Design and Characterization of Submicron CCDs in CMOS

2009 International Image Sensor Workshop

Keith Fife, Abbas El Gamal, Philip Wong Department of Electrical Engineering, Stanford University, Stanford, CA 94305

Camera History

 Despite progress, each of these cameras form images in the same way

Outline

- Multi-Aperture application
- FT-CCD array
 - Surface-channel
 - Buried-channel
 - Pinned phase buried-channel
- Results
- Summary

* K. Fife, A. El Gamal and H.-S. P. Wong, CICC 2006, p281-284

Multi-Aperture Imaging

Benefits of Multi-Aperture Imaging

- Capture depth information
- Close proximity imaging
- Achieve better color separation
- Reduce requirements of objective lens
- Increase tolerance to defective pixels
- Increase scalability

Depth from Multi-Aperture

Why Use Small Pixels?

- Depth resolution improves with pixels smaller than the spot size
- Spatial resolution is limited by the spot size
- Depth resolution is limited by accuracy in localization of the spot

Feature Localization vs. Pixel Size

Poor location accuracy

High location accuracy

Implementation

- Submicron pixels are difficult to build
- Small, disjoint arrays of pixels (clusters) are needed for MA architecture
 - Easier to implement pixels as clusters
 - Several performance advantages
- We selected a hybrid CCD/CMOS image sensor architecture

Recent Pixel Scaling

- Increase spatial resolution
- Decrease format size

Pixel Sizes reported at IEDM, ISSCC, IISW

Ex:1.75um Pixel in 0.11um CMOS

Recent Pixel Scaling Technology

4T sharing

Stack height reduction

* J. Kim, J. Shin, C.R. Moon, et. al., IEDM 2006, p123-126

* H. Sumi, IEDM 2006, p119-122

A Reason for using CCD Pixels

Using CMOS active pixels

Using FT-CCD pixels

16 x 16 FT-CCD schematic

Thin Oxide

Poly and Contact

Metal1 and Via12

Metal2

Thin Oxide

Poly and Contact

Metal and Via12

Metal2

Relative Pixel Size for This Work

- Increase spatial resolution
- Decrease format size

Pixel Sizes reported at IEDM, ISSCC, IISW

FT-CCD Test Chip

- 1.4, 1.0, 0.7, 0.5 μm pixel sizes
- Surface, Buried, Pinned-phase
- Analog readout

* K. Fife, A. El Gamal and H.-S. P. Wong, IEDM 2007, p1003-1006

The 0.5µm Pixel

CCD Structure

STI forms the channel stop

\leftarrow 500 \rightarrow (nm)

Single-level poly electrodes

The 0.7µm Buried Channel Pixel

Layout Masks for Buried Channel CCD

Operation

- Flush
- Integrate
- Frame Transfer
- Horizontal Readout

Pinned-Phase Buried Channel

Pinned-Phase Buried Channel

- Charge confinement achieved while surface is inverted during integration time
- Charge transfer achieved with application of high electrode voltages to overcome barriers

Pinned-Phase Buried Channel

- Dark current decreases by factor of 15 over buried channel device.
- Detailed characterization of the device is in progress.
 - Difficult to measure charge transfer efficiency using fill/spill circuit.
 - Well capacity is lower than 500 electrons.

PTC (Surface-channel, 0.5µm Pixel)

PTC (Buried-channel, 0.7µm Pixel)

Measured Quantum Efficiency

Measured Charge Transfer Efficiency

- CTE is 99.9% with 3000 electron charge packets for surface channel
- CTE limited by surface interface traps
- CTE is reduced to 98% if holes are accumulated between storage electrodes.

Measured Pixel Characteristics

Well capacity	3500 e-
Conversion gain	165 μV/e-
Sensitivity at 550 nm	0.15V/lux-sec
QE at 450, 550, 650 nm	20, 48, 65 %
Pixel read noise	5 e- rms (1mV)
Dark current at RT	33 e-/sec (5.5 mV/sec)
DSNU	35 % rms
PRNU	2 % rms
Peak SNR	35 dB
Dynamic range	57 dB

Images from Single Subarray

3000 electron charge packets from fill/spill input Raw data

Captured with F/2.8, f=6mm lens at 1/10 sec **Added contrast**

Processed Multi-Aperture Image

Summary

- Developed FT-CCD structures in deep submicron CMOS
 - Ripple charge transfer
 - Transfer to H-CCD
 - Surface mode, buried-channel, and pinned phase
- Many potential applications or benefits
 - Depth
 - Close proximity imaging
 - Color imaging with good spectral separation
 - High defect tolerance
 - Relaxed external optical requirements
- Future work of interest
 - Integration of micro optics
 - Algorithms for data extraction and image formation
 - Improvements to the pixels and sensor architecture

Acknowledgement

- Hertz Foundation
 - Fellowship support
- TSMC
 - C.H. Tseng, David Yen, C.Y. Ko, J.C. Liu, Ming Li, and S.G. Wuu for process customization and fabrication
- Lane Brooks, MIT EECS
 - Collaboration on the design of the testing platform and software system