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Supervised learning

Data: {(x1, y1), . . . , (xn, yn)} ∼i.i.d. P(Rd × R)

Goal: Given (x, y) ∼ P, find f : Rd → R to predict y from x

Gradient flow: θ̇(t) = −∇θLf (θ(t))
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Insights from the Neural Tangent Kernel (NTK)

θ̇(t) = −∇θLf (θ(t)), θ ∈ Rp, p ≫ n

Idea: θ(0) not too far from an interpolator, so throughout the
gradient flow trajectory we have

f (x;θ(t)) ≈ f (x;θ(0)) + ⟨∇θf (x;θ(0)),θ(t)− θ(0)⟩

Lf (θ(t)) ≤ Lf (θ(0))e−λmin(K)t/2

• NTK: K = Jf (θ0)Jf (θ0)
T ∈ Rn×n

• Jacobian of f at initialization: Jf (θ0) ∈ Rn×p

[Jacot et al., 2018; Chizat et al., 2019; Du et al., 2019; Oymak et
al., 2019; Bartlett et al., 2021; . . .]
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Convergence for (very) wide networks

Deep? Activation Layer Width # Wide
Layers

[Oymak et al., ’20] No Smooth Ω(n2λ−2
0 ) x

[Montanari & Zhong, ’22] No General Ω̃(n/d) x

[Allen-Zhu et al., ’19] Yes General Ω(n24L12ϕ−4) All

[Zou et al., ’19] Yes ReLU Ω(n8L12ϕ−4) All

[Du et al., ’19] Yes Smooth Ω( n42O(L)

λ4
min(K̄ (L))

) All
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Convergence for (not so) wide networks

Deep? Activation Layer Width # Wide
Layers

[Oymak et al., ’20] No Smooth Ω(n2λ−2
0 ) x

[Montanari & Zhong, ’22] No General Ω̃(n/d) x

[Allen-Zhu et al., ’18] Yes General Ω(n24L12ϕ−4) All

[Zou et al., ’19] Yes ReLU Ω(n8L12ϕ−4) All

[Du et al., ’19] Yes Smooth Ω( n42O(L)

λ4
min(K̄ (L))

) All

[Nguyen and M., ’20] Yes Smooth n One

Need only one wide layer + pyramidal topology

Q. Nguyen and M. Mondelli, “Global Convergence of Deep Networks with One
Wide Layer Followed by Pyramidal Topology”, NeurIPS, 2020.
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Convergence for (not so) wide networks
Deep? Activation Layer Width # Wide

Layers

[Oymak et al., ’20] No Smooth Ω(n2λ−2
0 ) x

[Montanari & Zhong, ’22] No General Ω̃(n/d) x

[Allen-Zhu et al., ’18] Yes General Ω(n24L12ϕ−4) All

[Zou et al., ’19] Yes ReLU Ω(n8L12ϕ−4) All

[Du et al., ’19] Yes Smooth Ω( n42O(L)

λ4
min(K̄ (L))

) All

[Nguyen and M., ’20] Yes Smooth n One

[Bombari, Amani and M., ’22] Yes Smooth Ω̃(
√

n) All

Need only minimum over-parameterization

S. Bombari, M. H. Amani, and M. Mondelli, “Memorization and Optimization in
Deep Neural Networks with Minimum Over-parameterization”, NeurIPS, 2022.
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Optimization with minimum over-parameterization
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• Ω(
√

n) neurons necessary to interpolate (parameter counting
or VC dimension bound [Bartlett et al., 2019])

• Scaling close to practice (back-of-the-envelope estimates on
CIFAR-10, ImageNet)
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Bounding λmin(K)

K =
L−1∑
k=0

FkFT
k ◦ Bk+1BT

k+1

• Fk = [fk(x1), . . . , fk(xn)]
T, with fk(xi) = feature vector at

layer k with input xi

• Bk+1 = [bk+1(x1), . . . , bk+1(xn)]
T, with bk+1(xi) =

back-propagation vector at layer k + 1 with input xi

First attempt: use matrix concentration on FkFT
k

Need one wide layer with Ω(n) neurons!

Q. Nguyen, M. Mondelli and G. Montufar, “Tight Bounds on the Smallest Eigen-
value of the Neural Tangent Kernel for Deep ReLU Networks”, ICML, 2021.
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Bounding λmin(K) with one wide layer

K =
L−1∑
k=0

FkFT
k ◦ Bk+1BT
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Bounding λmin(K) with minimum over-parameterization

K ⪰ FL−2FT
L−2 ◦ BL−1BT

L−1 := JL−2JT
L−2

• (JL−2)i ,: = fL−2(xi)⊗ bL−1(xi)

• fL−2(xi) = feature vector at layer L − 2 with input xi

• bL−1(xi) = back-propagation vector at layer L − 1 with input xi

Second attempt: directly center JL−2JT
L−2

JL−2JT
L−2 ≿ JFBJT

FB

≿ J̃FB J̃T
FB ≈ In

• (JFB)i ,: = f̃L−2(xi)⊗ b̃L−1(xi)

• f̃L−2(xi) = fL−2(xi)− Exi fL−2(xi)

• b̃L−1(xi) = bL−1(xi)− Exi bL−1(xi)

Features and back-propagations centered together
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FB

≈ In

• (JFB)i ,: = f̃L−2(xi)⊗ b̃L−1(xi)

• J̃FB = JFB − EXJFB

Center again the whole matrix
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Bounding λmin(K) with minimum over-parameterization
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Concentration for i.i.d. rows with well-controlled ∥ · ∥ψ1

[Adamczak et al., 2011]

S. Bombari, M. H. Amani, and M. Mondelli, “Memorization and Optimization in
Deep Neural Networks with Minimum Over-parameterization”, NeurIPS, 2022.
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Simone Bombari (ISTA) Shayan Kiyani (ISTA → UPenn)

S. Bombari, S. Kiyani, and M. Mondelli, “Beyond the Universal Law of Robustness:
Sharper Laws for Random Features and Neural Tangent Kernels”, ICML, 2023 (oral).
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Robust interpolation needs more parameters

p > n enough for interpolation. . .

but p > nd necessary for robust interpolation

[Bubeck &
Sellke, 2021]

[Bubeck et al., 2021] conjecture it is sufficient for two-layer networks
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Supervised learning

Data: {(x1, y1), . . . , (xn, yn)} ∼i.i.d. P(Rd × R)

Goal: Minimize empirical risk Lf (θ) =
1
n

n∑
i=1

(
yi − f (xi ;θ)

)2

• φ : Rd → Rp feature map

Gradient flow: θ̇(t) = −∇θLf (θ(t))

• Φ = [φ(x1), . . . , φ(xn)]
T ∈ Rn×p feature matrix

• y = [y1, . . . , yn]
T ∈ Rn label vector
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Generalized linear regression

Data: {(x1, y1), . . . , (xn, yn)} ∼i.i.d. P(Rd × R)

Goal: Minimize empirical risk Lf (θ) =
1
n

n∑
i=1

(
yi − φ(xi)

Tθ
)2

• φ : Rd → Rp feature map

Gradient flow solution: θ∗ = ΦT(ΦΦT)−1y

• Φ = [φ(x1), . . . , φ(xn)]
T ∈ Rn×p feature matrix

• y = [y1, . . . , yn]
T ∈ Rn label vector

Marco Mondelli (ISTA) 12 / 34
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Sensitivity to adversarial attacks

x + ∆adv = xadv

• ∥∆adv∥2 ≤ δ∥x∥2 (δ = 0.01)

|f (xadv;θ)− f (x;θ)| ≈ |∇x f (x;θ)T∆adv|

≤ δ∥x∥2∥∇x f (x;θ)∥2

• f (x;θ) = φ(x)Tθ
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|f (xadv;θ)− f (x;θ)| ≈ |∇x f (x;θ)T∆adv| ≤ δ∥x∥2∥∇x f (x;θ)∥2

• f (x;θ) = φ(x)Tθ

Sensitivity: Sφ(x) = ∥x∥2∥∇xφ(x)Tθ∗∥2

• Sφ(x) = O(1) =⇒ model (at interpolation) is robust

• Sφ(x) ≫ 1 =⇒ model (at interpolation) is not robust

Having ∥x∥2 on the RHS makes the sensitivity scale-invariant
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Related work

• Adversarial training (instead of ERM) in linear models
[Donhauser et al., 2021; Javanmard et al., 2020, 2022; Taheri et
al., 2020]

• [Bubeck & Sellke, 2021; Bubeck et al., 2021] consider Lipschitz
constant

• [Dohmatob & Bietti, 2022; Dohmatob, 2022] consider ExS2
φ(x):

• The former in the infinite-data regime (n → ∞)
• The latter in the infinite-width regime (p → ∞) or

proportional regime (n = Θ(p) = Θ(d))

• [Zhu et al., 2022] consider average robustness
Ex,x̂,θ∇x f (x;θ)T(x − x̂)

Marco Mondelli (ISTA) 14 / 34
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NTK features

fNN(x;W ) =
k∑

i=1
ϕ(wT

i x)−
2k∑

i=k+1
ϕ(wT

i x)

fNTK(x;θ) = φNTK(x)Tθ, φNTK(x)
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i=1
ϕ(wT

i x)−
2k∑

i=k+1
ϕ(wT

i x)

fNTK(x;θ) = φNTK(x)Tθ, φNTK(x) = ∇W fNN(x;W )
∣∣
W=W0
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NTK features

fNN(x;W ) =
k∑

i=1
ϕ(wT

i x)−
2k∑

i=k+1
ϕ(wT

i x)

fNTK(x;θ) = φNTK(x)Tθ, φNTK(x) = x ⊗ ϕ′(W0x)
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NTK features are robust

Theorem [Bombari, Kiyani, and M., 2023]
Let φNTK(x) = x ⊗ ϕ′(W0x). Assume p ≫ n, k = O(d),
n = O(k), ϕ even and smooth. Then, with high probability,

SNTK(x) = Õ
(√

nd
p

)
.

Saturates lower bound!
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• Even activations more robust than odd ones.

Marco Mondelli (ISTA) 16 / 34



Optimization, Robustness and Attention in Deep Learning: Insights from Random and NTK Feature Models

Random features

fRF(x;θ) = φRF(x)Tθ, φRF(x) = ϕ(Vx)
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Random features are not robust

Theorem [Bombari, Kiyani, and M., 2023]
Let φRF(x) = ϕ(Vx). Assume p ≫ n, p ≫ d , d ≫ n2/3, ϕ
smooth and Eρ∼N (0,1)ϕ

′(ρ) ̸= 0. Then, with high probability,

SRF(x) = Ω
(

n1/6
)
≫ 1.

Never robust, regardless of over-parameterization!
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Let φRF(x) = ϕ(Vx). Assume p ≫ n, p ≫ d , d ≫ n2/3, ϕ
smooth and Eρ∼N (0,1)ϕ

′(ρ) ̸= 0. Then, with high probability,

SRF(x) = Ω
(

n1/6
)
≫ 1.
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• Having Eρ∼N (0,1)ϕ
′(ρ) = 0 improves robustness.
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Proof ideas for NTK

SNTK(x) = ∥x∥2∥∇xφNTK(x)Tθ∗
NTK∥2

= ∥x∥2∥∇xφNTK(x)TΦT
NTK(ΦNTKΦ

T
NTK)

−1y∥2

≤ ∥x∥2∥INTK∥op λ
−1
min

(
ΦNTKΦ

T
NTK

)
∥y∥2

= Õ
(√

nd
p

)

• ΦNTK = [φNTK(x1), . . . , φNTK(xn)]
T

• INTK = ∇xφNTK(x)TΦT
NTK interaction matrix

∥INTK∥op computed explicitly for even ϕ

λmin
(
ΦNTKΦ

T
NTK

)
is the smallest NTK eigenvalue
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Proof ideas (RF)

A bit more involved. . .

SRF(x) = Ω
(
∥x∥2∥ĨRF∥F λ−1

max

(
Φ̃RFΦ̃

T
RF

))

= Ω(n1/6)

• Remove low-rank components by centering:
Φ̃RF = ΦRF − EX [ΦRF]

• Interaction matrix captures the effect of the activation

∥ĨRF∥F =
k
√

n√
d

(
E2
ρ∼N (0,1)ϕ

′(ρ) + o(1)
)
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optimization attention

robustness
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Changing a word changes the meaning

• Different output of the Llama2-7b-chat model
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Changing a word changes the scores

• Different attention score pattern of BERT-Base model

Transformers capture the effect of changing a single word in a sentence.
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Insights from random features
Data: X = [x1, . . . , xN ]

T ∈ RN×d

• Tokens {xi}N
i=1

• N = context length, d = embedding dimension

Random features: φRF : RN×d → Rk

φRF(X) = ϕ(V flat(X))

Random attention features: φQKV : RN×d → RN×d ′

φQKV(X) = softmax

(
XW T

Q WK XT
√

d ′

)
XW T

V

• softmax(s)i = esi/
∑

j esj

• WQ,WK ,WV ∈ Rd ′×d queries, keys and values matrices
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Insights from random features
Data: X = [x1, . . . , xN ]

T ∈ RN×d

• Tokens {xi}N
i=1

• N = context length, d = embedding dimension

Random features: φRF : RN×d → Rk

φRF(X) = ϕ(V flat(X))

Random attention features: φRAF : RN×d → RN×d

φRAF(X) = softmax

(
XWXT
√

d

)
X

• softmax(s)i = esi/
∑

j esj

Sample complexity comparison between RF and RAF in (Fu et al., 2023)
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Sensitivity to changing a word

Word sensitivity: WSφ(X) = sup
j∈[N], ∥∆∥2≤

√
d

∥∥φ(X j(∆))− φ(X)
∥∥

2
∥φ(X)∥2

• φ(X j(∆)) = X + ej∆
T (only j-th token changed)

• ∥∆∥2 ≤
√

d (perturbation size bounded by token size)
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Low WS of random features
Theorem [Bombari and M., 2024]

Assume ϕ Lipschitz and k = Ω(Nd). Then, with high probability
over V ,

WSRF(X) = O
(

1√
N

)
Word sensitivity vanishes as context length N grows

Marco Mondelli (ISTA) 26 / 34



Optimization, Robustness and Attention in Deep Learning: Insights from Random and NTK Feature Models

Low WS of random features
Theorem [Bombari and M., 2024]

Assume ϕ Lipschitz and k = Ω(Nd). Then, with high probability
over V ,

WSRF(X) = O
(

1√
N

)
Word sensitivity vanishes as context length N grows

Marco Mondelli (ISTA) 26 / 34



Optimization, Robustness and Attention in Deep Learning: Insights from Random and NTK Feature Models

Low WS of random features
Theorem [Bombari and M., 2024]

Assume ϕ Lipschitz and k = Θ(Nd). Then, with high probability
over V1, . . . ,VL,

WSDRF(X) = O
(

eCL
√

N

)
Word sensitivity vanishes as context length N grows

Marco Mondelli (ISTA) 26 / 34



Optimization, Robustness and Attention in Deep Learning: Insights from Random and NTK Feature Models

High WS of random attention features
Theorem [Bombari and M., 2024]

Assume d = Ω̃(N). Then, with high probability over W ,

WSRAF(X) = Ω(1)

High word sensitivity regardless of the context length N

Word sensitivity decreases when replacing softmax with ReLU
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Proof ideas for RAF
1. Find a direction δ∗ aligned with many words xi ’s.

• Constant fraction of the entries of Xδ∗ is Ω(d/
√

N) in modulus

2. Exhibit two different directions ∆∗
1 and ∆∗

2 both aligned with
many words in the feature space {W Txi}N

i=1.
• ∥∆∗

1 −∆∗
2∥2 = Ω(

√
d)

• Constant fraction of the entries of XW∆∗
k/
√

d is Ω
(
log2 d

)
3. Attention concentrates towards the perturbed word.

• Constant fraction of rows of softmax(X j(∆∗
k)W (X j(∆∗

k))
T/

√
d) ≈ ej

Key role of softmax

4. Conclude with at least one perturbation between ∆∗
1 and ∆∗

2.
•
∥∥φRAF(X)− φRAF(X j(∆∗

k))
∥∥

F = o(
√

dN) for k = 1, 2 ⇒
∥∆∗

1 −∆∗
2∥2 = o(

√
d), which is a contradiction
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Generalization on context modification

1. Random features have low word sensitivity:
WSRF(X) = O(1/

√
N).

2. Random attention features have high word sensitivity:
WSRAF(X) = Ω(1).

Idea: random features cannot learn to distinguish X and X j(∆),
while random attention features can!
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Generalized linear regression

Data: (X1, y1), . . . , (Xn, yn) ∈ RN×d × {−1, 1}

Goal: Minimize empirical risk L(θ) = 1
n

n∑
i=1

(
yi − φ(Xi)

Tθ
)2

• φ : RN×d → Rp feature map

Gradient descent solution: θ∗ = θ0 +ΦT(ΦΦT)−1(y − Φθ0)

• θ0 initialization

• Φ = [φ(X1), . . . , φ(Xn)]
T feature matrix

• y = [y1, . . . , yn]
T label vector
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More training and generalization

Does further training on (X , ỹ) allow to generalize on (X j(∆),−ỹ)?

X

X j(∆)

ỹ

−ỹ
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More training and generalization

Does further training on (X , ỹ) allow to generalize on (X j(∆),−ỹ)?

Fine-tuning. Initialize with θ∗ and train only the extra sample:

θ∗
f = θ∗ +

φ(X)

∥φ(X)∥2
2

(
ỹ − φ(X)⊤θ∗

)
.

Re-training. Add (X , ỹ) to training set and train from scratch:

θ∗
r = θ0 +ΦT

r (ΦrΦ
T
r )

−1(yr − Φrθ0).

• θ0 initialization
• Φr = [φ(X1), . . . , φ(Xn), φ(X)]⊤ feature matrix
• yr = [y1, . . . , yn, ỹ ]T label vector
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ỹ − φ(X)⊤θ∗

)
.
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Random features do not generalize. . .

Theorem [Bombari and M., 2024]
Let

∣∣φ(X j(∆))Tθ∗ − φ(X)Tθ∗∣∣ ≤ γ for γ ∈ [0, 2).

Then, under some
technical assumptions, with high probability,

ErrRF(X j(∆),θ∗
f /r ) :=

(
φ(X j(∆))Tθ∗

f /r + ỹ
)2

> (2−γ)2−O
(

1√
N

)

Unless the correct label is already known (γ = 2),
fine-tuning/re-training does not help much.

Idea: after perturbing the j-th token, the model
cannot move more than its WS, which is O(1/

√
N).
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. . . but random attention features do generalize

• Random attention features generalize even when X and
X j(∆) were indistiguishable before the extra training (γ ≈ 0).

• Replacing softmax with ReLU increases error.
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Take home

Quantitative understanding via random and NTK features
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