Lecture Notes 2
Expectation

e Definition and Properties

e¢ Mean and Variance

e Markov and Chebychev Inequalites

e Expectations involving two random variables
e Scalar MSE Estimation

e Scalar Linear Estimation

e Jointly Gaussian random variables
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Expectation

o Let X € X be a discrete r.v. with pmf px(z) and let g(x) be a function of x.
The expectation (or expected value or mean) of g(X) can be defined as

E(g(X)) =) g(z)px(z)

reX

e For a continuous r.v. X ~ fx(x), the expected value of g(X) can be defined as

Be(x0) = | " o) fx () da

e Expectation is linear, i.e., for any constant a
Elagi(X) + g2(X)] = a E(g1(X)) + E(g2(X))

In particular, E(a) = a
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e Remark: We know that a r.v. is completely specified by its cdf (pdf, pmf), so
why do we need expectation?

o Expectation provides a summary or an estimate of the r.v.—a single
number —instead of specifying the entire distribution

o |t is far easier to estimate the expectation of a r.v. from data than to estimate
its distribution

o Expectation can be used to bound or estimate probabilities of interesting
events (as we shall see)
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Mean and Variance

e The first moment (or mean) of X ~ fx(x) is

B(X) = /OO 2 fx(2) d

— o0

e The second moment (or mean squared or average power) of X is

E(X?) = /OO r° fx(x) dx

e The variance of X is
Var(X) = E [(X — E(X))*] = E(X?) — (E(X))*
Hence E(X?) > (E(X))?
e The standard deviation of X is defined as ox = /Var(X), i.e., Var(X) = 0%

e In general, the kth moment (k a positive integer) is

E(X*) = /OO tF fx (x) dx

— 00
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e Mean and Variance for Famous RVs:
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Expectation Can Be Infinite or May Not Exist

e Expectation can be infinite. For example

fx(z) = {1/33 1§x<.oo = E(X)z/loozc/:c2dzc:oo

0 otherwise

e Expectation may not exist. To find conditions for expectation to exist, consider

B(X) = [ " efx(e)de = - / " Jelfx (o) da + / " elfx (@) da

oo NS 0
so either ono z|fx(z)dx or [} |z|fx(x)dx must be finite

e Example: The standard Cauchy r.v. has the pdf

1
o) = o)

Since both f z|f(z)dz and [ |z|f(z)dz are infinite, its mean does not
exist! (The second moment of the Cauchy is E(X?) = oo, so it exists)
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Bounding Probability Using Expectation

e |In many cases we do not know the distribution of a r.v. X but want to find the
probability of an event such as {X > a} or {|X — E(X)| > a}

e The Markov and Chebyshev inequalities give upper bounds on the probabilities
of such events in terms of the mean and variance of the random variable

e Example: Let X > 0 represent the age of a person in the Bay Area. If we know
that E(X) = 35 years, what fraction of the population is > 70 years old?

Clearly we cannot answer this question knowing only the mean, but we can say
that P{X > 70} < 0.5, since otherwise the mean would be larger than 35

e This is an application of the Markov inequality
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Markov Inequality

e For any r.v. X > 0 with finite mean E(X) and any a > 1,

PIX > aB(X)} < >

a

Proof: Define the indicator function of the set A = {x > a E(X)}:

Li(2) 1 z>aE(X)

T —

A 0 otherwise
X

A aE()Q

E(X) aB(X) -
X

aE(X)

Since E(I4) = P(A) = P{X > a E(X)}, taking the expectations of both sides
we obtain the Markov Inequality

Clearly, I4 <

EE 278: Expectation Page 2-8



Chebyshev Inequality

e Let X be a device parameter in an integrated circuit (IC) with known mean and
variance. The IC is out-of-spec if X is more than, say, 30x away from its mean.
We wish to find the fraction of out-of-spec ICs, namely, P{|X — E(X)| > 3ox}

The Chebyshev inequality gives us an upper bound on this fraction in terms the
mean and variance of X

e Let X be a r.v. with known E(X) and Var(X) = 0%. The Chebyshev
inequality states that for every a > 1,

1
P{IX - B(X)| 2 aox} < —

Proof: We use the Markov inequality. Define therv. Y = (X — E(X))? > 0.
Since E(Y) = 0%, the Markov inequality gives
1
2 2

P{Y Z a O'X} S ?
But {|X — E(X)| > aox} occurs iff {Y > a?0%}. Thus

1
P{|X — B(X)| > aox} < —

EE 278: Expectation Page 2-9



Expectation Involving Two RVs

o Let (X,Y) ~ fxv(x,y) and let g(z,y) be a function of x and y. The
expectation of g(X,Y) is given by

By = [ N / " g, y) oy (e y) du dy

The function g(X,Y) may be X, Y, X? X +7, etc.

e The correlation of X and Y is defined as E(XY)
X and Y are said to be orthogonal if E(XY) =0

e The covariance of X and Y is defined as
Cov(X,Y)=E [(X —EX))(Y — E(Y))] =EXY) - EX)E(®Y)
X and Y are said to be uncorrelated if Cov(X,Y) =0
e Note that Cov(X, X) = Var(X)

e If X and Y are independent then they are uncorrelated

e X and Y uncorrelated does not necessarily imply that they are independent
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e [ he correlation coefficient of X and Y is defined as
Cov(X,Y)
PXY =
v/ Var(X)Var(Y)

Fact: |px v| < 1 with equality iff (X —E(X)) is a linear function of (Y —E(Y))

The correlation coefficient is a measure of how closely (X — E(x)) can be
approximated by a linear function of (Y — E(Y")) (more on this soon)
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Conditional Expectation

o Let (X,Y)~ fxv(x,y). If fy(y) # 0, the conditional pdf of X given Y =y is
given by

fxy(zly) = fX}i((a;’)y)

o We know that fx|y(x|y) is a pdf for X (function of y), so we can define the
expectation of any function g(X,Y) w.rt. fx|y(z|y) as

oo

E(g(X,Y)[Y =y) =/ 9(z,y) fxv(z|ly) dx

— 00

e Example: If g(X,Y) = X, then the conditional expectation of X given Y =y is

o0

BX|Y =y) = [ afay(ely)do

o Example: If g(X,Y) = XY, then E(XY |Y =y) =yE(X|Y =1y)

e We define the conditional expectation of ¢g(X,Y) given Y as the random
variable E(g(X,Y)|Y), which is a function of the random variable Y
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e In particular, E(X |Y) is the conditional expectation of X given Y, a r.v. that
is a function of Y

e |terated expectation: In general we can find E(g(X,Y)) as
E(9(X,Y)) = Ey [Ex(9(X,Y)]Y)],

where Ex means expectation w.r.t. fxy(z|y) and Ey means expectation
w.r.t. fy(y)

e Example: Coin with random bias. A coin with random bias P such that

E(P) =1/3 is flipped n times independently. Let X be the number of heads.
Find E(X)
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Conditional Variance

e Let X and Y be two r.v.s. We define the conditional variance of X given
Y =y to be the variance of X using fxyv(z]y), i.e.,

Var(X |Y =y) =E[(X ~E(X |Y =9))*|Y = y]
—B(X?|Y =y) - [E(X|Y =y)]°

e The r.v. Var(X |Y) is simply a function of Y that takes on the values
Var(X |Y =y). Its expected value is

Ey [Var(X|Y)] = Ey [E(X*]Y) — (E(X |Y))?] = E(X") — E [(E(X |Y))"]
e Since E(X |Y) is a r.v,, it has a variance
Var(E(X |Y)) = By [(B(X |Y)-E[E(X |Y)])"] = E [(E(X|Y))?] - (B(X))?

e Law of Conditional Variances: Adding the above expressions, we obtain

Var(X) =E (Var(X |Y)) + Var (E(X | Y))
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Scalar MSE Estimation

e Consider the following signal processing problem:

X —»

Noisy
Channel

Y

fx ()

e X is a signal with known statistics, i.e., known pdf fx(x)

fY|X(y|33)

Estimator

e The signal is transmitted (or stored) over a noisy channel with known statistics,

i.e., conditional pdf fyx(y|r)

e We observe the channel output Y and wish to find the estimate X (V) of X

that minimizes the mean squared error

MSE = E [(X — X(Y))?]

e The X that achieves the minimum MSE is called the MMSE estimate of X

(given Y')
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MMSE Estimate

e Theorem: The MMSE estimate of X given the observation Y and complete
knowledge of the joint pdf fx y(z,y) is

X(Y)=EX|Y),
and the MSE of X i.e.. the minimum MSE, is
MMSE = Ey (Var(X |Y)) = Var(X) — Var (E(X | Y))

e Properties of the minimum MSE estimator:
o Since E(X) = Ey[E(X |Y)] = E(X), the MMSE estimate is unbiased
o If X and Y are independent, then the MMSE estimate is E(X)

o The conditional expectation of the estimation error E [(X ~X)|Y = y} =0
for every y, i.e., the error is unbiased for every ¥ =y
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o The estimation error and the estimate are orthogonal
E[(X - X)X| =Ey [E((X - X)X |Y)]
= Ey [XE(X = X)|Y)]
= Ey [X(E(X|Y) - X)]

In fact, the estimation error is orthogonal to any function g(Y) of Y

o MMSE estimate is linear: Let X = al/ +V and U and V be the MMSE
estimates of U and V', respectively

Then, the MMSE estimate of X is
X = aIA] + V

e Proof of Theorem: We first show that min, E ((X — a)?) = Var(X) and that
the minimum is achieved for a = E(X), i.e., in the absence of any observations,

the mean of X is its MMSE estimate
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To show this, consider

Equality holds if and only if a = E(X)
We use this result to show that E(X |Y) is the MMSE estimate of X given Y

First write

B[(X = X)) = By [Bx((X - X(v)? V)]

From the previous result we know that for every Y = ¢ the minimum value for
By [(X ~X()?|Y = y} s obtained when X (y) = E(X |V =)

Therefore the overall MSE is minimized for X (V) = E(X |Y)

In fact, E(X | Y) minimizes the MSE conditioned on every Y =y and not just
its average over Y
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To find the minimum MSE, consider
E[(X-EX|Y))?] =Ey (Ex (X —E(X|Y))*|Y])
= Ey (Var(X |Y))

e Finally, by the law of conditional variance,
E(Var(X |Y)) = Var(X) — Var(E(X | Y)),

i.e., the minimum MSE is the difference between the variance of the signal and
the variance of the MMSE estimate
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The Additive Gaussian Noise Channel

e Consider a noisy channel with input X ~ N (u, P), noise Z ~ N (0, N), and
output Y = X + Z. X and Z are independent

Find the MMSE estimate of X given Y and its MSE, i.e., E(X |Y) and
E(Var(X |Y))

e To find fx|y(x|y) we use Bayes rule:

fxy(zly) = fy};(((zlx) fx(x)

We know that X ~ N (u, P), and since X and Z are independent and
Gaussian, Y = X + Z ~ N(u, P+ N) (to be proved later)

To find fyx(y|x), since Y is the sum of two independent r.v.s, we have

(y—2)°
leX(y\l’) = fZ|X(y —z|z) = fz(y —x) = \/;TiNe_yz—N

In other words, Y [ {X =z} ~ N(z, N)
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e Substituting in the Bayes rule formula, we finally obtain

2
(= — (pxy + 22
1 N 9_PN_

fxpy(zly) = e P+N . that is,
\/271'13]1—]\][\7

XHYZy%vN( S PN)

P+ N P+ N P+ N
Thus
P N
B(X|Y) = 5 + 5 h
PN
E(Var(X |Y)) = PN
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Scalar Linear Estimation

e To find the MMSE estimate one needs to know the statistics of the signal and
the channel— fx y(z,y) —which is rarely the case in practice

e We typically have estimates only of the first and second moments of the signal
and the observation, i.e., means, variances, and covariance of X and Y

e This is not, in general, sufficient information for computing the MMSE estimate,
but as we shall see is enough to compute the MMSE linear (or affine) estimate
of the signal X given the observation Y, i.e., the estimate of the form

A

X =aY +0b
that minimizes the mean squared error

MSE = E [(X — X)?]
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The MMSE Linear Estimate

e Theorem: The MMSE linear estimate of X given Y is

X = C(\);’ag((yf) (Y —E(Y)) + E(X)
v () 4
and its MSE is
MSE = Var(X) — CO\‘/’:E();;/ ) _ - % y)Var(X)

e Properties of MMSE linear estimate:

A

o E(X)=E(X), i.e., estimate is unbiased (also true for MMSE estimate)

o If pxy =0, i.e.,, X and Y are uncorrelated, then X = E(X)—the
observation Y is ignored!

o If pxy = =1, ie., (X —E(X)) and (Y — E(Y)) are linearly dependent, then
the MMSE linear estimate is perfect
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o MMSE linear estimate is linear: Let X = aU + V and U and V be the
MMSE linear estimates of U and V', respectively

Then, the MMSE linear estimate of X is
X = Oéﬁ -+ V
e Proof of the Theorem:

o Write the minimization problem as:

mcjn mbin E[(X —aY) — b)?]

From MMSE estimate derivation with no observation, we know that the
MMSE estimate of (X —aY') is its mean E(X) —aE(Y)

o Hence we can replace b with E(X) — a E(Y), which reduces the linear
estimation problem to finding the coefficient a that minimizes

E[((X — E(X)) —a(Y = E(Y))]* = E[((X - E(X)) — (X - E(X))],

i.e., the problem reduces to finding (X — E(X)) = a(Y — E(Y)) that
minimizes the MSE

o This problem can be solved using calculus. Instead we use a geometric
argument that will help us solve more involved linear estimation problems
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Inner product space

e A vector space V, e.g., Euclidean space, consists of a set of vectors that are
closed under two operations:

o vector addition: if vi,v9 € V then vi + vy €V

o scalar multiplication: if a € R and v € V, then av € V

e An inner product, e.g., dot product in Euclidean space, is a real-valued
operation u - v satisfying the three conditions:

o commutativity: u-v =v-u
o linearity: (au+v) - -w=a(u-w)+v- - w
o nonnegativity: u-u >0 and u-u =0 iff u =0

e A vector space with an inner product is called an inner product space
Example: Euclidean space with dot product

e The norm of u is defined as ||u|| = u - u

e Angle between vectors u and v: 6 = arccos(u - v/||u|| x [|v]])

e u and v are orthogonal (written v 1 v) if u-v =0
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Geometric Formulation of Linear Estimation

e View (X — E(X)) and (Y — E(Y)) as vectors in an inner product space V that

consists of all zero mean random variables defined over the same probability
space, with

o vector addition: V; + V5 €V
adding two zero mean r.v.s yields a zero mean r.v.

o scalar multiplication: aV €V
multiplying a zero mean r.v. by a constant yields a zero mean r.v.

o inner product: E(V;V53)
exercise: check that this is a legitimate inner product

o norm of V: ||[V| = /E(V?) =0y
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e So we have the following picture for the r.v.s (X — E(X)) and (Y — E(Y)):

(X —E(X))
6
=~ (Y —E(Y))
inner product & Cov(X,Y)
norm of (X —E(X)) < ox
normof (Y —E(Y)) < oy
cos 6 <  PX)Y

Note that (X — E(X)) and (Y — E(Y)) can live in a vector space of very high
dimension. We are interested only in the 2-dimensional subspace spanned by

these two vectors
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Orthogonality Principle

e The linear estimation problem can now be recast as a problem in geometry

(X = BE(X))

AN

<+— ecrror X — X

E: = (Y —E(Y))
E

(X - E(X))
Find a vector (X — E(X)) = a(Y — E(Y)) that minimizes || X — X|
e Clearly (X — X) L (Y —E(Y)) minimizes || X — X||, i.e.,
E(X-X)(Y-EY)) =0 = a = C‘%&i{y?)

e Minimum MSE = 0% sin?0 = 0% (1 — cos?0) = 0% (1 — P%(,y)

e This argument is called the orthogonality principle. Later we will see that it is
key to deriving the MMSE linear estimate in more complex settings
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Linear vs. MMSE (Nonlinear) Estimate

e The linear estimate is not, in general, as good as the MMSE estimate

e Example: Let Y ~ U[-1,1] and X = Y?
The MMSE estimate of X given Y is Y? — perfect!

To find the MMSE linear estimate we compute

E(Y) = 0

1
B = [ dotdy=1

Cov(X,Y) = E(XY) -0 = E(Y?) =0

Thus the MMSE linear estimate X = E(X) = 1/3, i.e., the observation Y is
totally ignored, even though it completely determines X!

e There is a very important class of r.v.s for which the MMSE estimate is linear,
the jointly Gaussian random variables
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Jointly Gaussian Random Variables

e Two r.v.s are jointly Gaussian if their joint pdf is of the form

1 ((:B—ux)Q +(y—uy)2_2pxy(w—ux)(y—uy)>
flag) = —— L ORI\ R e ey

2

2moxoy,/1—p% vy

e The pdfis a function only of ux, uy, 03(, 0%/, and pxy

e Note: In Lecture Notes 3 we will define this in a more general way

e Example: For the additive Gaussian noise channel, where X ~ N (u, P) and
Z ~ N(0,N) are independent and Y = X + Z, show that (a) X and Z are
jointly Gaussian, and (b) X and Y are jointly Gaussian

Solution: (a) It is easy to show that if two Gaussian r.v.s are independent, their
joint pdf has the above form with px y = 0. (b) Now consider

flz,y) = fx(x)fy)x(y|r)
= fx(@)fzix(y —z|r) = fx(z)fz(y — )

Now we can write f(x,y) in the form of a jointly Gaussian pdf
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e If X and Y are jointly Gaussian, contours of equal joint pdf are ellipses defined
by the quadratic equation

- — 2 _ 2 - _
( 2ux) N (y gw) B 2pr( px)(y —my) _ >0
Ox Oy OXxXOy

e Examples: In the following examples we plot contours of equal joint pdf f(z,y)
for zero mean jointly Gaussian r.v.s for different values of ox, oy, and px vy

. . . . . . 2
The orientation of the major axis of the ellipse is § = 1 arctan ( p;(’YGXZY>
Ox — 9y

OX — ]-7 Oy — ]-7 PX)Y — 0 f(.flf y)
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Properties of Jointly Gaussian Random Variables

e If X and Y are jointly Gaussian, they are individually Gaussian, i.e., the
marginals of fx y(x,y) are Gaussian, i.e.,

XNN(,U)QO%()? YNN(MY7O-%/)

e The converse is not necessarily true, i.e., Gaussian marginals do not necessarily
mean that the r.v.s are jointly Gaussian

Example: Let X; ~ AN(0,1) and
+1 with probability
Xy =
—1 with probability

NI~ N

be independent r.v.s, and let X3 = X;.X5
o Clearly, X5~ N(0,1)

o However, X7, X3 do not have a joint pdf. Using delta functions,
“fx,.x5(x1,23)" has the form shown in the following figure
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L fxxs(T1, 3)

X3

e If X and Y are jointly Gaussian, the conditional pdf is Gaussian:

X|{Y =y} ~ N(,OX,YUX W — 4v) + px, (1— p%(,Y)O-g() ;

oy
which shows that the MMSE estimate is linear

e If X and Y are jointly Gaussian and uncorrelated, i.e., px.y = 0, then they are
also independent
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