
Lecture Notes 2

Expectation

• Definition and Properties

• Mean and Variance

• Markov and Chebychev Inequalites

• Expectations involving two random variables

• Scalar MSE Estimation

• Scalar Linear Estimation

• Jointly Gaussian random variables
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Expectation

• Let X ∈ X be a discrete r.v. with pmf pX(x) and let g(x) be a function of x.
The expectation (or expected value or mean) of g(X) can be defined as

E(g(X)) =
∑

x∈X
g(x)pX(x)

• For a continuous r.v. X ∼ fX(x), the expected value of g(X) can be defined as

E(g(X)) =

∫ ∞

−∞
g(x)fX(x) dx

• Expectation is linear, i.e., for any constant a

E[ag1(X) + g2(X)] = aE(g1(X)) + E(g2(X))

In particular, E(a) = a
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• Remark: We know that a r.v. is completely specified by its cdf (pdf, pmf), so
why do we need expectation?

◦ Expectation provides a summary or an estimate of the r.v.—a single
number— instead of specifying the entire distribution

◦ It is far easier to estimate the expectation of a r.v. from data than to estimate
its distribution

◦ Expectation can be used to bound or estimate probabilities of interesting
events (as we shall see)
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Mean and Variance

• The first moment (or mean) of X ∼ fX(x) is

E(X) =

∫ ∞

−∞
xfX(x) dx

• The second moment (or mean squared or average power) of X is

E(X2) =

∫ ∞

−∞
x2fX(x) dx

• The variance of X is

Var(X) = E
[

(X − E(X))2
]

= E(X2)− (E(X))2

Hence E(X2) ≥ (E(X))2

• The standard deviation of X is defined as σX =
√

Var(X), i.e., Var(X) = σ2
X

• In general, the kth moment (k a positive integer) is

E(Xk) =

∫ ∞

−∞
xkfX(x) dx
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• Mean and Variance for Famous RVs:

Random Variable Mean Variance

Bern(p) p p(1− p)

Geom(p)
1

p

1 − p

p2

Binom(n, p) np np(1− p)

Poisson(λ) λ λ

U[ a, b ]
a + b

2

(b − a)2

12

Exp(λ)
1

λ

1

λ2

Laplace(λ) 0
2

λ2

N
(

µ, σ2
)

µ σ2
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Expectation Can Be Infinite or May Not Exist

• Expectation can be infinite. For example

fX(x) =

{

1/x2 1 ≤ x < ∞
0 otherwise

⇒ E(X) =

∫ ∞

1

x/x2 dx = ∞

• Expectation may not exist. To find conditions for expectation to exist, consider

E(X) =

∫ ∞

−∞
xfX(x) dx = −

∫ 0

−∞
|x|fX(x) dx+

∫ ∞

0

|x|fX(x) dx ,

so either
∫ 0

−∞ |x|fX(x) dx or
∫∞
0

|x|fX(x) dx must be finite

• Example: The standard Cauchy r.v. has the pdf

f(x) =
1

π(1 + x2)

Since both
∫ 0

−∞ |x|f(x) dx and
∫∞
0

|x|f(x) dx are infinite, its mean does not

exist! (The second moment of the Cauchy is E(X2) = ∞, so it exists)
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Bounding Probability Using Expectation

• In many cases we do not know the distribution of a r.v. X but want to find the
probability of an event such as {X > a} or {|X − E(X)| > a}

• The Markov and Chebyshev inequalities give upper bounds on the probabilities
of such events in terms of the mean and variance of the random variable

• Example: Let X ≥ 0 represent the age of a person in the Bay Area. If we know
that E(X) = 35 years, what fraction of the population is ≥ 70 years old?

Clearly we cannot answer this question knowing only the mean, but we can say
that P{X ≥ 70} ≤ 0.5, since otherwise the mean would be larger than 35

• This is an application of the Markov inequality

EE 278: Expectation Page 2 – 7



Markov Inequality

• For any r.v. X ≥ 0 with finite mean E(X) and any a > 1,

P{X ≥ aE(X)} ≤ 1

a

Proof: Define the indicator function of the set A = {x ≥ aE(X)}:

IA(x) =

{

1 x ≥ aE(X)

0 otherwise

x

1

E(X) aE(X)

x

aE(X)

Clearly, IA ≤ X

aE(X)

Since E(IA) = P(A) = P{X ≥ aE(X)}, taking the expectations of both sides
we obtain the Markov Inequality
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Chebyshev Inequality

• Let X be a device parameter in an integrated circuit (IC) with known mean and
variance. The IC is out-of-spec if X is more than, say, 3σX away from its mean.
We wish to find the fraction of out-of-spec ICs, namely, P{|X − E(X)| ≥ 3σX}
The Chebyshev inequality gives us an upper bound on this fraction in terms the
mean and variance of X

• Let X be a r.v. with known E(X) and Var(X) = σ2
X . The Chebyshev

inequality states that for every a > 1,

P{|X − E(X)| ≥ aσX} ≤ 1

a2

Proof: We use the Markov inequality. Define the r.v. Y = (X − E(X))2 ≥ 0.
Since E(Y ) = σ2

X , the Markov inequality gives

P{Y ≥ a2σ2
X} ≤ 1

a2

But {|X − E(X)| ≥ aσX} occurs iff {Y ≥ a2σ2
X}. Thus

P{|X − E(X)| ≥ aσX} ≤ 1

a2
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Expectation Involving Two RVs

• Let (X,Y ) ∼ fX,Y (x, y) and let g(x, y) be a function of x and y. The
expectation of g(X,Y ) is given by

E(g(X,Y )) =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)fX,Y (x, y) dx dy

The function g(X, Y ) may be X , Y , X2, X + Y , etc.

• The correlation of X and Y is defined as E(XY )

X and Y are said to be orthogonal if E(XY ) = 0

• The covariance of X and Y is defined as

Cov(X,Y ) = E
[

(X − E(X))(Y − E(Y ))
]

= E(XY )− E(X)E(Y )

X and Y are said to be uncorrelated if Cov(X,Y ) = 0

• Note that Cov(X,X) = Var(X)

• If X and Y are independent then they are uncorrelated

• X and Y uncorrelated does not necessarily imply that they are independent
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• The correlation coefficient of X and Y is defined as

ρX,Y =
Cov(X,Y )

√

Var(X)Var(Y )

Fact: |ρX,Y | ≤ 1 with equality iff (X−E(X)) is a linear function of (Y −E(Y ))

The correlation coefficient is a measure of how closely (X − E(x)) can be
approximated by a linear function of (Y − E(Y )) (more on this soon)
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Conditional Expectation

• Let (X,Y ) ∼ fX,Y (x, y). If fY (y) 6= 0, the conditional pdf of X given Y = y is
given by

fX|Y (x|y) =
fX,Y (x, y)

fY (y)

• We know that fX|Y (x|y) is a pdf for X (function of y), so we can define the
expectation of any function g(X, Y ) w.r.t. fX|Y (x|y) as

E(g(X,Y ) |Y = y) =

∫ ∞

−∞
g(x, y)fX|Y (x|y) dx

• Example: If g(X, Y ) = X , then the conditional expectation of X given Y = y is

E(X |Y = y) =

∫ ∞

−∞
xfX|Y (x|y) dx

• Example: If g(X,Y ) = XY , then E(XY |Y = y) = yE(X |Y = y)

• We define the conditional expectation of g(X,Y ) given Y as the random
variable E(g(X,Y ) |Y ), which is a function of the random variable Y
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• In particular, E(X |Y ) is the conditional expectation of X given Y , a r.v. that
is a function of Y

• Iterated expectation: In general we can find E(g(X,Y )) as

E(g(X,Y )) = EY

[

EX(g(X,Y ) |Y )
]

,

where EX means expectation w.r.t. fX|Y (x|y) and EY means expectation
w.r.t. fY (y)

• Example: Coin with random bias. A coin with random bias P such that
E(P ) = 1/3 is flipped n times independently. Let X be the number of heads.
Find E(X)
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Conditional Variance

• Let X and Y be two r.v.s. We define the conditional variance of X given
Y = y to be the variance of X using fX|Y (x|y), i.e.,

Var(X |Y = y) = E
[

(X − E(X |Y = y))2 |Y = y
]

= E(X2 |Y = y)− [E(X |Y = y)]
2

• The r.v. Var(X |Y ) is simply a function of Y that takes on the values
Var(X |Y = y). Its expected value is

EY [Var(X |Y )] = EY

[

E(X2 |Y )− (E(X |Y ))2
]

= E(X2)− E
[

(E(X |Y ))2
]

• Since E(X |Y ) is a r.v., it has a variance

Var(E(X |Y )) = EY

[(

E(X |Y )−E[E(X |Y )]
)2]

= E
[

(E(X |Y ))2
]

−(E(X))2

• Law of Conditional Variances: Adding the above expressions, we obtain

Var(X) = E (Var(X |Y )) + Var (E(X |Y ))
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Scalar MSE Estimation

• Consider the following signal processing problem:

X X̂(Y )
YNoisy

Channel Estimator

fY |X(y|x)fX(x)

• X is a signal with known statistics, i.e., known pdf fX(x)

• The signal is transmitted (or stored) over a noisy channel with known statistics,
i.e., conditional pdf fY |X(y|x)

• We observe the channel output Y and wish to find the estimate X̂(Y ) of X
that minimizes the mean squared error

MSE = E
[

(X − X̂(Y ))2
]

• The X̂ that achieves the minimum MSE is called the MMSE estimate of X
(given Y )

EE 278: Expectation Page 2 – 15



MMSE Estimate

• Theorem: The MMSE estimate of X given the observation Y and complete
knowledge of the joint pdf fX,Y (x, y) is

X̂(Y ) = E(X |Y ) ,

and the MSE of X̂ , i.e., the minimum MSE, is

MMSE = EY (Var(X |Y )) = Var(X)−Var (E(X |Y ))

• Properties of the minimum MSE estimator:

◦ Since E(X̂) = EY [E(X |Y )] = E(X), the MMSE estimate is unbiased

◦ If X and Y are independent, then the MMSE estimate is E(X)

◦ The conditional expectation of the estimation error E
[

(X − X̂) |Y = y
]

= 0
for every y, i.e., the error is unbiased for every Y = y
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◦ The estimation error and the estimate are orthogonal

E
[

(X − X̂)X̂
]

= EY

[

E
(

(X − X̂)X̂ |Y
)]

= EY

[

X̂ E((X − X̂) |Y )
]

= EY

[

X̂(E(X |Y )− X̂)
]

= 0

In fact, the estimation error is orthogonal to any function g(Y ) of Y

◦ MMSE estimate is linear: Let X = aU + V and Û and V̂ be the MMSE
estimates of U and V , respectively

Then, the MMSE estimate of X is

X̂ = aÛ + V̂

• Proof of Theorem: We first show that minaE
(

(X − a)2
)

= Var(X) and that
the minimum is achieved for a = E(X), i.e., in the absence of any observations,
the mean of X is its MMSE estimate
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To show this, consider

E
[

(X − a)2
]

= E
[

(X − E(X) + E(X)− a)2
]

= E
[

(X − E(X))2
]

+
(

E(X)− a
)2

+

2E(X − E(X))(E(X)− a)

= E
[

(X − E(X))2
]

+
(

E(X)− a
)2 ≥ E

[

(X − E(X))2
]

Equality holds if and only if a = E(X)

We use this result to show that E(X |Y ) is the MMSE estimate of X given Y

First write

E
[

(X − X̂(Y ))2
]

= EY

[

EX((X − X̂(Y ))2 |Y )
]

From the previous result we know that for every Y = y the minimum value for

EX

[

(X − X̂(y))2 |Y = y
]

is obtained when X̂(y) = E(X |Y = y)

Therefore the overall MSE is minimized for X̂(Y ) = E(X |Y )

In fact, E(X |Y ) minimizes the MSE conditioned on every Y = y and not just
its average over Y
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To find the minimum MSE, consider

E
[

(X − E(X |Y ))2
]

= EY

(

EX

[

(X − E(X |Y ))2 |Y
])

= EY (Var(X |Y ))

• Finally, by the law of conditional variance,

E(Var(X |Y )) = Var(X)−Var(E(X |Y )) ,

i.e., the minimum MSE is the difference between the variance of the signal and
the variance of the MMSE estimate
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The Additive Gaussian Noise Channel

• Consider a noisy channel with input X ∼ N (µ, P ), noise Z ∼ N (0, N), and
output Y = X + Z . X and Z are independent

Find the MMSE estimate of X given Y and its MSE, i.e., E(X |Y ) and
E(Var(X |Y ))

• To find fX|Y (x|y) we use Bayes rule:

fX|Y (x|y) =
fY |X(y|x)
fY (y)

fX(x)

We know that X ∼ N (µ, P ), and since X and Z are independent and
Gaussian, Y = X + Z ∼ N (µ, P +N) (to be proved later)

To find fY |X(y|x), since Y is the sum of two independent r.v.s, we have

fY |X(y|x) = fZ|X(y − x|x) = fZ(y − x) =
1√
2πN

e−
(y−x)2

2N

In other words, Y | {X = x} ∼ N (x,N)
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• Substituting in the Bayes rule formula, we finally obtain

fX|Y (x|y) =
1

√

2π PN
P+N

e
−

(

x − ( P
P+N

y + N
P+N

µ)
)2

2 PN
P+N , that is,

X | {Y = y} ∼ N
(

P

P + N
y +

N

P + N
µ ,

PN

P + N

)

Thus

E(X |Y ) =
P

P + N
Y +

N

P + N
µ

E(Var(X |Y )) =
PN

P + N
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Scalar Linear Estimation

• To find the MMSE estimate one needs to know the statistics of the signal and
the channel— fX,Y (x, y)—which is rarely the case in practice

• We typically have estimates only of the first and second moments of the signal
and the observation, i.e., means, variances, and covariance of X and Y

• This is not, in general, sufficient information for computing the MMSE estimate,
but as we shall see is enough to compute the MMSE linear (or affine) estimate
of the signal X given the observation Y , i.e., the estimate of the form

X̂ = aY + b

that minimizes the mean squared error

MSE = E
[

(X − X̂)2
]
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The MMSE Linear Estimate

• Theorem: The MMSE linear estimate of X given Y is

X̂ =
Cov(X, Y )

Var(Y )

(

Y − E(Y )
)

+ E(X)

= ρX,Y σX

(

Y − E(Y )

σY

)

+ E(X)

and its MSE is

MSE = Var(X)− Cov2(X,Y )

Var(Y )
= (1− ρ2X,Y )Var(X)

• Properties of MMSE linear estimate:

◦ E(X̂) = E(X), i.e., estimate is unbiased (also true for MMSE estimate)

◦ If ρX,Y = 0, i.e., X and Y are uncorrelated, then X̂ = E(X)—the
observation Y is ignored!

◦ If ρX,Y = ±1, i.e., (X − E(X)) and (Y − E(Y )) are linearly dependent, then
the MMSE linear estimate is perfect
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◦ MMSE linear estimate is linear: Let X = αU + V and Û and V̂ be the
MMSE linear estimates of U and V , respectively

Then, the MMSE linear estimate of X is

X̂ = αÛ + V̂

• Proof of the Theorem:

◦ Write the minimization problem as:

min
a

min
b

E[((X − aY )− b)2]

From MMSE estimate derivation with no observation, we know that the
MMSE estimate of (X − aY ) is its mean E(X)− aE(Y )

◦ Hence we can replace b with E(X)− aE(Y ), which reduces the linear
estimation problem to finding the coefficient a that minimizes

E[((X − E(X))− a(Y − E(Y ))]2 = E[((X − E(X))− (X̂ − E(X))]2,

i.e., the problem reduces to finding (X̂ − E(X)) = a(Y − E(Y )) that
minimizes the MSE

◦ This problem can be solved using calculus. Instead we use a geometric
argument that will help us solve more involved linear estimation problems
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Inner product space

• A vector space V , e.g., Euclidean space, consists of a set of vectors that are
closed under two operations:

◦ vector addition: if v1, v2 ∈ V then v1 + v2 ∈ V
◦ scalar multiplication: if a ∈ R and v ∈ V , then av ∈ V

• An inner product, e.g., dot product in Euclidean space, is a real-valued
operation u · v satisfying the three conditions:

◦ commutativity: u · v = v · u
◦ linearity: (au+ v) · w = a(u · w) + v · w
◦ nonnegativity: u · u ≥ 0 and u · u = 0 iff u = 0

• A vector space with an inner product is called an inner product space
Example: Euclidean space with dot product

• The norm of u is defined as ‖u‖ =
√
u · u

• Angle between vectors u and v: θ = arccos(u · v/‖u‖ × ‖v‖)
• u and v are orthogonal (written u ⊥ v) if u · v = 0
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Geometric Formulation of Linear Estimation

• View (X − E(X)) and (Y − E(Y )) as vectors in an inner product space V that
consists of all zero mean random variables defined over the same probability
space, with

◦ vector addition: V1 + V2 ∈ V
adding two zero mean r.v.s yields a zero mean r.v.

◦ scalar multiplication: aV ∈ V
multiplying a zero mean r.v. by a constant yields a zero mean r.v.

◦ inner product: E(V1V2)
exercise: check that this is a legitimate inner product

◦ norm of V : ‖V ‖ =
√

E(V 2) = σV
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• So we have the following picture for the r.v.s (X − E(X)) and (Y − E(Y )):

(X − E(X))

(Y − E(Y ))
θ

inner product ⇔ Cov(X,Y )

norm of (X − E(X)) ⇔ σX

norm of (Y − E(Y )) ⇔ σY

cos θ ⇔ ρX,Y

Note that (X − E(X)) and (Y − E(Y )) can live in a vector space of very high
dimension. We are interested only in the 2-dimensional subspace spanned by
these two vectors
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Orthogonality Principle

• The linear estimation problem can now be recast as a problem in geometry

(X − E(X))

(Y − E(Y ))
(X̂ − E(X))

error X − X̂

Find a vector (X̂ − E(X)) = a(Y − E(Y )) that minimizes ‖X − X̂‖
• Clearly (X − X̂) ⊥ (Y − E(Y )) minimizes ‖X − X̂‖, i.e.,

E
(

(X − X̂)(Y − E(Y )
)

= 0 ⇒ a =
Cov(X,Y )

Var(Y )

• Minimum MSE = σ2
X sin2 θ = σ2

X(1− cos2 θ) = σ2
X(1− ρ2X,Y )

• This argument is called the orthogonality principle. Later we will see that it is
key to deriving the MMSE linear estimate in more complex settings
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Linear vs. MMSE (Nonlinear) Estimate

• The linear estimate is not, in general, as good as the MMSE estimate

• Example: Let Y ∼ U[−1, 1] and X = Y 2

The MMSE estimate of X given Y is Y 2 — perfect!

To find the MMSE linear estimate we compute

E(Y ) = 0

E(X) =

∫ 1

−1

1
2y

2 dy = 1
3

Cov(X,Y ) = E(XY )− 0 = E(Y 3) = 0

Thus the MMSE linear estimate X̂ = E(X) = 1/3, i.e., the observation Y is
totally ignored, even though it completely determines X !

• There is a very important class of r.v.s for which the MMSE estimate is linear,
the jointly Gaussian random variables
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Jointly Gaussian Random Variables

• Two r.v.s are jointly Gaussian if their joint pdf is of the form

f(x, y) =
1

2πσXσY

√

1−ρ2
X,Y

e
− 1
2(1−ρ2

X,Y
)

(

(x−µX)2

σ2
X

+
(y−µY )2

σ2
Y

− 2ρX,Y
(x−µX)(y−µY )

σXσY

)

• The pdf is a function only of µX , µY , σ
2
X , σ2

Y , and ρX,Y

• Note: In Lecture Notes 3 we will define this in a more general way

• Example: For the additive Gaussian noise channel, where X ∼ N (µ, P ) and
Z ∼ N (0, N) are independent and Y = X + Z , show that (a) X and Z are
jointly Gaussian, and (b) X and Y are jointly Gaussian

Solution: (a) It is easy to show that if two Gaussian r.v.s are independent, their
joint pdf has the above form with ρX,Y = 0. (b) Now consider

f(x, y) = fX(x)fY |X(y|x)
= fX(x)fZ|X(y − x|x) = fX(x)fZ(y − x)

Now we can write f(x, y) in the form of a jointly Gaussian pdf
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• If X and Y are jointly Gaussian, contours of equal joint pdf are ellipses defined
by the quadratic equation

(x− µX)2

σ2
X

+
(y − µY )

2

σ2
Y

− 2ρX,Y

(x− µX)(y − µY )

σXσY

= c ≥ 0

• Examples: In the following examples we plot contours of equal joint pdf f(x, y)
for zero mean jointly Gaussian r.v.s for different values of σX , σY , and ρX,Y

The orientation of the major axis of the ellipse is θ = 1
2 arctan

(

2ρX,YσXσY

σ2
X
− σ2

Y

)
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Properties of Jointly Gaussian Random Variables

• If X and Y are jointly Gaussian, they are individually Gaussian, i.e., the
marginals of fX,Y (x, y) are Gaussian, i.e.,

X ∼ N (µX , σ2
X) , Y ∼ N (µY , σ

2
Y )

• The converse is not necessarily true, i.e., Gaussian marginals do not necessarily
mean that the r.v.s are jointly Gaussian

Example: Let X1 ∼ N (0, 1) and

X2 =

{

+1 with probability 1
2

−1 with probability 1
2

be independent r.v.s, and let X3 = X1X2

◦ Clearly, X3 ∼ N (0, 1)

◦ However, X1, X3 do not have a joint pdf. Using delta functions,
“fX1,X3(x1, x3)” has the form shown in the following figure
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fX1,X3(x1, x3)

x1

x3

• If X and Y are jointly Gaussian, the conditional pdf is Gaussian:

X | {Y = y} ∼ N
(

ρX,Y σX
(y − µY )

σY

+ µX, (1− ρ2X,Y )σ
2
X

)

,

which shows that the MMSE estimate is linear

• If X and Y are jointly Gaussian and uncorrelated, i.e., ρX,Y = 0, then they are
also independent
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