
The Amorphous FPGA Architecture
Mingjie Lin

Department of Electrical Engineering
Stanford University, CA 94305

mingjie@stanford.edu

ABSTRACT
This paper describes the Amorphous FPGA, an innovative
architecture attempting to optimally allocate logic and rout-
ing resource on per-mapping basis. Designed for high per-
formance, routability, and ease-of-use, it supports variable-
granularity logic blocks, dedicated wide multiplexers, and
variable-length bypassing interconnects with a symmetrical
structure. Due to its many unconventional architectural fea-
tures, the amorphous FPGA requires several major modifi-
cations to be made in the standard VPR placement/routing
CAD flow, which include a new placement algorithm and a
modified delay-based routing procedure. It is shown that,
on average, an FPGA with the amorphous architecture can
achieve a 1.35 times improvement in logic density, 9% im-
provement in average net delay, and 4% improvement in the
critical-path delay for the largest 20 MCNC benchmark cir-
cuits over an island-style baseline.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: [Types and Design Styles]

General Terms
Design, Experimentation, Measurement, Performance

Keywords
FPGA, architecture, amorphous, performance analysis.

1. INTRODUCTION
Despite many advantages of FPGA, the huge performance

and cost-efficiency gap between FPGAs and ASICs severely
limits its application. Previous studies [1, 2] have shown
that without innovations in FPGA architecture, advances
in device technology alone can not significantly shrink this
gap. Unfortunately, optimizing FPGA architecture proves
to be quite challenging mainly because an FPGA’s overall
performance is jointly determined by many factors including
logic block, IO block, clock network, and routing architec-
tures, etc. As a result, the architecture of today’s FPGAs,
although enhanced with extra features such as block RAMs
and embedded microprocessor, still very much resembles the
one used in the first generation of FPGAs with similar well-
structured island style, in which an array of logic blocks are
surrounded by pre-fabricated programmable routing chan-
nels as illustrated in Figure 1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’08, February 24-26, 2008, Monterey, California, USA.
Copyright 2008 ACM 978-1-59593-934/08/02 ...$5.00.

PSfrag replacements

Logic IO
Block Block

Programmable Routing Resource

Multipliers and Block RAM Processor Block

Figure 1: A generic island-style FPGA.

Conventional island-style FPGA poses several challenges
to architecture design. The first challenge is how to find
a good balance between flexibility and efficiency in terms
of area, performance and power, i.e., how to optimally al-
locate hardware resource between logic and interconnects
while still achieving maximum overall performance for a
given set of target designs. Conventionally, FPGA has a
strict separation between logic and routing resources. This
division is determined before the chip fabrication and is fixed
at the configuration time. Despite of many advances in de-
vice technology over the last decade, a large proportion of
the silicon area (≈60-80%) is always devoted to routing re-
sources in order to ensure sufficient routability [3]. Mean-
while, the logic blocks are becoming ever more complex,
attempting to perform coarse-grain functions and therefore
lighten the stress on the routing resources, but often end
up being under-utilized. Given a fixed amount of hardware,
how to optimally partition them between logic and rout-
ing remains an open problem in FPGA architecture design.
This challenge is further complicated by the factor that a
generic FPGA family often needs to maximize the applica-
tion spectrum covering both control- and data-path applica-
tions. One conceptually appealing idea is to remove the hard
boundary between logic and routing, and therefore permits
applications with regular logic structures to more efficiently
utilize silicon area, while still permitting the use of many in-
terconnects at the expense of logic for random logic circuits.
It should be noted that trading hardware resource between
routing and logic is not totally new idea, early Pilkington
architecture and Triptych [4] were two early attempts to fol-
low this idea and have shown significant density advantages
over traditional island-style. More recently, [1, 5, 6] follow
the similar approach of spreading out logic to match routing
demand.

The second challenge is to determine the granularity of
logic blocks in an FPGA. All prominent FPGAs[7, 8, 9, 10]

today have fixed and uniform logic granularity for each logic
block. From the architecture point of view, coarse-grain
blocks have much less stress on the placement and rout-
ing but often result in long internal logic delays and under-
utilization for designs in small size, whereas fine-grain logic
blocks can achieve shorter internal delay but often requires
excessive amount of routing resource in order to successfully
route a circuit. From the application point of view, data-
path functions, in particular arithmetic functions, often op-
erate on coarser arguments than control-path logic and are
usually realized by fine-grain logic elements, while the imple-
mentation of control-path logic mostly benefits from coarser
granularity. A rather interesting question is whether the
logic blocks in an FPGA should be heterogeneous or ho-
mogeneous in size. There are two architectural reasons to
believe that an FPGA with heterogeneous blocks can poten-
tially provide superior speed and density: (i) Different kinds
of logic may be more efficiently implemented with different
kinds of blocks. (ii) Previous studies have shown that coarse-
grain blocks exhibit superior speed to fine-grain blocks, yet
the smaller blocks have better density[11, 12]. A mixture
of the two may provide superior speed-area trade-off. Par-
tially motivated by the above observations, Hutton et al [13]
proposed a new adaptable FPGA logic element based on
fracturable 6-LUTs, which fundamentally alters the long-
standing belief that 4-LUT is the best choice for area/delay
trade-off.

The third challenge of designing an island-style FPGA is
to determine the optimal segmentation of routing intercon-
nects. In conventional routing architecture, each routing
channel consists of a group of interconnects with variable
lengths. For example, Virtex II [8] has 16 Single, 40 Double,
120 HEX, and 24 long interconnects in each routing channel.
In general, short segments are advantageous to routability
but bad for delay and power performance, while long inter-
connects achieve better delay performance but may result
higher power consumptions. For a given set of benchmark
circuits, what is exactly the optimal segmentation for a par-
ticular routing architecture remains an open question.

New Approach
We propose the Amorphous FPGA architecture to meet
above design challenges. Our objective is to develop an
architecture that maximizes the application spectrum for
both data-path and control-path applications without com-
promising performance and area efficiency. The main moti-
vation behind the amorphous architecture is to reduce the
significant cost paid for routing in standard FPGAs and
translate the saving in hardware usage into performance
gain. The central idea of the amorphous FPGA is to make
several architectural choices dynamically configurable on a
per-mapping basis at configuration time. The concept of
this architectural “shapelessness” is illustrated in Figure 2.
While in the conventional island-style architecture, there is
a strong separation between logic and routing resources, and
this resource partition is fixed after the chip fabrication, the
amorphous FPGA allows the dynamic resource partition at
configuration time. In addition, the amorphous architec-
ture can readily perform several system-level functions such
as (i) dynamic resource allocation between logic and rout-
ing, (ii) variable-granularity logic blocks, (iii) dedicated wide
multiplexers, and (iv) variable-length interconnect overlay
without passing through switching points.

PSfrag replacements

Logic ResourceLogic Resource

Routing ResourceRouting Resource

Routing/Logic Resource

(a) (b)

Figure 2: Conceptual picture of FPGA architec-
tures: (a) Conventional island-style FPGA, (b)
Amorphous FPGA.

In the following section, we describe the amorphous FPGA
architecture in detail. We then illustrate in Section 3 how
various system functions can be performed inside an amor-
phous FPGA. Before presenting the performance compar-
ison results between the amorphous architecture and an
island-style baseline in Section 5, we present our placement
and routing algorithms in Section 4. Finally in Section 6,
we summarize our findings and comment on several open
research problems related to the amorphous FPGA archi-
tecture.

2. THE AMORPHOUS ARCHITECTURE
As depicted in Figure 3, the top-level architecture of the

amorphous FPGA architecture consists of an array of Rout-
ing or Logic Element (ROLE) blocks with horizontal and
vertical routing channel overlay on the top. Different from
the conventional island-style FPGA, the amorphous FPGA
replaces logic blocks with specially designed ROLE blocks
that allow the dynamic partition of hardware resource be-
tween logic and routing on a per-mapping basis after chip-
fabrication. Each ROLE block is capable of performing logic
only, routing only, or the combination of both tasks.

Routing or Logic Element (ROLE)
As shown in Figure 4, a typical ROLE block contains three
types of functional structures: 4-input look-up tables (4-
LUTs), flip-flop registers, and MUXes. The main motivation
of this design is the observation that the logic capability of a
LUT supersedes that of a MUX or a multiple-input switch.
As shown in Figure 5, a 4-LUT can readily implement a 2:1-
MUX or 4-input Switch. To differentiate from conventional
LUTs (look-up tables) and MUXes (multiplexers), we name
the structure depicted in Figure 4(b) as MUT (Multiplexer
or look-Up Table). Three parameters W , m, and k define
the structure of a ROLE block. W denotes the total number
of MUXes and MUTs along each side of the ROLE block, m

is the number of MUTs on each side, and k is the number
of inputs for a MUX or MUT in a ROLE block. Figure 4
depicts a ROLE block with W = 3, m = 1, and k = 6. A
ROLE block can be configured into different types of func-
tional blocks. If all 6-MUTs are used as 6-MUXes, then the
whole ROLE will behave like a routing block. In contrast,
if we use all 6-MUTs as combinations of 4-LUTs and their
associated FFs, then the whole ROLE can be looked as a
typical logic block with four 4-LUTs. Alternatively, we can
partially use 6-MUTs and use the ROLE block as a hybrid

PSfrag replacements

Interconnect Overlay ROLE block

Figure 3: Top-level diagram of an amorphous FPGA
architecture.

of a routing block and a logic block with smaller number of
4-LUTs.

Interconnect Overlay
In modern FPGAs, the routing fabric not only contributes
the most to the system delay but also consumes most of
the chip area [14, 3]. To make the situation even worse,
the fraction of total delay due to routing in an FPGA is
increasing with each process generation [15]. Consequently,
an FPGA architect must devise routing architectures that
are both fast and area-efficient in order to fully exploit the
performance and density potential of deep-submicron tech-
nologies.

It is known that interconnect segment length can signifi-
cantly impact the overall performance of an FPGA [16, 17].
Short connections, in general, are advantageous for routing
but often result in very densely placed areas where clouds of
highly connected logic are placed and cause regional routing
problems. Additionally, using short interconnects tends to
degrade the overall delay and power performance. On the
contrary, long interconnect benefits power and delay but of-
ten hurts the routability. Previous studies have shown that
optimizing segmentation is quite challenging. We took a
different approach and developed a new bypassing intercon-
nect for the amorphous FPGA. The key idea is to construct
long interconnects without passing through heavy switching
points and therefore improve delay and power performance
without sacrificing routability. Additionally, the more reg-
ular structure in bypassing interconnects makes the delay
of long interconnects in the amorphous FPGA much more
predictable than that in a conventional segmented routing
architecture, and therefore makes it easier for the CAD soft-
ware to find the most optimal routes. The idea to construct
long segments by directly connecting short ones was also
explored in [18, 19] under different settings.

As shown in Figure 6, each routing channel comprises
only Single and Double segments. Each Single or Double
segment consists of two unidirectional wires controlled by

�������������������������������������

��
��
��
��
��
��

����

	

��

����

��

��
�
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

���������������������������
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�� � !�!"

$$ %%&
&
'' (())*

*

+,-

.. //00

1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�12�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�23�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�34�45�56 789

::;
;
<<== >>

??
?
@@
@

ABCD

EF

GH

IJ

K�KL�L

MN

OP QR

ST

UV

WXYZ

[\

]]
]]
]]
]]
]]
]]
]]
]]
]]
]]
]]
]]
]]
]]

^^
^^
^^
^^
^^
^^
^^
^^
^^
^^
^^
^^
^^

__
__
__
__
__
__
__
__
__
__
__
__
__

``
``
``
``
``
``
``
``
``
``
``
``
``
``
``
``
``
``
``
``
`

aa
aa
aa
aa
aa
aa
aa
aa
aa
aa
aa
aa
aa
aa
aa
aa
aa
aa
aa
aa
a

bb
bb
bb
bb
bb
bb
bb
bb
bb
bb
bb
bb
bb
bb
bb
bb
bb
bb
bb
bb
b

cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
c

dde
e
ffg
g

hhi
i
jjk
k

ll
ll
ll
ll
ll
ll

mm
mm
mm
mm
mm
mm

nn
nn
nn
nn
nn
nn

oo
oo
oo
oo
oo
oo

p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�pq�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�qr�rs tu

v wxx
xx
xx
xx
xx
xx
x

yy
yy
yy
yy
yy
yy
y

PSfrag replacements

(a)

(b)

a
b
c
d

e
f

g

4
-M

U
X

4-MUX

5
-M

U
X

6-MUT

6-MUT

4
-L

U
T

FF

Figure 4: (a) A small example of ROLE block. (b)
Structure of a MUT.

PSfrag replacements

a b c d

f

4-LUT

a b c d

f

4:1 MUX

a b c/d

d

f

2:1 MUX

Figure 5: A 4-LUT and a 2:1-MUX or 4:1-Switch it
can implement.

two tri-state buffers. Segments can be connected directly to
form longer interconnect segments by appropriately setting
the states of the tri-state buffers without entering ROLE
blocks. This helps reducing the parasitic loading along inter-
connects due to programming overhead. The segments can
also be connected through routing blocks to make bends,
fan-out, or connect to logic blocks. The number of intercon-
nect segments in each routing channel is denoted by T and
the number of routing tracks in each interconnect segment
is r. Figure 3 and Figure 6 show an interconnect overlay of
T = 2 and a more detailed design of interconnect segment

PSfrag replacements

Interconnect OverlayROLE block

Figure 6: Interconnect overlay and its logic design.

zz
zz
z{{

{{
{{
{{
{{
{{
{{
{{
{{
{{
{{
{{
{{
{{
{{
{{
{{
{{

||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||

}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}

~~
~~
~~
~~
~~
~~
~~
~~
~~
~~
~~
~~
~~
~~
~~
~~
~~
~~

��
��
�
��
��
�

��
��
�

��
��
�
��
��
�

��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�

�� �� ��

�� �� ��

�� �� ��

� ¡¢ £¤ ¥¦

§¨ ©ª «¬ ®

¯° ±²³´

µ¶

·¸

¹º

»¼

½¾

¿À

ÁÂ

ÃÃ
Ã
ÄÄ
Ä
ÅÅ
Å
ÆÆ
Æ
ÇÇ
Ç
ÈÈ
È
ÉÉ
É
ÊÊ
Ê

ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËËÌÌ

Ì
ÍÍ
Í
ÎÎ ÏÏ

ÐÐ
ÐÐ
ÐÐ
ÐÐ
Ð

ÑÑ
ÑÑ
ÑÑ
ÑÑ
Ñ

ÒÒ
ÒÒ
ÒÒ
ÒÒ
Ò

ÓÓ
ÓÓ
ÓÓ
ÓÓ
Ó

ÔÔ
Ô
ÕÕ
Õ

ÖÖ
Ö
××
×

ØØ
ØØ
ØØ
ØØ
Ø

ÙÙÚ
Ú
ÛÛ
Û
ÜÜ
Ü
ÝÝ
Ý

ÞÞ
ÞÞ
ÞÞ
ÞÞ
Þ

ßß
ßß
ßß
ßß
ßß
ßß
ßß
ßß
ßß
ßß
ßß
ßß
ßß
ßß
ßß
ßß
ß

àà
àà
àà
àà
àà
àà
àà
àà
àà
àà
àà
àà
àà
àà
àà
à

áá
áá
áá
áá
áá
áá
áá
áá
áá
áá
áá
áá
áá
áá
áá
áá
á

ââ
ââ
ââ
ââ
ââ
ââ
ââ
ââ
ââ
ââ
ââ
ââ
ââ
ââ
ââ
ââ
â

ãã
ãã
ãã
ãã
ãã
ãã
ãã
ãã
ãã
ãã
ãã
ãã
ãã
ãã
ãã
ã

ää
ää
ää
ää
ää
ää
ää
ää
ää
ää
ää
ä

åå
åå
åå
åå
åå
åå
åå
åå
åå
åå
åå
å

ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
æ

çç
çç
çç
çç
çç
çç
çç
çç
çç
çç
ç

èè
èè
èè
èè
èè
èè
è

éé
éé
éé
éé
éé
éé

PSfrag replacements

MUX MUT

m
+

1

mfrom interconnect overlay, width = W

Figure 7: Connections between interconnect overlay
and a ROLE block.

of r = 2, respectively.

Between Interconnect Overlay and ROLEs
Connections between the interconnect overlay and a ROLE
block are made through a structure similar to the conven-
tional Connection Box (CB) as illustrated in Figure 7. For
a ROLE block with m MUTs on each side, there are m + 1
lines crossing over with the W interconnect segments from
the overlay. We define Fc as the connecting flexibility of this
structure. In Figure 7, Fc = 0.5. Note that when the ROLE
block is configured as a routing block, this connecting struc-
ture enhances the routing capability of the routing block
which in the conventional island-style FPGA, if a LB is un-
used, its associated CB will be idle and only add parasitics
to the interconnects.

3. ACHIEVABLE SYSTEM FUNCTIONS
Together with bypassing interconnects, a ROLE block

provides additional ability to implement variable-granularity
LUTs and wide multiplexers, both of which can potentially

reduce the depth of logic circuits and improve delay perfor-
mance.

Variable-Size LUTs
The number of logic levels significantly impacts delay per-
formance in FPGAs [20]. By collapsing levels of logic, the
routed circuits can achieve superior design performance [21].
One effective way to reduce the logic levels in an FPGA is to
implement wide-gating functions using variable-input look-
up tables. Wider LUT leads to at least two benefits: (i)
By directly implementing wider functions in the LUT, the
design circuit can reduce the number of logic levels between
registers and lead to higher performance. (ii) Because larger
LUT reduces the amount of required interconnects, the over-
all power consumption in the design circuit can be reduced.
Most FPGAs before 90’s have been based on the same fun-
damental architecture with 4-LUTs. As a result, functions
requiring more than four inputs had to be implemented us-
ing a combination of several LUTs and/or multiplexers. As
the CMOS device technology scales into deep-submicron do-
main, many vendors recognize that wider LUT may provide
better trade-off between critical path delay and logic den-
sity. As a result, the Xilinx Virtex-5 [22] offers 6-input LUTs
with fully independent inputs and the Altera Stratix II [13]
provides an 8-input fracturable LUT. However, wide-gating
functions in [22, 13] come with a price. First, the wide-
gating functions are enabled through use of extra dedicated
circuitry, which itself adds the hardware cost and can be
wasted if not used. Second, although wide-gating function
can effectively reduce critical path delay in the design, it
is often under-utilized because the implementation of data-
path functions, and in particular arithmetic functions, is
usually realized by fine-grain elements in practise. In con-
trast with [22, 13], the amorphous FPGA enables wide-input
LUTs without extra circuitry and the MUXes used to con-
struct 6-LUTs from 4-LUTs can be otherwise used for rout-
ing if a ROLE is configured as a routing block. The variable-
input LUT is a fundamental component of the amorphous
FPGA architecture that enables implementing the circuit
design with minimal levels of logic without compromising

êë

ìí
îï ðñ

òó

ôõö÷

øù úû

üýþÿ

����

��

�� �	

�
� ��

��

����

�� ��

�� ��

�� !

"#$%

&' ()

*+ ,-

./ 01

2345

67
89 :;

<= >?

@A

BCDE

FG HI

JK LM

NO

PQRS

TU VW

XY Z[

\] ^_

`a bc

de fg

hi jk

lmno

pq rs

tu vw

xyz{

|} ~�

�� ��

�� ��

�� ��

��

PSfrag replacements

(a)

(b)

(c)

a

a

a

a

a

a
a

a

b

b

b

b

b

b

b

b

c

c

c

c

c

c
c

c

d

d

d

d

d

d

d

d

e

e

e

e
e

e

f

f

f

f
g

g

g

g

g

“X”
4
-L

U
T

4
-L

U
T

4
-L

U
T

4
-L

U
T

4
-L

U
T

4
-L

U
T

4
-L

U
T

4
-L

U
T

4
-L

U
T

5
-L

U
T

6
-L

U
T

5
-M

U
T

2:1 MUX

FF

FF

FF

FF

Logic Block

g1

g1

g2

g2

M
U

X
M

U
X

M
U

X
M

U
X

Figure 8: (a) Two different functions with two dif-
ferent outputs for the same four inputs. (b) A 5-
input LUT implemented with a ROLE block. (c) A
6-input LUT implemented with a ROLE block.

its logic flexibility.
To further understand the usage of ROLE blocks, we present

three examples and compare them with their equivalent im-
plementations with conventional LUT-based logic blocks. In
Figure 8(a), the MUT implements two different functions
with two different outputs for the same four inputs. As
shown in study [22], 5-LUTs can be quite useful in some

applications. Conventionally, a 5-LUT can be implemented
either (i) with two LUTs and a 2-MUX in a single LUT
logic level or (ii) with three LUTs in two logic levels. In
Figure 8(b) and (c), we illustrate how a ROLE block imple-
ments a 5-input LUT and a 6-LUT, respectively.

Wide Dedicated Multiplexers
Digital circuits often contain many multiplexers and the
availability of wide multiplexers can improve the system per-
formance significantly [8]. With conventional 4-LUT, the
largest MUX that a single 4-LUT can implement is a 2:1
MUX with the fourth input available as a possible enable.
To construct larger MUXes inside an FPGA, the conven-
tional approach is to cascade multiple 4-LUTs. One such
example is the Xilinx Virtex architecture [23]. It provides
a dedicated 2:1 MUX following every LUT, replacing addi-
tional levels of LUT-based logic. One of these LUTs can
combine with adjacent LUTs to create a 4:1 mux. As shown
in Figure 9(a), a 4:1 MUX can be built by combining the
outputs of two 4-LUTs into a third 4-LUT. However, this
method adds two full levels of logic delay plus an additional
routing delay between the LUTs. A better approach is pre-
sented in [24], where Metzgen et al showed how to construct
a 4:1 MUX using only two 4-LUTs as shown in Figure 9(a).
In general, the shortcoming of cascading multiple LUTs is
its adverse effect on delay performance and its low area-
efficiency. Due to its special design, the amorphous FPGA
can easily implement variable-size multiplexers without cas-
cading multiple LUTs and therefore increases MUX speed
and density. The reason is because a MUT contains a 4:1
MUX as shown in Figure 4(b). While it may seem that
build-in MUX in a MUT can incur extra hardware cost, the
keypoint to note is that if this MUX is unused, it can be
used as part of routing block and therefore not wasted. To
illustrate, we shown in Figure 9(c) the way a wide MUX can
be implemented in a ROLE block of the amorphous FPGA.

4. CAD ALGORITHMS
In order to make meaningful FPGA architecture compar-

ison, it is essential that the CAD tools used to place and
map circuits into each architecture are of high quality. The
routing phase of the amorphous FPGA are largely based
on the previously published VPR [25]. Unfortunately, the
traditional VPR style CAD flow is not totally suitable for
the amorphous architecture because the logic and routing
resource has to be partitioned before routing stage. Dur-
ing our research, we also tried several previously published
white-space allocation placement algorithms [26, 27] and
found the results unsatisfactory for our purpose. As a re-
sult, we developed a new algorithm to solve the placement
problem for the amorphous FPGA. Given a target design
circuit, we start with logic packing assuming homogeneous
logic blocks and the same technology packing procedure as
in VPR.

Placement Algorithm
Our placement software for the Amorphous FPGA is based
on a simulated annealing approach with a cost function espe-
cially designed to match the routing fabric of the amorphous
FPGA. For a island-style FPGA, the placement normally
uses metrics such as wirelength as well as some measure of

�� ��

��
��

��
��

��

��

�� ¡

¢£

¤¥
¦§

¨© ª«

¬

®¯
°±

²³ ´µ

¶· ¸¹

º» ¼½

¾¿ ÀÁ

ÂÃ ÄÅ

PSfrag replacements

(a) (b)

(c)

a0

a0

a0

a1

a1

a1

a2

a2

a2

a3

a3

a3

c0

c0
c0

c1

c1

c1

f

f

f

4
-L

U
T

4
-L

U
T

4
-L

U
T

4
-L

U
T

4
-L

U
T

Figure 9: (a) A 4 : 1 multiplexer in three 4-LUTs.
(b) An efficient 4 : 1 multiplexer in two 4-LUTs. (c)
A 4 : 1 multiplexer implemented with one MUT.

the routability and delay. If applying the same methodol-
ogy to the amorphous FPGA, minimizing these metrics will
cause logic blocks to be placed tightly in the center of the
array of ROLE blocks, which almost certainly results in un-
routable nets. The placement procedure of the Amorphous
architecture differs from the island-style FPGA in a funda-
mental way: its successful routing relies heavily on config-
uring some ROLE blocks as routing blocks and allocating
them to match the routing demand of other RLB blocks
configured as logic blocks in the array. To achieve high logic
density, the routing resource in an amorphous FPGA should
be distributed non-uniformly based on the routing demands
between each pair of logic blocks, which is depicted in Fig-
ure 2(b). As a result, all ROLE blocks must be configured
and positioned as part of the placement process.

To place the ROLE blocks configured as LBs, we first need
to quantify the routing resource between two LBs. Figure 10
illustrates two examples, in which ROLE blocks A, B, C, and
D in gray color are configured as LBs and all other ROLE
blocks in white color are configured as RBs. Quantitatively,
the gray area in Figure 10(c) and (d) shows the amount of
routing resource between A-D and B-C pairs, respectively.
Notice that these gray areas correspond to the Steiner tree
cover for these routed nets. Intuitively, a good placement
should be such that the size of the gray area between two
ROLE blocks is proportional to the signal communication
bandwidth between these two ROLE blocks.

We now describe the top-level placement algorithm listed
in Algorithm 1. Given a N ×N array of ROLE blocks, we

PSfrag replacements

A A

A A

BB

BB

CC

CC

D D

D D

(a) (b)

(c) (d)

1

1

2

2

3

Figure 10: Two examples of availability of routing
resource between two LBs.

start with an random placement of ROLE blocks configured
as LBs. The corresponding routing graph is then generated
and the target design is routed using the standard solution of
the Euclidean Steiner tree problem. An initial temperature
for simulated annealing is set. We then randomly pick a
pair of ROLE blocks and swap them. The designs are then
rerouted using Steiner tree algorithm, and the cost metric
is re-evaluated. If the metric value is reduced, the swapping
is accepted, otherwise it is accepted with a probability that
depends on the increase in the value of the cost metric and
temperature. The process of ROLE swapping, computing its
cost metric, and accepting or rejecting it is repeated until
InnerLoopCriterion is false. After exiting the inner loop,
temperature is reduced and the process is repeated until the
ExitCriterion becomes false.

In the following we describe some of functions referred to
in Algorithm 1 in more detail.

ExitCriterion() & InnerLoopCriterion()
ExitCriterion() make sure the freeze count is less than a
predetermined number, which is set equal to 50. Inner-
LoopCriterion() is true if trials < TRIALS and changes <

CHANGES. Both constants TRIALS and CHANGES are
related to the problem size. We set TRIALS and CHANGES
equal to 10W and 0.01W , respectively.

EvaluateCost()
Given a placement of ROLE blocks and the benchmark de-
sign, the first step of evaluating the cost is to perform the
routing using the Steiner tree algorithm. It is well-known
that most Steiner tree problems are NP-complete, i.e., thought
to be computationally hard. To simplify our placement al-
gorithm and to combat the intractability, we use a heuris-
tic[28], in which we compute the Euclidean minimum span-
ning tree to approximate the Euclidean Steiner tree problem.

Figure 11(a) shows a simple example of a net to be routed
and (b) shows the minimum distance Steiner tree that suc-
cessfully routes this net. Suppose more nets are routed us-

Algorithm 1 The placement algorithm of Amorphous
FPGA.
1: p← RandomPlacement()
2: T ← InitialTemperature()
3: g ← g(A,p)
4: freeze count ← 0
5: while (ExitCriterion() is FALSE) do
6: changes ← 0
7: trials ← 0
8: c← EvaluateCost(g,b)
9: while (InnerLoopCriterion() is FALSE) do

10: trials ← trials + 1
11: pnew ← RandomSwap(p)
12: IncrementalRoute(g(A,pnew), b)
13: ∆c← EvaluateCost(g(A, pnew)) - c

14: if ∆c < 0 /*downhill move*/ then
15: changes ← changes + 1
16: p← pnew

17: g ← g(A, p)
18: c∗ ← EvaluateCost(g(A, pnew))
19: end if
20: if ∆c > 0 /*uphill move*/ then
21: r ← Random(0,1)

22: if r < e−
∆c

T then
23: s← pnew

24: g ← g(A, p)
25: end if
26: end if
27: end while
28: T ← UpdateTemperature()
29: if c∗ changes then
30: freeze count ← 0
31: end if
32: if changes

trials
< 0.01 then

33: freeze count ← freeze count + 1
34: end if
35: end while

ing Steiner tree algorithm as illustrated in Figure 11(c) 1, we
use the following equation to compute the cost of placement.
Let (xi,j , yi,j) be the cost pair for a ROLE block located at
(i, j). xi,j be the total number of routed signals along both
x- and y-directions above the ROLE block (i, j), yi,j be the
total number of routed signal turns above the ROLE (i, j),

x̄ =
1

MN

M
X

i=1

N
X

j=1

xi,j , ȳ =
1

MN

M
X

i=1

N
X

j=1

yi,j , (1)

c =

v

u

u

t

1

MN

M
X

i=1

N
X

j=1

x2

i,j − x̄2+

v

u

u

t

1

MN

M
X

i=1

N
X

j=1

y2

i,j − ȳ2. (2)

The value of cost c roughly reflects the variance of the de-
mand for routing resource from all ROLE blocks. Intuitively,
small c means high placement quality in terms of the overall
routability. There are two main reasons to use routability
as the main metric for the cost function in the simulated an-
nealing process: (i) The evaluation of c is more time-efficient
in comparison with other delay-related metrics. (ii) As men-
tioned in Section 2, the bypassing interconnect overlay only
contains Single and Double interconnects and therefore the

1Only two nets are shown.

PSfrag replacements (a) (b)

(c) (d)

S1S1

S2S2 1,1 1,11,1

1,1

1,11,1

1,11,1

1,0

1,0

1,0

0,12,0

2,0

Figure 11: (a) A net to be routed. (b) A routed net
using the minimum-distance Steiner tree algorithm.
(c) Two routed nets using the minimum-distance
Steiner tree algorithm. (d) Computed ((xi,j , yi,j))
according to Equation 1 and 2 at each block after
two nets are routed.

delay is more predicable. It is conceivable that better place-
ment algorithms and cost metrics may exist.

Routing Algorithm
To map designs into the amorphous FPGA, we modified the
VPR router [29, 25] to accommodate the differences between
the routing architecture of our new amorphous FPGA and
the island-based architecture. The routing algorithm ini-
tially routes one net at a time using the shortest path it
can find without considering interconnect segment or logic
block pin overuse. Each iteration of the router consists of
sequential net rip-up and re-route according to the lowest
cost path available. The cost of using a routing resource is a
function of its current overuse and any overuse that occurred
in prior routing iterations. By gradually increasing the cost
of an oversubscribed routing resource, the algorithm forces
nets with alternative routes to avoid using that resource,
leaving it to the net that most needs it. The main differ-
ence between our router and VPR is that we keep track
of visited nodes during the breadth-first-search to improve
the run time. More details of this routing algorithm can be
found in [30].

5. PERFORMANCE ANALYSIS AND COM-
PARISON

In this section we compare an amorphous FPGA to the
baseline FPGA in terms of routability and delay. We omit
the analysis of power consumption for two reasons: the com-
plexity of developing an accurate power estimation model
and the limited space for this paper. We assume a 65nm
CMOS technology and the Berkeley Predictive Technology
Model (BPTM) [31] for devices and interconnects.

As in [30], we assume an island-style FPGA as the base-
line architecture, referred to henceforth as baseline FPGA,
for our performance comparison (see Figure 1). It com-

prises a 2D array of logic blocks (LBs) interconnected via
programmable routing. We assume each LB comprises four
logic slices, each consisting of two 4-input Lookup Tables
(LUTs), two flip-flops (FFs), and programming overhead.
The routing fabric comprises horizontal and vertical rout-
ing channels each having sets of Single, Double, HEX-3,
and HEX-6 interconnect segments. We classify the inter-
connects into two groups, short, which includes Single and
Double FPGA tile width interconnects, and long, which in-
cludes HEX-3 and HEX-6 interconnects. The segments can
be connected to the inputs and outputs of the LBs via con-
nection boxes and to each other via switch boxes. We assume
the MUX-based switch box design described in [32].

We define average net delay for a placed and routed de-
sign as the geometric average of all its pin-to-pin net delays,
not including LB delay. As in [30], we first use RC models
for the interconnect segments and Elmore delay to optimize
the connection and switch box device sizes as well as the
number and sizes of the buffers for the HEX-3 and HEX-6
segments for a given FPGA array size in each technology
node. We then use a modified version of the VPR delay cal-
culation function to compute net delays. All the following
performance analysis are performed on 20 MCNC bench-
mark designs.

(a) The Baseline FPGA

Architectural Parameter Value

Tile Width (L) 3678λ

LB Buffer Size (b) 7

Input Pins (Ki) 16

Output Pins (Ko) 4

SB Density (Fs) [33] 3

Connectivity of CB (Fc) [33] 28

Segment Length Mix Single (32%)

Double (29%)

HEX-3 (18%)

HEX-6 (21%)

(b) The Amorphous FPGA

Architectural Parameter Value

Tile Width (L) 2755λ

ROLE Block Width (W) 36

Density of MUT (m) 4

Inputs of a MUX or MUT 6

Connecting Flexibility(Fc) 0.5

Interconnect Segments in Each Channel (T) 16

Routing Tracks per Interconnect Segments (r) 2

Table 1: Baseline 2D-FPGA parameter values.

5.1 Routability and Logic Density
To compare the routability of the new amorphous FPGA

to that of the baseline FPGA we placed and routed the
20 largest MCNC benchmark circuits in both architectures.
To make a fair comparison, we do not simply compare the
minimum number of routing tracks between these two archi-
tectures, instead, we compare the minimum required silicon
area. For the baseline FPGA, we chose the number of LBs
according to the size of benchmark circuit, varied the routing

channel width, and found the minimum track count Tmin for
each design mapped to each architecture and then applied
the area model we developed in [30]. In varying the chan-
nel width in the baseline FPGA, we maintained the same
fractions of each interconnect type (0.32 for Single, 0.29 for
Double, 0.18 for HEX-3, and 0.21 for HEX-6).

Because the amorphous architecture is quite different from
the conventional island style and the minimum number of
routing tracks alone can not accurately indicate routability,
we adopted a different approach. While keeping the width
of our ROLE block as 36, we find out the minimum number
of ROLE blocks that successfully places and routes a bench-
mark circuit. We then estimate the area for the minimum
required amorphous FPGA. For the amorphous FPGA, we
assume the architectural parameter values in Table 1 and
buffer size 4 for Single interconnects, 6 for Double intercon-
nects, 8 for buffers driving the routing block input, and 6
for shared MUX output buffer. The MUXes and the pass
transistor switches that connect segments to routing blocks
use size 4 transistors.

Table 2 compares (i) the minimum channel width Tmin

for the baseline FPGA and the minimum number of ROLE
blocks Nmin for the new amorphous FPGA, (ii) the geomet-
ric average total segment length, L, used in routing each
pin-to-pin net segment, and (iii) the geometric average of
the number of bends, S, used to route each pin-to-pin net.
On average, the L values in the amorphous FPGA are about
23% longer than the L values in the island-style baseline,
but because the ROLE block width (2755λ) is about 25%
shorter than the tile width of the baseline FPGA (3678λ),
the physical signal path are roughly the same.

Table 2: Routability comparison between the amor-
phous FPGA (NEW) and the baseline FPGA (BL).

Circuit Baseline Amorphous

Tmin L S Nmin L S

alu4 55 13.59 3.73 19 15.51 4.07

apex2 59 12.43 3.18 21 14.85 2.98

apex4 57 10.67 2.80 19 12.96 3.15

bigkey 38 20.58 4.68 42 16.08 4.99

clma 79 20.50 4.79 53 35.99 5.09

des 40 18.19 3.30 53 16.25 3.13

diffeq 41 9.22 2.74 18 8.82 3.26

dsip 30 20.06 4.87 38 12.80 5.03

elliptic 78 16.95 3.86 34 27.07 3.91

ex1010 81 14.01 3.54 40 24.60 4.07

ex5p 74 10.46 2.89 35 16.83 3.15

frisc 83 14.61 3.63 36 25.42 4.09

misex3 62 11.77 3.22 18 14.90 2.89

pdc 109 18.70 3.87 43 39.68 3.88

s298 42 13.80 3.47 18 11.35 2.97

s38417 73 10.17 2.58 43 15.04 2.95

s38584 59 12.47 2.87 21 15.49 3.07

seq 71 12.21 3.17 23 18.18 3.02

spla 96 17.82 3.73 40 37.49 4.07

tseng 41 10.62 3.04 18 9.86 3.06

1.00
1.10
1.20
1.30
1.40
1.50
1.60

alu
4
ap

ex
2
ap

ex
4
big

key clm
a

de
s
diff

eq dsi
p
elli

ptic

ex1
01

0
ex

5p fris
c
mise

x3 pd
c
s29

8

s38
41

7

s38
58

4.1 seq spl
a
tse

ng

Logic Density Improvement (Amorphous vs. Baseline)

Figure 12: Logic density improvement of the Amor-
phous FPGA over the baseline FPGA for MCNC
benchmark circuits.

In Figure 12, we plot the Logic density improvement of the
Amorphous FPGA over the baseline FPGA for 20 MCNC
benchmark circuits. By logic density improvement we mean
the ratio of the minimum required FPGA area between the
baseline and the amorphous FPGA in order to successfully
route each benchmark circuit. Note that on average, the new
amorphous FPGA requires around 35% less silicon area than
the baseline FPGA. The reduction of silicon area is due to
several factors. First, the use of shorter segments improves
the routability. Second, the capability of the ROLE block to
be configured as either logic or routing block and therefore
can dynamically adopt to the demand of routing resource
between ROLE blocks configured as logic blocks.

Delay Performance
To compare delay performance, for the baseline FPGA, we
choose array size of 52 × 52, which accommodates all the
designs with minimum utilization of 12% for the baseline
FPGA. We use Fc = 0.5W , Fs = 3, and W = 56 for the
channel width. For the segmentation, we assume 18 Sin-
gle, 16 Double, 10 HEX-3, and 12 HEX-6 segments. The
pass-transistor and buffer sizes are listed in Table 1. For the
amorphous FPGA, we keep the area the same as the base-
line and set the N to be 69. We then use the improvement
in the geometric average of the pin-to-pin delays and the
critical-path delay as main indicators of delay performance.
By improvement here we mean the ratio of the delay in the
baseline FPGA to that in the amorphous FPGA. Results for
the largest 20 MCNC benchmark circuits are plotted in Fig-
ures 13. Note that the improvements over the baseline 2D-
FPGA range from 0.89 times to 1.17 times for the geometric
average pin-to-pin delay and from 0.87 times to 1.14 times
for the critical-path delay. Note for several circuit designs,
the delay improvements are actually smaller than 1, which
means the delay performance of the amorphous FPGA for
these design circuits are actually worse than baseline. On
average, there is a 9% delay improvement in pin-to-pin net
delay and 4% imrpovement in the critical-path delay for the
amorphous over the baseline FPGA.

6. CONCLUSIONS
The central challenge in designing FPGA architecture is

how to balance flexibility, performance, and cost. Most
FPGA architectures today employ island-style architecture
with an array of logic blocks surrounded by pre-allocated
routing resources. The Amorphous FPGA deviates from
this convention and is constructed by an array of ROLE
blocks overlayed with an interconnect network. Each ROLE
block is capable of either being configured as a logic block
or a routing block without extra hardware. As a result,

0.80

0.90

1.00

1.10

1.20

1.30

alu
4
ap

ex
2
ap

ex
4
big

key clm
a

de
s
diff

eq dsi
p
elli

ptic

ex1
01

0
ex

5p fris
c
mise

x3 pd
c
s29

8

s38
41

7

s38
58

4.1 seq spl
a
tse

ng

Average Net Delay Critical-Path Delay

Figure 13: Delay comparison between the Amor-
phous FPGA and the baseline FPGA for MCNC
benchmark circuits.
the amorphous FPGA allows dynamic resource partition
between logic and routing on per-mapping basis at config-
uration time, and achieves much better density and delay
performance over a baseline island-style FPGA. More inter-
estingly, the amorphous FPGA architecture poses numerous
interesting problems open to further investigation:

• Technology packing – Suppose the target design can be
packed into logic blocks of variable size, how to deter-
mine the optimal size distribution of logic blocks and
perform the afterward placement/routing procedure?

• Placement algorithm – Our presented placement algo-
rithm for the amorphous FPGA is a preliminary at-
tempt with only routability being considered. More
superior placement and routing algorithms are yet to
be developed.

• 3D-implementation – The flexibility of dynamic re-
source partitioning in the amorphous FPGA largely
depends on the amount of memory cells. It is con-
ceivable that a 3D-IC technology with relative cheaper
memory cells may prove to be far better implementa-
tion technology for the amorphous FPGA.

Acknowledgments
The authors wish to express their thanks to Professor Abbas
El Gamal for helpful discussions, Dr. Mike Hutton from
Altera for many constructive suggestions, and Dr. Wenyi
Feng from Actel for the addition of several key references.

7. REFERENCES
[1] A. Dehon, “Nanowire-based programmable

architectures,” J. Emerg. Technol. Comput. Syst.,
vol. 1, no. 2, pp. 109–162, 2005.

[2] I. Kuon and J. Rose, “Measuring the gap between
FPGAs and ASICs,” in Proceedings of the 2006
ACM/SIGDA Tenth International Symposium on
FPGA, pp. 21 – 30, 2006.

[3] A. DeHon, “Balancing interconnect and computation
in a reconfigurable computing array,” in Proceedings of
the ACM/SIGDA 7th international symposium on
Field programmable gate arrays, 1999.

[4] G. Borriello, C. Ebeling, S. A. Hauck, and S. Burns,
“The triptych FPGA architecture,” IEEE Trans. Very
Large Scale Integr. Syst., vol. 3, no. 4, 1995.

[5] M. Tom and G. Lemieux, “Logic block clustering of
large designs for channel-width constrained fpgas,” in

DAC ’05: Proceedings of the 42nd annual conference
on Design automation, pp. 726–731, ACM, 2005.

[6] D. B. Strukov and K. K. Likharev, “A reconfigurable
architecture for hybrid CMOS/Nanodevice circuits,”
in Proceedings of the 2006 ACM/SIGDA 14th
international symposium on FPGA, pp. 131–140, 2006.

[7] Actel, Inc., “Automotive ProASIC3 flash family
FPGAs datasheet,” March 2007.

[8] Xilinx, “Virtex-II Pro / Virtex-II Pro X complete
data sheet (all four modules),” March 2007.

[9] D. Lewis, E. Ahmed, G. Baeckler, V. Betz,
M. Bourgeault, D. Cashman, D. Galloway, M. Hutton,
C. Lane, A. Lee, P. Leventis, S. Marquardt,
C. McClintock, K. Padalia, B. Pedersen, G. Powell,
B. Ratchev, S. Reddy, J. Schleicher, K. Stevens,
R. Yuan, R. Cliff, and J. Rose, “The stratix II logic
and routing architecture,” in Proceedings of the 2005
ACM/SIGDA 13th international symposium on
Field-programmable gate arrays, pp. 14 – 20, 2005.

[10] E. Ahmed and J. Rose, “The effect of LUT and
cluster size on deep-submicron FPGA performance
and density,” in the 2000 International Symposium on
FPGA, Feb. 2000.

[11] D. Hill and N.-S. Woo, “The benefits of flexibility in
lookup table-based FPGAs,” Computer-Aided Design
of Integrated Circuits and Systems, IEEE
Transactions on, vol. 12, pp. 349–353, Feb. 1993.

[12] J. He and J. Rose, “Advantages of heterogeneous logic
block architectures for FPGAs,” in Proc. IEEE
Custom Integr. Circuits Conf., pp. 741–745, 1993.

[13] M. Hutton, J. Schleicher, D. M. Lewis, B. Pedersen,
R. Yuan, S. Kaptanoglu, G. Baeckler, B. Ratchev,
K. Padalia, M. Bourgeault, A. Lee, H. Kim, and
R. Saini, “Improving FPGA performance and area
using an adaptive logic module.,” in FPL,
pp. 135–144, 2004.

[14] V. Betz and J. Rose, “FPGA routing architecture:
segmentation and buffering to optimize speed and
density,” in Proceedings of the 1999 ACM/SIGDA
Seventh International Symposium on FPGA, pp. 59 –
68, 1999.

[15] M. Lin, A. El Gamal, Y.-C. Lu, and S. Wong,
“Performance benefits of monolithically stacked
3D-FPGA,” in Proceedings of the 2006 International
Symposium on FPGA, pp. 113 – 122, 2006.

[16] L. Ciccarelli, D. Loparco, M. Innocenti, A. Lodi,
C. Mucci, and P. Rolandi, “A low-power routing
architecture optimized for deep sub-micron FPGAs,”
in Conference 2006, IEEE Custom Integrated Circuits,
pp. 309–312, 10-13 Sept. 2006.

[17] M. Pedram, B. Nobandegani, and B. Preas, “Design
and analysis of segmented routing channels for
row-based FPGAs,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions
on, vol. 13, pp. 1470–1479, Dec. 1994.

[18] J. R. Hauser and J. Wawrzynek, “Garp: a MIPS
processor with a reconfigurable coprocessor,” in
Proceedings of the 5th IEEE Symposium on FCCM,
p. 12, 1997.

[19] N. Weaver, J. Hauser, and J. Wawrzynek, “The SFRA:
a corner-turn FPGA architecture,” in Proceedings of
the 2004 ACM/SIGDA 12th international symposium

on Field programmable gate arrays, pp. 3–12, 2004.

[20] O. Agrawal, H. Chang, B. Sharpe-Geisler, N. Schmitz,
B. Nguyen, J. Wong, G. Tran, F. Fontana, and
B. Harding, “An innovative, segmented high
performance FPGA family with
variable-grain-architecture and wide-gating functions,”
in Proceedings of the 1999 international symposium on
FPGA, pp. 17–26, 1999.

[21] Xilinx, “The 40% performance advantage of Virtex-II
Pro FPGAs over Competitive PLDs.” White paper by
Xilinx Inc., 2006.

[22] Xilinx, “Achieve higher system performance with the
Virtex-5 Family of FPGAs.” White paper by Xilinx
Inc., 2006.

[23] V. M. K. Kamal Chaudhary, Philip D. Costello,
“Programmable circuit optionally configurable as a
lookup table or a wide multiplexer,” July 2006.

[24] P. Metzgen and D. Nancekievill, “Multiplexer
restructuring for FPGA implementation cost
reduction,” in Design Automation Conference, 2005.
Proceedings. 42nd, pp. 421–426, 13-17 June 2005.

[25] V. Betz and J. Rose, “VPR: A new packing,
placement and routing tool for FPGA research,” in
Proceedings of the 7th International Workshop on
Field-Programmable Logic and Applications, pp. 213 –
222, 1997.

[26] C. Li, M. Xie, C.-K. Koh, J. Cong, and P. H. Madden,
“Routability-driven placement and white space
allocation,” in ICCAD ’04: Proceedings of the 2004
IEEE/ACM International conference on
Computer-aided design, (Washington, DC, USA),
pp. 394–401, IEEE Computer Society, 2004.

[27] B.-K. C. X. Yang and M. Sarrafzadeh,
“Routability-driven white space allocation for
fixed-die standard-cell placement,” IEEE Trans. on
CAD, vol. 22, pp. 410–419, April 2003.

[28] A. Kahng and G. Robins, “A new class of iterative
steiner tree heuristics with good performance,”
Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 11, pp. 893–902,
July 1992.

[29] C. Ebeling, L. McMurchie, S. Hauck, and S. Burns,
“Placement and routing tools for the Triptych
FPGA,” IEEE Trans. Very Large Scale Integr. Syst.,
vol. 3, no. 4, pp. 473–482, 1995.

[30] M. Lin, A. El Gamal, Y.-C. Lu, and S. Wong,
“Performance benefits of monolithically stacked 3-D
FPGA,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 26,
pp. 216–229, Feb. 2007.

[31] Y. Cao, T. Sato, M. Orshansky, D. Sylvester, and
C. Hu, “New paradigm of predictive mosfet and
interconnect modeling for early circuit simulation,” in
Custom Integrated Circuits Conference, 2000. CICC.
Proceedings of the IEEE 2000, pp. 201–204, 2000.

[32] G. Lemieux and D. Lewis, “Circuit design of routing
switches,” in Proceedings of the 2002 ACM/SIGDA
Tenth International Symposium on
Field-Programmable Gate Arrays, pp. 19 – 28, 2002.

[33] V. Betz, J. Rose, and A. Marquardt, eds., Architecture
and CAD for Deep-Submicron FPGAs. Norwell, MA,
USA: Kluwer Academic Publishers, 1999.

