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Camera History

• Despite progress, each of these cameras form 
images in the same way
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Image Formation in a Camera
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Image Formation in a Camera
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Image Formation in a Camera
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Outline

• Multi-Aperture application

• FT-CCD array
– Surface-channel

– Buried-channel
– Pinned phase buried-channel

• Results

• Summary
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Conventional vs. Multi-Aperture

Conventional imaging Multi-Aperture imaging

* K. Fife, A. El Gamal and H.-S. P. Wong, CICC 2006, 
p281-284
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Multi-Aperture Imaging
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Benefits of Multi-Aperture Imaging

• Capture depth information

• Close proximity imaging

• Achieve better color separation
• Reduce requirements of objective lens

• Increase tolerance to defective pixels

• Increase scalability
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Depth from Multi-Aperture
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Why Use Small Pixels?
• Depth resolution improves with pixels smaller than 

the spot size
• Spatial resolution is limited by the spot size
• Depth resolution is limited by accuracy in 

localization of the spot
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Feature Localization vs. Pixel Size

Poor location accuracy High location accuracy

Pixels
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Implementation

• Submicron pixels are difficult to build

• Small, disjoint arrays of pixels (clusters) 
are needed for MA architecture
– Easier to implement pixels as clusters

– Several performance advantages

• We selected a hybrid CCD/CMOS image 
sensor architecture
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• Increase spatial resolution
• Decrease format size

Pixel Sizes reported at 
IEDM, ISSCC, IISW

Recent Pixel Scaling
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Ex:1.75um Pixel in 0.11um CMOS
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Recent Pixel Scaling Technology

* H. Sumi, IEDM 2006, p119-122* J. Kim, J. Shin, C.R. Moon, et. al., IEDM 
2006, p123-126

4T sharing Stack height reduction
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A Reason for using CCD Pixels

Using CMOS active pixels Using FT-CCD pixels
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16 x 16 FT-CCD schematic
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Thin Oxide
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Poly and Contact
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Metal1 and Via12
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Metal2
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Thin Oxide
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Poly and Contact
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Metal and Via12
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Metal2
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• Increase spatial resolution
• Decrease format size

This work

Pixel Sizes reported at 
IEDM, ISSCC, IISW

Relative Pixel Size for This Work
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FT-CCD Test Chip

* K. Fife, A. El Gamal and H.-S. P. Wong, IEDM 2007, p1003-1006

• 1.4, 1.0, 0.7, 0.5 µm pixel sizes
• Surface, Buried, Pinned-phase
• Analog readout
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The 0.5µm Pixel
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CCD Structure

STI forms the channel stop

Single-level poly electrodes
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The 0.7µm Buried Channel Pixel
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Layout Masks for Buried Channel CCD

/home/kfife/files/shell/mchip2.sh
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• Flush

• Integrate

• Frame Transfer

• Horizontal Readout

Operation
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Potential Profile Along Channel
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Potential Profile Along Channel
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Potential Profile Along Channel
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Potential Profile Along Channel
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Potential Profile Along Channel
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Potential Profile Along Channel
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Potential Profile Along Channel
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Potential Profile Along Channel
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Interlaced Mode (Even Field)
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Interlaced Mode (Odd Field)
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Even column Odd column

Vertical to Horizontal Transfer

to H-CCD to H-CCD
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Even column Odd column

Vertical to Horizontal Transfer
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Even column Odd column

Vertical to Horizontal Transfer
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Even column Odd column

Vertical to Horizontal Transfer
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Even column Odd column

Vertical to Horizontal Transfer
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Pinned-Phase Buried Channel
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Pinned-Phase Buried Channel
• Charge confinement achieved while surface is inverted 

during integration time
• Charge transfer achieved with application of high electrode 

voltages to overcome barriers
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Pinned-Phase Buried Channel

• Dark current decreases by factor of 15 
over buried channel device.

• Detailed characterization of the device is 
in progress.
– Difficult to measure charge transfer efficiency 

using fill/spill circuit.
– Well capacity is lower than 500 electrons.
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Noise Floor
(3.7 e-)

Full Well
(3550 e-)

PRNU
(5.8%)

Conversion Gain

(193µV/e-)

PTC (Surface-channel, 0.5µm Pixel)
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Noise Floor
(5 e-)

Full Well
(3500 e-)

PRNU
(2%)

Conversion Gain

(165µV/e-)

PTC (Buried-channel, 0.7µm Pixel)
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Measured Quantum Efficiency
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• CTE is 99.9% with 3000 
electron charge packets 
for surface channel

• CTE limited by surface 
interface traps

• CTE is reduced to 98% if 
holes are accumulated 
between storage 
electrodes. 

Measured Charge Transfer Efficiency
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Measured Pixel Characteristics

57 dBDynamic range

35 dBPeak SNR

2 % rmsPRNU

35 % rmsDSNU

33 e-/sec (5.5 mV/sec)Dark current at RT

5 e- rms (1mV)Pixel read noise

20, 48, 65 %QE at 450, 550, 650 nm

0.15V/lux-secSensitivity at 550 nm

165 µV/e-Conversion gain

3500 e-Well capacity
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Images from Single Subarray

Captured with 
F/2.8, f=6mm 
lens at 1/10 sec

Raw data Added contrast

Electrical Optical Optical

3000 electron 
charge packets 
from fill/spill 
input
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Processed Multi-Aperture Image
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Summary

• Developed FT-CCD structures in deep submicron CMOS
– Ripple charge transfer
– Transfer to H-CCD
– Surface mode, buried-channel, and pinned phase

• Many potential applications or benefits
– Depth
– Close proximity imaging
– Color imaging with good spectral separation
– High defect tolerance
– Relaxed external optical requirements

• Future work of interest
– Integration of micro optics
– Algorithms for data extraction and image formation
– Improvements to the pixels and sensor architecture
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