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Camera History
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Camera History

• Despite progress, each of these cameras form 
images in the same way
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Image Formation in a Camera
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Image Formation in a Camera
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Image Formation in a Camera
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Advances in the Image Recording Process

• Images recorded by 
hand (1015-1900)

• Images recorded by 
film (1829-2000)

• Images recorded by 
semiconductor (1974-
present)
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Solid-State Photon Conversion

pn junction Voltage-induced junction
* A. Theuwissen, Solid-State Imaging with CCDs, p. 111
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Interline Transfer CCD CMOS

+ Low dark current, low non-uniformity
-  Minimal integration of circuits, slow 
readout, high power

+ Integration, fast readout, low power
-  Higher dark signal, non-uniformity

CCD and CMOS Comparison
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CMOS Active Pixels

+ Low dark current
+ Low temporal noise with CDS
+ Allows for readout multiplexing
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4T Buried Diode Operation

Exposure Readout
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• Increase spatial resolution
• Decrease format size

Pixel Sizes reported at 
IEDM, ISSCC, IISW

Recent Pixel Scaling
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Ray Diagrams for CMOS Pixel

(a) (b) (c)

(d) (e) (f)
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Recent Pixel Scaling Technology

* H. Sumi, IEDM 2006, p119-122* J. Kim, J. Shin, C.R. Moon, et. al., IEDM 
2006, p123-126

4T sharing Stack height reduction
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Spot Size Limitation
• Point in object space is focused to a small spot in 

focal plane
• Spot size is limited and dependent on:

– Relative size of the aperture
– Aberrations of lens
– Wavelength of the source
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Outline

• Multi-Aperture architecture

• Detailed operation
– FT-CCD array

– Multi-Aperture array
– Column ADC

• Results

• Summary
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Multi-Aperture Image Sensor

Imager subarray with 
integrated optics

Imager subarrays integrated 
to form multi-aperture array
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Conventional vs. Multi-Aperture

Conventional imaging Multi-Aperture imaging

* K. Fife, A. El Gamal and H.-S. P. Wong, CICC 2006, 
p281-284
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Multi-Aperture Imaging
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Benefits of Multi-Aperture Imaging

• Capture depth information

• Close proximity imaging

• Achieve better color separation
• Reduce requirements of objective lens

• Increase tolerance to defective pixels
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Depth from Multi-Aperture
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Why Use Small Pixels?
• Depth resolution improves with pixels smaller than 

the spot size
• Spatial resolution is limited by the spot size
• Depth resolution is limited by accuracy in 

localization of the spot
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Feature Localization vs. Pixel Size

Poor location accuracy High location accuracy

Pixels
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Color Separation with Multi-Aperture

• Color filter placed over each subarray of 
pixels rather over each individual pixel
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Color Imaging with Multi-Aperture
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Fabricated Multi-Aperture Imager

• 0.11µm CMOS (TSMC)
• Chip size: 3.0 x 2.9mm2

• 166 x 76 aperture array
• 16 x 16 pixel FT-CCD per 

aperture
• Pixel size: 0.7 µm
• Max frame rate: 15fps
• ADC resolution: 10 bit
• Power: 10.45mW

* Local optics are not integrated on this chip.

* K. Fife, A. El Gamal and H.-S. P. Wong, ISSCC 2008, p48-49
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Block Diagram of Fabricated Chip



28

Layout Masks for Chip

/home/kfife/files/shell/mchip1.sh
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16 x 16 FT-CCD schematic
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• Increase spatial resolution
• Decrease format size

This work

Pixel Sizes reported at 
IEDM, ISSCC, IISW

Relative Pixel Size for This Work
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Multi-Aperture Optical Stack

Using CMOS active pixels Using FT-CCD pixels
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FT-CCD Test Chip

* K. Fife, A. El Gamal and H.-S. P. Wong, IEDM 2007, p1003-1006

• 1.4, 1.0, 0.7, 0.5 µm pixel sizes
• Surface, Buried, Pinned-phase
• Analog readout
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The 0.5µm Pixel
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CCD Structure

STI forms the channel stop

Single-level poly electrodes
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The 0.7µm Buried Channel Pixel
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Layout Masks for Buried Channel CCD

/home/kfife/files/shell/mchip2.sh
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• Flush

• Integrate

• Frame Transfer

• Horizontal Readout

Operation
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Operation (Flush)
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Operation (Flush)
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Operation (Integrate)
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Operation (Integrate)
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Operation (Frame Transfer)
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Operation (Frame Transfer)
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Operation (Horizontal Transfer)
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Operation (Horizontal Transfer)
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Potential Profile Along Channel
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Potential Profile Along Channel
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Potential Profile Along Channel
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Potential Profile Along Channel



50

Potential Profile Along Channel
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Potential Profile Along Channel
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Potential Profile Along Channel
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Potential Profile Along Channel
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Interlaced Mode (Even Field)
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Interlaced Mode (Odd Field)
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Even column Odd column

Vertical to Horizontal Transfer

to H-CCD to H-CCD
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Even column Odd column

Vertical to Horizontal Transfer
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Even column Odd column

Vertical to Horizontal Transfer
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Even column Odd column

Vertical to Horizontal Transfer
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Even column Odd column

Vertical to Horizontal Transfer
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Chip Operation
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Chip Operation (Integrate)

integrated
charge
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Chip Operation (Frame Transfer)
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Chip Operation (Reset FD)

reset
level
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Chip Operation (Read Row<0>)
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Chip Operation (Read Row<1>)
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Chip Operation (Transfer Charge)
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Chip Operation (Charge Row<0>)
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Chip Operation (Charge Row<1>)
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Chip Operation (Shift Charge)
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Column ADC Schematic
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Layout Masks for ADC

/home/kfife/files/shell/mchip3.sh
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Noise Floor
(5 e-)

Full Well
(3500 e-)

PRNU
(2%)

Conversion Gain

(165µV/e-)

Photon Transfer Curve (0.7µm Pixel)
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Measured Quantum Efficiency
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Measured Pixel Characteristics

57 dBDynamic range

35 dBPeak SNR

2 % rmsPRNU

35 % rmsDSNU

33 e-/sec (5.5 mV/sec)Dark current at RT

5 e- rms (1mV)Pixel read noise

20, 48, 65 %QE at 450, 550, 650 nm

0.15V/lux-secSensitivity at 550 nm

165 µV/e-Conversion gain

3500 e-Well capacity
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Measured ADC Linearity

Single
Column
(10-b)

All
Columns

(10-b)

Input Range = 1V
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Measured ADC Noise

Image at
constant
ADC test
input level

FPN
(10-b LSBs)

Temporal
(10-b LSBs)
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Sample Image
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Images from Single Subarray

Captured with 
F/2.8, f=6mm 
lens at 1/10 sec

Raw data Added contrast

Electrical Optical Optical

3000 electron 
charge packets 
from fill/spill 
input
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Raw Image Captured with Multi-
Aperture Views
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Processed Multi-Aperture Image
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Summary
• Designed and characterized the first integrated multi-

aperture image sensor
• Achieved good imaging performance with submicron 

pixels
– FT-CCD structure in deep submicron CMOS
– Ripple charge transfer

• Extensible architecture well suited for ultra-high pixel 
count imagers

• Many potential applications or benefits
– Depth
– Close proximity imaging
– Color imaging with good spectral separation
– High defect tolerance
– Relaxed external optical requirements

• Results suggest that further scaling while maintaining 
performance is possible
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Noise Floor
(3.7 e-)

Full Well
(3550 e-)

PRNU
(5.8%)

Conversion Gain

(193µV/e-)

Photon Transfer Curve (0.5µm Pixel)
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• CTE is 99.9% with 3000 
electron charge packets

• CTE limited by surface 
interface traps

• CTE is reduced to 98% if 
holes are accumulated 
between storage 
electrodes. 

Measured Charge Transfer Efficiency
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Is There a Biological Equivalent?



87

Compound Eye

* Wikipedia, Compound Eye * Buschbeck, 1999
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Eye of the Strepsiptera

* Buschbeck, 1999


