ISL Colloquium

← List all talks ...

Looking beyond the Worst-Case Adversaries in Machine Learning

Nika Haghtalab – Assistant Professor, UC Berkeley

Thu, 23-Mar-2023 / 4:00pm / Packard 202

Abstract

Robustness to changes in data is one of the main challenges faced by sequential machine learning and decision-making algorithms. Yet, most efficient and highly optimized deployed algorithms today were designed to work well on fixed data sets and ultimately fail when data evolves in unpredictable or adversarial ways. It is even more concerning that, for most fundamental problems in machine learning and optimization, providing any performance guarantees that are not completely diminished in the presence of all-powerful adversaries is impossible.

We will explore the smoothed analysis perspective on adaptive adversaries in machine learning and optimization, which goes beyond the worst-case scenario. We will examine both information theoretical and computational perspectives and present general-purpose techniques that provide strong robustness guarantees in practical domains for a wide range of applications, such as online learning, differential privacy, discrepancy theory, sequential probability assignment, and learning-augmented algorithm design. Our conclusion is that even small perturbations to worst-case adaptive adversaries can make learning in their presence as easy as learning over a fixed data set.

Bio

Nika Haghtalab is an Assistant Professor in the Department of Electrical Engineering and Computer Sciences at UC Berkeley. She works broadly on the theoretical aspects of machine learning and algorithmic economics. Prof. Haghtalab’s work builds theoretical foundations for ensuring both the performance of learning algorithms in presence of everyday economic forces and the integrity of social and economic forces that are born out of the use of machine learning systems. Previously, Prof. Haghtalab was an Assistant Professor in the CS department of Cornell University, in 2019-2020. She received her Ph.D. from the Computer Science Department of Carnegie Mellon University. She is a co-founder of Learning Theory Alliance (LeT-All). Among her honors are the CMU School of Computer Science Dissertation Award, SIGecom Dissertation Honorable Mention, and NeurIPS outstanding paper award.