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Correspondence 

On the Similarity of the Entropy Power Inequality The preceeding equations allow the entropy power inequality 
and the Brunn-Minkowski Inequality to be rewritten in the equivalent form 
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H(X+ Y) 2 H(X’+ Y’) (4) 

where X’ and Y’ are independent normal variables with corre- 
sponding entropies H( X’) = H(X) and H(Y’) = H(Y). Verifi- 
cation of this restatement follows from the use of (1) to show that Abstract-The entropy power inequality states that the effective vari- 

ance (entropy power) of the sum of two independent random variables is 
greater than the sum of their effective variances. The Brunn-Minkowski 
inequality states that the effective radius of the set sum of two sets is 
greater than the sum of their effective radii. Both these inequalities are 
recast in a form that enhances their similarity. In spite of this similarity, 
there is as yet no common proof of the inequalities. Nevertheless, their 
intriguing similarity suggests that new results relating to entropies from 
known results in geometry and vice versa may be found. Two applications 
of this reasoning are presented. First, an isoperimetric inequality for 
entropy is proved that shows that the spherical normal distribution mini- 
mizes the trace of the Fisher information matrix given an entropy con- 
straint-just as a sphere minimizes the surface area given a volume 
constraint. Second, a theorem involving the effective radii of growing 
convex sets is proved. 

I. THEENTROPYPOWERINEQUALITY 

Let a random variable X have a probability density function 
f(x), x E R. Then its (differential) entropy H(X) is defined as 

H(X) = -sf(x)lnf(x)dx. 

Shannon’s entropy power inequality [l] states that for X and Y 
independent random variables having density functions 

p(X+ Y) 2 pf(X) + ewY) (1) 

We wish to recast this inequality. First we observe that a 
normal random variable Z - Cp(z) = (l/ ~)e-zz~20z with 
variance o2 has entropy 

H(Z) = -J+ln+ 

= + ln2seu2. (4 

By inverting, we see that if Z  is normal with entropy H(Z), then 
its variance is 

(3) 
Thus, the entropy power inequality is an inequality between 
effective variances, where effective variance (entropy power) is 
simply the variance of the normal random variable with the same 
entropy. 
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where the penultimate equality follows from the fact that the sum 
of two independent normals is normal with a variance equal to 
the sum of the variances. 

By the same line of reasoning, the entropy power inequality for 
independent random n-vectors X and Y that is given by 

e2H(X+ V/n > eWXVn + eWWn 

can be recast as 
(6) 

H(X+ Y) 2 H(X’+ Y’) (7) 

where X’, Y’ are independent multivariate normal random vec- 
tors with proportional covariance matrices and corresponding 
entropies. 

II. THJZBRIJNN-~JINKOWSKI~NEQUALITY 

Let A and B be two measurable sets in R”. The set sum 
C = A + B of these sets may be written as 

C= {x+y:x~A,y~B}. (8) 

Let V(A) denote the volume of A. The Brunn-h4inkowski in- 
equality [2], [3] states that 

I+‘“(,4 + B) 2 Y’/“(A) + Y”“(B). (9) 

To recast this inequality, we observe that an n sphere S with 
radius r has volume 

V(S) = c,r”. (10) 

Thus if S is a sphere with volume Y, its radius is 

r = ( V/C,)~‘~. (11) 

Hence the Brunn-Minkowski inequality can be viewed as an 
inequality between the radii of the spherical equivalents of the 
sets. 

Rewriting the Brunt-h4inkowski inequality following the 
model in (5) gives 

V( A + B) 2 V( A’ + B’) (12) 

where A’ and B’ are spheres with volumes V(A’) = V(A) and 
V( B’) = V(B). 
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III. COMPARISONS S(X), the “surface area” of a multivariate random variable X, as 
Inspecting the convolution reveals further similarity between 

the entropy power and Brunn-Minkowski inequalities. The en- 
tropy H( X + Y) is a functional of the convolution, i.e., 

where 

H(X+ Y) = -/fz lnfz, (13) 

fz(z) = tfx*fY)tz) 

S(X) A lim 
e2HW+Z,) _ eWW 

(18) 
E+O E 

where 2, is Gaussian with covariance matrix EZ and 2, is 
independent of X. Thus S(X) is the rate of change of e2H when 
a small normal random variable is added. We may write 

s(x) = firn de2Wx+Z,) 
t,+o dt 

. (19) 
t=tg 

Similarly, the volume I/(A + B) is a functional of a convolu- 
tion, i.e., 

Now let X, %  X + 2, have density denoted by pI ( xr). Assum- 
ing H(X) is finite, we prove in the Appendix that 

-$(X,) = yYg 
PI 

V(A + B) =/I,(z) dz (14) 

where Z,(z) is the indicator function for C = A + B given by 

where ]] vp,ll denotes the norm of the gradient of p,(q). It 
follows that 

L(z) = mtaZA(t)ZB(z - t). (15) 

We note that fi(z) is the L, norm of h,(t) =fx(t)fr(z - t); 

S(X)=Eme . 7-H(X) 
P2 

From the entropy power inequality (7), we have 

(20) 

Z,(z) is the L, norm of h,(t) = Z,(r)Z,(z - t); and L, and 
L, are dual spaces. 

Finally eH, like Y, is a measure of volume. For example, for all 
random variables X with support set A, we have H(X) I In I’( A) 
with equality if the probability density is uniform over A. More- 
over, from the Asymptotic Equipartition Property, we know that 
the volume of the set of e-typical n-sequences (Xi, X,, . . . , X,), 
with X, independent and identically distributed (i.i.d.) according 
to f(x), is equal to e nH(X) to the first order in the exponent. 
Thus, eff(X) = enH(X) is the volume of the typical set for X = 
(XI, x*9.. .9 X,). To suggest a link between the Gaussian distri- 
bution and spheres, we note that the r-typical set of n sequences 
(XI, x*,-. .> X,) is given by a sphere when X, are i.i.d. according 
to the Gaussian distribution. 

e2H(X+Zc) > e2H(X’+Z,) (21) 
where X’ is a Gaussian n vector with covariance matrix of the 
form 0’1 such that H(X’) = H(X). Thus, from (18) and (21), we 
obtain the following bound on S(X): 

S(X) 2 lim 
,ZH(X’+Z,) _ e2H(X’) 

E = S(X’). (22) 
c-0 

For the spherical Gaussian vector X’, the “surface area” is found 
from (20) to be 

These observations suggest not only that the two inequalities 
may be different manifestations of the same underlying idea, but 
that there also may be a continuum of inequalities between L, 
and L, with their respective natural definitions of volume. 

S(X’) = 
2sene2H(X’) 

(23) 
eWX’)/n 

In spite of the obvious similarity between the above inequali- 
ties, there is no apparent similarity between any of the known 
proofs of the Brunn-Minkowski inequality [2]-[4] and the Stam 
and Blachman [5], [6] proofs of the entropy power inequality, nor 
have we succeeded in finding a new common proof. Nevertheless, 
the similarity of these inequalities suggests that we may find new 
results relating to entropies from known results in geometry and 
vice versa. We present two applications of this reasoning. 

IV. I~~PER~METR~C INEQUALITIES 
It is known that the sphere minimizes surface area for given 

volume. A proof follows immediately from the Brunn- 
Minkowski inequality [4] as shown below. For “regular” sets A, 
the surface area S(A) of A is given by 

Recalling that H(X’) = H(X), we combine (20), (22), and (23) 
to obtain the entropy analog of the isoperimetric inequality 

IElIVPl12 - > 2ree-WW”. 
n P2 

(24) 

Let J(X) denote the trace of the Fisher information matrix for 
the translation family of densities { p( x - 6)}, 6 E  R”, and 
x E R”. We formalize the above inequality in a theorem. 

Theorem: Suppose the multivariate random variable X has 
finite entropy H(X), and suppose J(X) exists. Let X, denote 
X + Z,, where Z, is spherical normal with covariance matrix tZ 
and independent of X. If X has a continuous density p(n) so 
that 

J(X) = JYP!!t 
P2 

S(A) = l im 
Y(A + SC) - V(A) 

Cd0 E (16) 

where S, is a sphere of radius e > 0. Using the Brunn- 
Minkowski inequality (12) we have 

&qA) 2 h VP + SC> - V(A’) = S( A’) (17) 
c-0 E 

where A’ is a sphere with volume V(A’) = Y(A). Thus the 
surface area of A is greater than that of a sphere with the same 
volume. 

We now proceed to perform the same steps on the entropy 
power. Let X have a suitably smooth density p(x). We define 

and if the integrals H(X,) and J(X,) converge uniformly near 
t = 0 so that 

NW = ~l$m) 

and 

4-O = ~+ytxt) 

then 

J(X) 2 J(X’) 
where X’ is spherical normal with entropy H(X’) = H(X). 
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This establishes that the Gaussian distribution minimizes the 
trace of the Fisher information matrix given an entropy con- 
straint. The scalar version of the above relation was proved in [5]. 

V. CONCAVITY 

Here we present an example of how a result involving entropy 
may yield a conjecture in geometry. Let X be an arbitrary 
random vector, let Z, be multivariate Gaussian with covariance 
matrix tZ, and let Z, be independent of X. In [7] and [8] the 
entropy power of X + Z,, given by 

27re ’ 

is shown to be a concave function of the added Gaussian noise 
variance t. This suggests the following conjecture. 

Conjecture: Let A be an arbitrary measurable set, and let S be 
a sphere of unit radius in R”. Then V”“(A + tS) is a concave 
function of t 2 0. 

We prove that the conjecture is true if A is convex. 

Theorem: If A is convex and S is a sphere, then V’/“(A + tS) 
is a concave function of t 2 0. 

Proof Let tJ E [O,l]. Then we have 

V’/‘( A + OS) = V”“((l - 6) A + BA + OS) 

> V”“((1 - B)A) + V”“(BA + OS) - 

= (1 - b’)V1’n(A) + &“‘“(A + S) (25) 

where the convexity of the set A in the first line and the 
Brunn-Minkowski inequality in the second line was used. Since 
A is an arbitrary convex set, scaling A + tS completes the proof. 

As far as we know, the conjecture is unresolved for arbitrary 
measurable sets in R”. 

VI. CONCLUDING REMARKS 

We still do not know if the Brunn-Minkowski and entropy 
power inequalities have a common underlying idea leading to 
similar proofs. The inequalities look the same ((7) and (12)), 
conditions for equality are similar, and both involve measures of 
volume. 

Janos Korner calls our attention to some related problems in 
combinatorics where the BIuM-~~~I&ows~~ inequality and the 
isoperimetric property are applied to Hamming spaces. An 
account of these problems is given in [lo]. 
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APPENDIX 

Let X be a vector-valued random variable having arbitrary 
density p(x) and finite entropy H(X). Let X, = X + Z, be the 
sum of X and an independent spherical multivariate normal 
random variable Z, with covariance tZ. Then X, has density 
P, ( x, > given by 

pt(x,) = l 
(Zrt) 

./2J,P(")ex~ 

Due to the smoothing properties of the normal distribution, we 
can differentiate the above expression inside the integral (the 
integrand is continuous and differentiable in t) to show that 

pt ( xt) satisfies the diffusion (heat) equation 

where 

$p,(x,) = $2p,(x,) (‘9 

v2p,(xt) = 2 
a2 

-p,(x,). 
i=l ax;)r 

(A9 

Interchanging derivative and integral once more gives 

;fftX,) = -L”;~,(xt) dx, - /,.( i,(xJ) bp,(x,) dx, 

= 0 - fS,“( v2z+t))lwtt~,) dx,. (A4 

We now recall Green’s identity [9]: if +(x) and G(x) are twice 
continuously differentiable functions in R” and if V is any set 
bounded by a piecewise smooth, closed, and oriented surface S 
in R”, then 

/+v2+dV=~W+!s-&v+~ v4dV (A5) 
V 

where V# denotes the gradient of #, ds denotes the elementary 
area vector, and vJ, . dr is the inner product of these two 
vectors. This identity plays the role of integration by parts in R”. 

To apply Green’s identity to (A4), we let V, be the n sphere of 
radius r centered at the origin and having surface S,.. Then we 
use Green’s identity on V, and S, with (p( xt) = log pt( x,) and 
4(x,) = p,(x,) and take the limit as r + CQ. We can show that 
the surface integral over S, vanishes in the limit [7], [8] provided 
that H(X,) is finite. Hence we obtain 

$Wft) = - ;JR”vp,(x,) . v bp,(x,) dx, 

1 =- 
/ 2 R” 

IIvP,(~,)11* dx 
p,(x,) f 

(A61 

as desired. 
Equation (A6) can also be written as 

111 

121 
[31 
[41 

151 

161 

[71 

181 

191 

1101 

$H(xt) = pYg. 
Pr 
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