation Can Be Infinite or May Not Exist

- Expectation can be infinite. For example

$$
f_{X}(x)=\left\{\begin{array}{ll}
1 / x^{2} & 1 \leq x<\infty \\
0 & \text { otherwise }
\end{array} \Rightarrow \mathrm{E}(X)=\int_{1}^{\infty} x / x^{2} d x=\infty\right.
$$

- Expectation may not exist. To find conditions for expectation to exist, consider

$$
\mathrm{E}(X)=\int_{-\infty}^{\infty} x f_{X}(x) d x=-\int_{-\infty}^{0}|x| f_{X}(x) d x+\int_{0}^{\infty}|x| f_{X}(x) d x
$$

so either $\int_{-\infty}^{0}|x| f_{X}(x) d x$ or $\int_{0}^{\infty}|x| f_{X}(x) d x$ must be finite

- Example: The standard Cauchy r.v. has the pdf

$$
f(x)=\frac{1}{\pi\left(1+x^{2}\right)}
$$

Since both $\int_{-\infty}^{0}|x| f(x) d x$ and $\int_{0}^{\infty}|x| f(x) d x$ are infinite, its mean does not exist! (The second moment of the Cauchy is $\mathrm{E}\left(X^{2}\right)=\infty$, so it exists)

Bounding Probability Using Expectation

- In many cases we do not know the distribution of a r.v. X but want to find the probability of an event such as $\{X>a\}$ or $\{|X-\mathrm{E}(X)|>a\}$
- The Markov and Chebyshev inequalities give upper bounds on the probabilities of such events in terms of the mean and variance of the random variable
- Example: Let $X \geq 0$ represent the age of a person in the Bay Area. If we know that $\mathrm{E}(X)=35$ years, what fraction of the population is ≥ 70 years old?

Clearly we cannot answer this question knowing only the mean, but we can say that $\mathrm{P}\{X \geq 70\} \leq 0.5$, since otherwise the mean would be larger than 35

- This is an application of the Markov inequality

Markov Inequality

- For any r.v. $X \geq 0$ with finite mean $\mathrm{E}(X)$ and any $a>1$,

$$
\mathrm{P}\{X \geq a \mathrm{E}(X)\} \leq \frac{1}{a}
$$

Proof: Define the indicator function of the set $A=\{x \geq a \mathrm{E}(X)\}$:

$$
\mathrm{I}_{A}(x)= \begin{cases}1 & x \geq a \mathrm{E}(X) \\ 0 & \text { otherwise }\end{cases}
$$

Clearly, $\mathrm{I}_{A} \leq \frac{X}{a \mathrm{E}(X)}$
Since $\mathrm{E}\left(\mathrm{I}_{A}\right)=\mathrm{P}(A)=\mathrm{P}\{X \geq a \mathrm{E}(X)\}$, taking the expectations of both sides we obtain the Markov Inequality

Chebyshev Inequality

- Let X be a device parameter in an integrated circuit (IC) with known mean and variance. The IC is out-of-spec if X is more than, say, $3 \sigma_{X}$ away from its mean. We wish to find the fraction of out-of-spec ICs, namely, $\mathrm{P}\left\{|X-\mathrm{E}(X)| \geq 3 \sigma_{X}\right\}$ The Chebyshev inequality gives us an upper bound on this fraction in terms the mean and variance of X
- Let X be a r.v. with known $\mathrm{E}(X)$ and $\operatorname{Var}(X)=\sigma_{X}^{2}$. The Chebyshev inequality states that for every $a>1$,

$$
\mathrm{P}\left\{|X-\mathrm{E}(X)| \geq a \sigma_{X}\right\} \leq \frac{1}{a^{2}}
$$

Proof: We use the Markov inequality. Define the r.v. $Y=(X-\mathrm{E}(X))^{2} \geq 0$.
Since $\mathrm{E}(Y)=\sigma_{X}^{2}$, the Markov inequality gives

$$
\mathrm{P}\left\{Y \geq a^{2} \sigma_{X}^{2}\right\} \leq \frac{1}{a^{2}}
$$

But $\left\{|X-\mathrm{E}(X)| \geq a \sigma_{X}\right\}$ occurs iff $\left\{Y \geq a^{2} \sigma_{X}^{2}\right\}$. Thus

$$
\mathrm{P}\left\{|X-\mathrm{E}(X)| \geq a \sigma_{X}\right\} \leq \frac{1}{a^{2}}
$$

Expectation Involving Two RVs

- Let $(X, Y) \sim f_{X, Y}(x, y)$ and let $g(x, y)$ be a function of x and y. The expectation of $g(X, Y)$ is given by

$$
\mathrm{E}(g(X, Y))=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y
$$

The function $g(X, Y)$ may be $X, Y, X^{2}, X+Y$, etc.

- The correlation of X and Y is defined as $\mathrm{E}(X Y)$ X and Y are said to be orthogonal if $\mathrm{E}(X Y)=0$
- The covariance of X and Y is defined as

$$
\operatorname{Cov}(X, Y)=\mathrm{E}[(X-\mathrm{E}(X))(Y-\mathrm{E}(Y))]=\mathrm{E}(X Y)-\mathrm{E}(X) \mathrm{E}(Y)
$$

X and Y are said to be uncorrelated if $\operatorname{Cov}(X, Y)=0$

- Note that $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$
- If X and Y are independent then they are uncorrelated
- X and Y uncorrelated does not necessarily imply that they are independent
- The correlation coefficient of X and Y is defined as

$$
\rho_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

Fact: $\left|\rho_{X, Y}\right| \leq 1$ with equality iff $(X-\mathrm{E}(X))$ is a linear function of $(Y-\mathrm{E}(Y))$
The correlation coefficient is a measure of how closely $(X-\mathrm{E}(x))$ can be approximated by a linear function of $(Y-\mathrm{E}(Y))$ (more on this soon)

Conditional Expectation

- Let $(X, Y) \sim f_{X, Y}(x, y)$. If $f_{Y}(y) \neq 0$, the conditional pdf of X given $Y=y$ is given by

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}
$$

- We know that $f_{X \mid Y}(x \mid y)$ is a pdf for X (function of y), so we can define the expectation of any function $g(X, Y)$ w.r.t. $f_{X \mid Y}(x \mid y)$ as

$$
\mathrm{E}(g(X, Y) \mid Y=y)=\int_{-\infty}^{\infty} g(x, y) f_{X \mid Y}(x \mid y) d x
$$

- Example: If $g(X, Y)=X$, then the conditional expectation of X given $Y=y$ is

$$
\mathrm{E}(X \mid Y=y)=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d x
$$

- Example: If $g(X, Y)=X Y$, then $\mathrm{E}(X Y \mid Y=y)=y \mathrm{E}(X \mid Y=y)$
- We define the conditional expectation of $g(X, Y)$ given Y as the random variable $\mathrm{E}(g(X, Y) \mid Y)$, which is a function of the random variable Y
- In particular, $\mathrm{E}(X \mid Y)$ is the conditional expectation of X given Y, a r.v. that is a function of Y
- Iterated expectation: In general we can find $\mathrm{E}(g(X, Y))$ as

$$
\mathrm{E}(g(X, Y))=\mathrm{E}_{Y}\left[\mathrm{E}_{X}(g(X, Y) \mid Y)\right],
$$

where E_{X} means expectation w.r.t. $f_{X \mid Y}(x \mid y)$ and E_{Y} means expectation w.r.t. $f_{Y}(y)$

- Example: Coin with random bias. A coin with random bias P such that $\mathrm{E}(P)=1 / 3$ is flipped n times independently. Let X be the number of heads. Find $\mathrm{E}(X)$

Conditional Variance

- Let X and Y be two r.v.s. We define the conditional variance of X given $Y=y$ to be the variance of X using $f_{X \mid Y}(x \mid y)$, i.e.,

$$
\begin{aligned}
\operatorname{Var}(X \mid Y=y) & =\mathrm{E}\left[(X-\mathrm{E}(X \mid Y=y))^{2} \mid Y=y\right] \\
& =\mathrm{E}\left(X^{2} \mid Y=y\right)-[\mathrm{E}(X \mid Y=y)]^{2}
\end{aligned}
$$

- The r.v. $\operatorname{Var}(X \mid Y)$ is simply a function of Y that takes on the values $\operatorname{Var}(X \mid Y=y)$. Its expected value is

$$
\mathrm{E}_{Y}[\operatorname{Var}(X \mid Y)]=\mathrm{E}_{Y}\left[\mathrm{E}\left(X^{2} \mid Y\right)-(\mathrm{E}(X \mid Y))^{2}\right]=\mathrm{E}\left(X^{2}\right)-\mathrm{E}\left[(\mathrm{E}(X \mid Y))^{2}\right]
$$

- Since $\mathrm{E}(X \mid Y)$ is a r.v., it has a variance
$\operatorname{Var}(\mathrm{E}(X \mid Y))=\mathrm{E}_{Y}\left[(\mathrm{E}(X \mid Y)-\mathrm{E}[\mathrm{E}(X \mid Y)])^{2}\right]=\mathrm{E}\left[(\mathrm{E}(X \mid Y))^{2}\right]-(\mathrm{E}(X))^{2}$
- Law of Conditional Variances: Adding the above expressions, we obtain

$$
\operatorname{Var}(X)=\mathrm{E}(\operatorname{Var}(X \mid Y))+\operatorname{Var}(\mathrm{E}(X \mid Y))
$$

Scalar MSE Estimation

- Consider the following signal processing problem:

- X is a signal with known statistics, i.e., known pdf $f_{X}(x)$
- The signal is transmitted (or stored) over a noisy channel with known statistics, i.e., conditional pdf $f_{Y \mid X}(y \mid x)$
- We observe the channel output Y and wish to find the estimate $\hat{X}(Y)$ of X that minimizes the mean squared error

$$
\mathrm{MSE}=\mathrm{E}\left[(X-\hat{X}(Y))^{2}\right]
$$

- The \hat{X} that achieves the minimum MSE is called the MMSE estimate of X (given Y)

MMSE Estimate

- Theorem: The MMSE estimate of X given the observation Y and complete knowledge of the joint pdf $f_{X, Y}(x, y)$ is

$$
\hat{X}(Y)=\mathrm{E}(X \mid Y),
$$

and the MSE of \hat{X}, i.e., the minimum MSE, is

$$
\operatorname{MMSE}=\mathrm{E}_{Y}(\operatorname{Var}(X \mid Y))=\operatorname{Var}(X)-\operatorname{Var}(\mathrm{E}(X \mid Y))
$$

- Properties of the minimum MSE estimator:
- Since $\mathrm{E}(\hat{X})=\mathrm{E}_{Y}[\mathrm{E}(X \mid Y)]=\mathrm{E}(X)$, the MMSE estimate is unbiased
- If X and Y are independent, then the MMSE estimate is $\mathrm{E}(X)$
- The conditional expectation of the estimation error $\mathrm{E}[(X-\hat{X}) \mid Y=y]=0$ for every y, i.e., the error is unbiased for every $Y=y$
- The estimation error and the estimate are orthogonal

$$
\begin{aligned}
\mathrm{E}[(X-\hat{X}) \hat{X}] & =\mathrm{E}_{Y}[\mathrm{E}((X-\hat{X}) \hat{X} \mid Y)] \\
& =\mathrm{E}_{Y}[\hat{X} \mathrm{E}((X-\hat{X}) \mid Y)] \\
& =\mathrm{E}_{Y}[\hat{X}(\mathrm{E}(X \mid Y)-\hat{X})] \\
& =0
\end{aligned}
$$

In fact, the estimation error is orthogonal to any function $g(Y)$ of Y

- MMSE estimate is linear: Let $X=a U+V$ and \hat{U} and \hat{V} be the MMSE estimates of U and V, respectively
Then, the MMSE estimate of X is

$$
\hat{X}=a \hat{U}+\hat{V}
$$

- Proof of Theorem: We first show that $\min _{a} \mathrm{E}\left((X-a)^{2}\right)=\operatorname{Var}(X)$ and that the minimum is achieved for $a=\mathrm{E}(X)$, i.e., in the absence of any observations, the mean of X is its MMSE estimate

To show this, consider

$$
\begin{aligned}
\mathrm{E}\left[(X-a)^{2}\right]= & \mathrm{E}\left[(X-\mathrm{E}(X)+\mathrm{E}(X)-a)^{2}\right] \\
= & \mathrm{E}\left[(X-\mathrm{E}(X))^{2}\right]+(\mathrm{E}(X)-a)^{2}+ \\
& \quad 2 \mathrm{E}(X-\mathrm{E}(X))(\mathrm{E}(X)-a) \\
= & \mathrm{E}\left[(X-\mathrm{E}(X))^{2}\right]+(\mathrm{E}(X)-a)^{2} \geq \mathrm{E}\left[(X-\mathrm{E}(X))^{2}\right]
\end{aligned}
$$

Equality holds if and only if $a=\mathrm{E}(X)$
We use this result to show that $\mathrm{E}(X \mid Y)$ is the MMSE estimate of X given Y
First write

$$
\mathrm{E}\left[(X-\hat{X}(Y))^{2}\right]=\mathrm{E}_{Y}\left[\mathrm{E}_{X}\left((X-\hat{X}(Y))^{2} \mid Y\right)\right]
$$

From the previous result we know that for every $Y=y$ the minimum value for $\mathrm{E}_{X}\left[(X-\hat{X}(y))^{2} \mid Y=y\right]$ is obtained when $\hat{X}(y)=\mathrm{E}(X \mid Y=y)$
Therefore the overall MSE is minimized for $\hat{X}(Y)=\mathrm{E}(X \mid Y)$
In fact, $\mathrm{E}(X \mid Y)$ minimizes the MSE conditioned on every $Y=y$ and not just its average over Y

To find the minimum MSE, consider

$$
\begin{aligned}
& \mathrm{E}\left[(X-\mathrm{E}(X \mid Y))^{2}\right]=\mathrm{E}_{Y}\left(\mathrm{E}_{X}\left[(X-\mathrm{E}(X \mid Y))^{2} \mid Y\right]\right) \\
& \quad=\mathrm{E}_{Y}(\operatorname{Var}(X \mid Y))
\end{aligned}
$$

- Finally, by the law of conditional variance,

$$
\mathrm{E}(\operatorname{Var}(X \mid Y))=\operatorname{Var}(X)-\operatorname{Var}(\mathrm{E}(X \mid Y)),
$$

i.e., the minimum MSE is the difference between the variance of the signal and the variance of the MMSE estimate

The Additive Gaussian Noise Channel

- Consider a noisy channel with input $X \sim \mathcal{N}(\mu, P)$, noise $Z \sim \mathcal{N}(0, N)$, and output $Y=X+Z . X$ and Z are independent
Find the MMSE estimate of X given Y and its MSE, i.e., $\mathrm{E}(X \mid Y)$ and $\mathrm{E}(\operatorname{Var}(X \mid Y))$
- To find $f_{X \mid Y}(x \mid y)$ we use Bayes rule:

$$
f_{X \mid Y}(x \mid y)=\frac{f_{Y \mid X}(y \mid x)}{f_{Y}(y)} f_{X}(x)
$$

We know that $X \sim \mathcal{N}(\mu, P)$, and since X and Z are independent and Gaussian, $Y=X+Z \sim \mathcal{N}(\mu, P+N)$ (to be proved later)
To find $f_{Y \mid X}(y \mid x)$, since Y is the sum of two independent r.v.s, we have

$$
f_{Y \mid X}(y \mid x)=f_{Z \mid X}(y-x \mid x)=f_{Z}(y-x)=\frac{1}{\sqrt{2 \pi N}} e^{-\frac{(y-x)^{2}}{2 N}}
$$

In other words, $Y \mid\{X=x\} \sim \mathcal{N}(x, N)$

- Substituting in the Bayes rule formula, we finally obtain

$$
\begin{gathered}
f_{X \mid Y}(x \mid y)=\frac{1}{\sqrt{2 \pi \frac{P N}{P+N}}} e^{-\frac{\left(x-\left(\frac{P}{P+N} y+\frac{N}{P+N} \mu\right)\right)^{2}}{2 \frac{P N}{P+N}}}, \text { that is, } \\
X \left\lvert\,\{Y=y\} \sim \mathcal{N}\left(\frac{P}{P+N} y+\frac{N}{P+N} \mu, \frac{P N}{P+N}\right)\right.
\end{gathered}
$$

Thus

$$
\begin{aligned}
\mathrm{E}(X \mid Y) & =\frac{P}{P+N} Y+\frac{N}{P+N} \mu \\
\mathrm{E}(\operatorname{Var}(X \mid Y)) & =\frac{P N}{P+N}
\end{aligned}
$$

Scalar Linear Estimation

- To find the MMSE estimate one needs to know the statistics of the signal and the channel - $f_{X, Y}(x, y)$ - which is rarely the case in practice
- We typically have estimates only of the first and second moments of the signal and the observation, i.e., means, variances, and covariance of X and Y
- This is not, in general, sufficient information for computing the MMSE estimate, but as we shall see is enough to compute the MMSE linear (or affine) estimate of the signal X given the observation Y, i.e., the estimate of the form

$$
\hat{X}=a Y+b
$$

that minimizes the mean squared error

$$
\mathrm{MSE}=\mathrm{E}\left[(X-\hat{X})^{2}\right]
$$

The MMSE Linear Estimate

- Theorem: The MMSE linear estimate of X given Y is

$$
\begin{aligned}
\hat{X} & =\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(Y)}(Y-\mathrm{E}(Y))+\mathrm{E}(X) \\
& =\rho_{X, Y} \sigma_{X}\left(\frac{Y-\mathrm{E}(Y)}{\sigma_{Y}}\right)+\mathrm{E}(X)
\end{aligned}
$$

and its MSE is

$$
\mathrm{MSE}=\operatorname{Var}(X)-\frac{\operatorname{Cov}^{2}(X, Y)}{\operatorname{Var}(Y)}=\left(1-\rho_{X, Y}^{2}\right) \operatorname{Var}(X)
$$

- Properties of MMSE linear estimate:
- $\mathrm{E}(\hat{X})=\mathrm{E}(X)$, i.e., estimate is unbiased (also true for MMSE estimate)
- If $\rho_{X, Y}=0$, i.e., X and Y are uncorrelated, then $\hat{X}=\mathrm{E}(X)$ - the observation Y is ignored!
- If $\rho_{X, Y}= \pm 1$, i.e., $(X-\mathrm{E}(X))$ and $(Y-\mathrm{E}(Y))$ are linearly dependent, then the MMSE linear estimate is perfect
- MMSE linear estimate is linear: Let $X=\alpha U+V$ and \hat{U} and \hat{V} be the MMSE linear estimates of U and V, respectively
Then, the MMSE linear estimate of X is

$$
\hat{X}=\alpha \hat{U}+\hat{V}
$$

- Proof of the Theorem:
- Write the minimization problem as:

$$
\min _{a} \min _{b} \mathrm{E}\left[((X-a Y)-b)^{2}\right]
$$

From MMSE estimate derivation with no observation, we know that the MMSE estimate of $(X-a Y)$ is its mean $\mathrm{E}(X)-a \mathrm{E}(Y)$

- Hence we can replace b with $\mathrm{E}(X)-a \mathrm{E}(Y)$, which reduces the linear estimation problem to finding the coefficient a that minimizes

$$
\mathrm{E}\left[((X-\mathrm{E}(X))-a(Y-\mathrm{E}(Y))]^{2}=\mathrm{E}\left[((X-\mathrm{E}(X))-(\hat{X}-\mathrm{E}(X))]^{2},\right.\right.
$$

i.e., the problem reduces to finding $(\hat{X}-\mathrm{E}(X))=a(Y-\mathrm{E}(Y))$ that minimizes the MSE

- This problem can be solved using calculus. Instead we use a geometric argument that will help us solve more involved linear estimation problems

Inner product space

- A vector space \mathcal{V}, e.g., Euclidean space, consists of a set of vectors that are closed under two operations:
- vector addition: if $v_{1}, v_{2} \in \mathcal{V}$ then $v_{1}+v_{2} \in \mathcal{V}$
- scalar multiplication: if $a \in \mathbf{R}$ and $v \in \mathcal{V}$, then $a v \in \mathcal{V}$
- An inner product, e.g., dot product in Euclidean space, is a real-valued operation $u \cdot v$ satisfying the three conditions:
- commutativity: $u \cdot v=v \cdot u$
- linearity: $(a u+v) \cdot w=a(u \cdot w)+v \cdot w$
- nonnegativity: $u \cdot u \geq 0$ and $u \cdot u=0$ iff $u=0$
- A vector space with an inner product is called an inner product space Example: Euclidean space with dot product
- The norm of u is defined as $\|u\|=\sqrt{u \cdot u}$
- Angle between vectors u and $v: \theta=\arccos (u \cdot v /\|u\| \times\|v\|)$
- u and v are orthogonal (written $u \perp v$) if $u \cdot v=0$

Geometric Formulation of Linear Estimation

- View $(X-\mathrm{E}(X))$ and $(Y-\mathrm{E}(Y))$ as vectors in an inner product space \mathcal{V} that consists of all zero mean random variables defined over the same probability space, with
- vector addition: $V_{1}+V_{2} \in \mathcal{V}$
adding two zero mean r.v.s yields a zero mean r.v.
- scalar multiplication: $a V \in \mathcal{V}$
multiplying a zero mean r.v. by a constant yields a zero mean r.v.
- inner product: $\mathrm{E}\left(V_{1} V_{2}\right)$
exercise: check that this is a legitimate inner product
- norm of $V:\|V\|=\sqrt{\mathrm{E}\left(V^{2}\right)}=\sigma_{V}$
- So we have the following picture for the r.v.s $(X-\mathrm{E}(X))$ and $(Y-\mathrm{E}(Y))$:

Note that $(X-\mathrm{E}(X))$ and $(Y-\mathrm{E}(Y))$ can live in a vector space of very high dimension. We are interested only in the 2-dimensional subspace spanned by these two vectors

Orthogonality Principle

- The linear estimation problem can now be recast as a problem in geometry

Find a vector $(\hat{X}-\mathrm{E}(X))=a(Y-\mathrm{E}(Y))$ that minimizes $\|X-\hat{X}\|$

- Clearly $(X-\hat{X}) \perp(Y-\mathrm{E}(Y))$ minimizes $\|X-\hat{X}\|$, i.e.,

$$
\mathrm{E}\left((X-\hat{X})(Y-\mathrm{E}(Y))=0 \Rightarrow a=\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(Y)}\right.
$$

- Minimum MSE $=\sigma_{X}^{2} \sin ^{2} \theta=\sigma_{X}^{2}\left(1-\cos ^{2} \theta\right)=\sigma_{X}^{2}\left(1-\rho_{X, Y}^{2}\right)$
- This argument is called the orthogonality principle. Later we will see that it is key to deriving the MMSE linear estimate in more complex settings

Linear vs. MMSE (Nonlinear) Estimate

- The linear estimate is not, in general, as good as the MMSE estimate
- Example: Let $Y \sim \mathrm{U}[-1,1]$ and $X=Y^{2}$

The MMSE estimate of X given Y is Y^{2} - perfect!
To find the MMSE linear estimate we compute

$$
\begin{aligned}
\mathrm{E}(Y) & =0 \\
\mathrm{E}(X) & =\int_{-1}^{1} \frac{1}{2} y^{2} d y=\frac{1}{3} \\
\operatorname{Cov}(X, Y) & =\mathrm{E}(X Y)-0=\mathrm{E}\left(Y^{3}\right)=0
\end{aligned}
$$

Thus the MMSE linear estimate $\hat{X}=\mathrm{E}(X)=1 / 3$, i.e., the observation Y is totally ignored, even though it completely determines X !

- There is a very important class of r.v.s for which the MMSE estimate is linear, the jointly Gaussian random variables

Jointly Gaussian Random Variables

- Two r.v.s are jointly Gaussian if their joint pdf is of the form

$$
f(x, y)=\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho_{X, Y}^{2}}} e^{-\frac{1}{2\left(1-\rho_{X, Y}^{2}\right)}\left(\frac{\left(x-\mu_{X}\right)^{2}}{\sigma_{X}^{2}}+\frac{\left(y-\mu_{Y}\right)^{2}}{\sigma_{Y}^{2}}-2 \rho_{X, Y} \frac{\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right)}{\sigma_{X} \sigma_{Y}}\right)}
$$

- The pdf is a function only of $\mu_{X}, \mu_{Y}, \sigma_{X}^{2}, \sigma_{Y}^{2}$, and $\rho_{X, Y}$
- Note: In Lecture Notes 3 we will define this in a more general way
- Example: For the additive Gaussian noise channel, where $X \sim \mathcal{N}(\mu, P)$ and $Z \sim \mathcal{N}(0, N)$ are independent and $Y=X+Z$, show that (a) X and Z are jointly Gaussian, and (b) X and Y are jointly Gaussian
Solution: (a) It is easy to show that if two Gaussian r.v.s are independent, their joint pdf has the above form with $\rho_{X, Y}=0$. (b) Now consider

$$
\begin{aligned}
f(x, y) & =f_{X}(x) f_{Y \mid X}(y \mid x) \\
& =f_{X}(x) f_{Z \mid X}(y-x \mid x)=f_{X}(x) f_{Z}(y-x)
\end{aligned}
$$

Now we can write $f(x, y)$ in the form of a jointly Gaussian pdf

- If X and Y are jointly Gaussian, contours of equal joint pdf are ellipses defined by the quadratic equation

$$
\frac{\left(x-\mu_{X}\right)^{2}}{\sigma_{X}^{2}}+\frac{\left(y-\mu_{Y}\right)^{2}}{\sigma_{Y}^{2}}-2 \rho_{X, Y} \frac{\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right)}{\sigma_{X} \sigma_{Y}}=c \geq 0
$$

- Examples: In the following examples we plot contours of equal joint pdf $f(x, y)$ for zero mean jointly Gaussian r.v.s for different values of σ_{X}, σ_{Y}, and $\rho_{X, Y}$ The orientation of the major axis of the ellipse is $\theta=\frac{1}{2} \arctan \left(\frac{2 \rho_{X, Y} \sigma_{X} \sigma_{Y}}{\sigma_{X}^{2}-\sigma_{Y}^{2}}\right)$

$$
\sigma_{X}=1, \sigma_{Y}=1, \rho_{X, Y}=0
$$

$$
f(x, y)
$$

$$
\sigma_{X}=1, \sigma_{Y}=1, \rho_{X, Y}=0.4: \theta=45^{\circ}
$$

$$
f(x, y)
$$

$$
\sigma_{X}=1, \sigma_{Y}=3, \rho_{X, Y}=0: \theta=90^{\circ}
$$

$$
f(x, y)
$$

$\sigma_{X}=1, \sigma_{Y}=3, \rho_{X, Y}=0.99: \theta=71.7^{\circ}$
$f(x, y)$

$$
\sigma_{X}=1, \sigma_{Y}=3, \rho_{X, Y}=-0.4: \theta=-81.65^{\circ}
$$

$$
f(x, y)
$$

Properties of Jointly Gaussian Random Variables

- If X and Y are jointly Gaussian, they are individually Gaussian, i.e., the marginals of $f_{X, Y}(x, y)$ are Gaussian, i.e.,

$$
X \sim \mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right), \quad Y \sim \mathcal{N}\left(\mu_{Y}, \sigma_{Y}^{2}\right)
$$

- The converse is not necessarily true, i.e., Gaussian marginals do not necessarily mean that the r.v.s are jointly Gaussian

Example: Let $X_{1} \sim \mathcal{N}(0,1)$ and

$$
X_{2}= \begin{cases}+1 & \text { with probability } \frac{1}{2} \\ -1 & \text { with probability } \frac{1}{2}\end{cases}
$$

be independent r.v.s, and let $X_{3}=X_{1} X_{2}$

- Clearly, $X_{3} \sim \mathcal{N}(0,1)$
- However, X_{1}, X_{3} do not have a joint pdf. Using delta functions, " $f_{X_{1}, X_{3}}\left(x_{1}, x_{3}\right)$ " has the form shown in the following figure

- If X and Y are jointly Gaussian, the conditional pdf is Gaussian:

$$
X \left\lvert\,\{Y=y\} \sim \mathcal{N}\left(\rho_{X, Y} \sigma_{X} \frac{\left(y-\mu_{Y}\right)}{\sigma_{Y}}+\mu_{X},\left(1-\rho_{X, Y}^{2}\right) \sigma_{X}^{2}\right)\right.,
$$

which shows that the MMSE estimate is linear

- If X and Y are jointly Gaussian and uncorrelated, i.e., $\rho_{X, Y}=0$, then they are also independent

