A 0.5µm Pixel Frame-Transfer CCD Image Sensor in 110nm CMOS

Keith Fife, Abbas El Gamal, H.-S. Philip Wong

Department of Electrical Engineering, Stanford University, Stanford, CA 94305

Pixel Scaling

- Increase spatial resolution
- Decrease format size

Pixel Sizes reported at IEDM, ISSCC, IISW

Image Sensor with Multiple Apertures

Small Image Sensor with integrated optics

Small Image Sensors integrated into large array

Multi-Aperture Imaging

- Object space in close proximity to image sensor
- Each array of pixels captures a portion of the object space
- Image is computationally reconstructed

Multi-Aperture with Objective Lens

- 3D imaging
 - Stereoscopic views of focal plane

* K. Fife, A. El Gamal and H.-S. P. Wong, CICC 2006, p281-284

Multi-Aperture for Color Separation

- Color separation by aperture
 - Improve crosstalk
 - Reduce color aliasing

* K. Fife, A. El Gamal and H.-S. P. Wong, CICC 2006, p281-284

Recent Pixel Scaling

4T sharing

Stack height reduction

* J. Kim, J. Shin, C.R. Moon, et. al., IEDM 2006, p123-126

* H. Sumi, IEDM 2006, p119-122

Optical Stack

Metal wire occlusions

Metal free

FT-CCD Architecture

- 16 x 16 Pixel Array
- 16 x 16 Frame Buffer
- 16 stage H-CCD
- Floating diffusion with source follower readout

Outline

- Design and Fabrication
- Operation
- Characterization
- Scaling Issues
- Conclusion

The 0.5µm Pixel

Across Channel

Along Channel

CCD Structure

STI forms the channel stop

Single-level poly electrodes

CMOS Fabrication

 S/D Implant mask is used to avoid dopant between electrodes (not self-aligned)

Operation

- Flush
 - Initial charge depletion
- Integrate
 - Pixel region collects charge
- Buffer Transfer
 - charge shifted to shielded region
- Horizontal Readout
 - Charge shifted to H-CCD followed by sampling on floating diffusion

Operation (Flush)

VTRANS = 2.0V

Operation (Flush)

VTRANS = 2.0V

Operation (Integrate)

Operation (Integrate)

Operation (Buffer Transfer)

Operation (Buffer Transfer)

Operation (Horizontal Transfer)

VTRANS = 2.0V

VSTORE = 1.0V

VISOLATE = -0.5V

Operation (Horizontal Transfer)

VTRANS = 2.0V

VSTORE = 1.0V

VISOLATE = -0.5V

Simulation Along Channel

Cross-section along channel

2.5

1.0

1.5

2.0

x (Microns)

2.5

3.0

3.5

2.0

2.5

1.0

1.5

2.5

3.0

3.5

2.0

Potential Profile Along Channel • Interlaced Mode (even field)

Potential Profile Along Channel Interlaced Mode (odd field)

Simulation Into H-CCD

Cross-section into H-CCD

Test Chip

Measured Photon Transfer Curve

Measured Dark Current

- 50-100 e-/sec
- Non-uniformity of 25% rms
- Main source of DC comes from surface states

1 Second Integration

20 Second Integration

Measured Charge Transfer Efficiency

- CTE is 99.9% with 3000 electron charge packets
- CTE limited by surface interface traps
- CTE is reduced to 98% if holes are accumulated between storage electrodes.

Measured Quantum Efficiency

Electrical Images

0.1 sec

1.0 sec

10.0 sec

Optical Images

Captured with F/2.8, f=6mm lens at 1/10 sec

Raw data

Added contrast

Performance Summary

Well Capacity	3550e-
Conversion Gain	193uV/e-
Responsivity	480e-/lux-s
Read Noise	3.7e- rms
Dark Current	50e-/sec
DSNU	25%
PRNU	5.8%
Dynamic Range	60dB
Peak SNR	28dB

Scaling Issues

- Crosstalk
- Well capacity
- Dark current

Crosstalk

Simulation of charge induced at several depths

Depth - 0.5µm Result - 85% correct

Depth - 2.0µm Result - 20% correct

Simulated Crosstalk Improvement

- Weak electric field beyond the depletion region
- Graded-epi layer increases electric field beyond depletion region

Well Capacity

Small well capacity with single electrode storage (500 e-)

Solutions:

- Interlaced operation (3500 e-)
- Double electrode pixel
- Increase inter-gate barriers
 - Substrate doping
 - Electrode gap spacing
 - Implants between electrodes

Dark Current

Dark Current Density is high (3.22nA/cm²)

Potential Solutions:

- Buried channel implant
- Use inverted (pinned) surface during integration time

Summary

- 0.5µm pixels implemented in single poly CMOS process
- 16 x 16 FT-CCD architecture demonstrates 0.5µm pitch charge confinement
- Dark Current, CTE, and QE measurements indicate further pixel scaling is possible

Acknowledgements

TSMC

- The authors thank C.H. Tseng, David Yen, C.Y. Ko, J.C. Liu, Ming Li, and S.G. Wuu for process customization and fabrication
- Hertz Foundation

 Fellowship support