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Preface

Recent advances in electronics and wireless communications have made it possible to in-

corporate wireless communication capability into various electronic devices such as laptops,

PDAs, domestic appliances, etc. It has also enabled the development of tiny and inexpen-

sive sensors that can sense physical quantities (such as temperature, moisture, or light) and

have the capability for wireless communication. This has enabled the exciting possibility of

forming large wireless networks of such devices for a variety of applications.

The wireless nature of communication creates interference among simultaneously com-

municating nodes in the network, resulting in performance degradation as the number of

nodes in the network increases. Useful performance measures are data-rate, delay, and

energy consumption. Performance can be improved if nodes cooperate by relaying data

for each other, instead of each node directly transmitting to its desired destination. For

example, in a crowded room, instead of shouting to communicate with another person at

the other end of the room, one could whisper to a neighboring person, who would then

whisper it to his or her neighbor, and so on, until the message reaches the intended person.

Several simultaneous conversations could take place with this form of cooperation.

In order to develop algorithms with good performance in such networks, it is neces-

sary to first understand the optimal or best possible performance. This thesis provides a

mathematical study of the scaling of optimal performance with the number of nodes in the

network. For this study, we develop models and prove scaling laws for performance metrics

such as throughput (data communication rate), delay, and energy consumption, and the

trade-offs between them. These scaling laws characterize optimal performance when the

network has sufficiently many nodes and they provide guidelines for designing real-world

networks. The techniques used to establish these results belong to several areas such as

analysis of algorithms, probabilistic analysis, Markov chains, queuing theory, and random

walks.

The results regarding optimal performance are proved by a two-pronged approach, which

consists of showing achievability, and then proving its optimality, that is, a converse. The
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part dealing with achievability consists of proposing a communication scheme and evaluating

its performance. The converse consists of showing that no other scheme can perform better,

thus establishing the optimality of the proposed scheme.

Our approach is to treat the wireless network as a packet data network. The network

consists of nodes that can transmit and receive packets and have buffers for temporary

storage (for later forwarding) of packets. Each transmitted packet is either successfully

received or lost depending on the amount of interference at that time. This approach

models the way in which current technology operates. Using this approach, we establish the

fundamental trade-offs between throughput, delay, and energy consumption, both when the

nodes are static and when they move around. Node mobility arises in several applications,

for example, when automobiles or cellular phones or robots form a wireless network.

The deployment of a wireless network for any application would also require practical

and efficient algorithms for a variety of tasks such as initialization, maintenance, information

processing, data storage, and the like, in addition to data communication. Such algorithms

are not within the scope of this work. However, our work does provide guidelines for the

design of efficient routing and scheduling algorithms for data communication.

We believe that this thesis, along with work by other researchers in this area, enhances

our understanding of large wireless networks, by revealing the effect of interference and the

role of cooperation between nodes for combating it, so as to obtain optimal performance.
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Chapter 1

Introduction

A wireless network consists of a collection of nodes, each capable of transmitting to or

receiving from other nodes. When a node transmits to another node, it creates interference

for other nodes in its vicinity. When several nodes transmit simultaneously, a receiver can

successfully receive the data sent by the desired transmitter only if the interference from

the other nodes is sufficiently small. An important characteristic of wireless networks is

that the topology of the nodes may not be known. The wireless nodes could also be mobile,

in which case the topology could be continuously changing.

The most familiar and pervasive wireless network today is the cellular network for com-

munication via mobile phones. In the cellular network, the entire area of coverage is divided

into cells with a base-station in each cell. When a source mobile phone communicates with

another a destination mobile phone, the data is first sent from the sender to its nearest

base-station. The data is then routed to the base-station in which the destination mobile

phone is located through a base-station network. Finally this base-station deliver the data

to the destination. The cellular network relies heavily on the infrastructure provided by the

base-station network. Setting up and maintaining this infrastructure is expensive, but it

makes the network reliable and increases ease of operation.

Technological developments in recent years have made it possible to incorporate wireless

communication capability into several electronic devices such as laptops, PDAs, domestic

appliances, and so on. It has also become possible to fabricate tiny and inexpensive sensors

with wireless communication capability. Typical sensed quantities include temperature,

humidity, pressure, light, position, speed, and motion. Such devices with capability for

wireless communication could form a wireless network such as a network of laptops, a home

network of domestic appliances, or a network of sensors. In many applications, it is desirable

to set up and operate the network without any fixed infrastructure like that of the cellular
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2 CHAPTER 1. INTRODUCTION

network. We shall refer to such networks as ad hoc wireless networks. Such ad hoc wireless

networks have a variety of applications in areas such as health care, agriculture, forestry,

construction engineering, industrial automation, traffic control, and surveillance [43], [2].

The importance of such networks is increasing rapidly with further advances in technology

that result in smaller, cheaper, and energy-efficient devices.

Clearly there are many challenges in successfully deploying such networks [18], [5]. Due

to lack of infrastructure it is essential that the network be able to self-organize and maintain

itself since individual nodes may get disconnected from the network or new nodes may

join. The purpose of most networks is not just communication but to perform a particular

task. For example in a surveillance system the goal would be to detect intrusion and

raise an alarm. This motivates collaborative signal processing among nodes for performing

the required task. Many applications involve hundreds or thousands of nodes and hence

scalability of algorithms is a major issue. In many applications the nodes are powered by

batteries, which requires the algorithms used in the network to be energy-efficient. From the

data communication perspective, there is a need for scalable and energy-efficient algorithms

for routing and scheduling.

Data communication is a key aspect regardless of the particular application and our

work studies only this aspect. As the complexity of wireless networks increases, there is

a need to develop better understanding of the fundamental trade-offs that govern their

behavior. How much does interference limit the throughput (bit-rate at which each source

can communicate with its destination)? How much does cooperation between the users help

combat such interference? How does mobility affect network performance? Attempting to

answer such questions by studying instances of wireless networks is not likely to lead to

answers applicable to most of them.

1.1 Random network framework

The groundbreaking work by Gupta and Kumar [23] set the stage for answering the above

questions. They introduced the idea of using a random network model instead of specific

instances to obtain results that apply to most large networks. They showed that for almost

all large network realizations, the total throughput scales as the square root of the number

of users.

In many network applications, communication delay and energy consumption, in ad-

dition to throughput, are key measures of network performance. This thesis extends the



1.1. RANDOM NETWORK FRAMEWORK 3

Gupta-Kumar random network framework to include models for delay and energy consump-

tion. Several other researchers have also been inspired by the work of Gupta and Kumar

and this has led to significant research using random network models. In what follows, we

review research in this area, including our work.

1.1.1 Throughput in static networks

In their seminal paper [23], Gupta and Kumar introduced a random network model for

studying throughput scaling in a static wireless network, i.e., when the nodes do not move.

They defined a random network to consist of n nodes distributed independently and uni-

formly on a unit disk. These n nodes are split into n/2 source-destination pairs at random.

Each node can transmit at a constant rate provided that the interference at the receiver is

sufficiently small. They showed that for almost all realizations of the random network, the

maximum throughput per source-destination pair scales as 1/
√

n log n. Their result also

showed that cooperation among users is essential to combating the adverse effects of inter-

ference. Gupta and Kumar later extended their work to networks in three dimensions [22].

In [29], Kulkarni and Viswanath studied throughput scaling in static networks and

obtained results similar to that of [23] using an elementary deterministic approach.

In very recent work, Jelenkovic, Momcilovic, and Squillante [26] studied wireless net-

works with finite buffers at each node. They showed throughput scaling of 1/
√

n log n can

be achieved with small buffers at each node.

In [19], Franceschetti, Dousse, Tse, and Thiran showed using a slightly different model

(with exponential attenuation of signal with distance) that throughput of order 1/
√

n can

be achieved. Their result relies on arguments from percolation theory.

In another variation of the random network model, Gowaikar, Hochwald, and Hassibi [20]

use a model in which the strength of the channel between any two nodes is chosen at

random from some common distribution. They show that the throughput scaling can be

very different depending on the choice of the common distribution.

We would like to note that several authors use the notion of transport capacity instead

of throughput. Transport capacity is measured in bit-meters per second. It also takes into

account the distance traveled by bits instead of just the bit-rate. Although they are not

the same they are both equivalent in the sense that both quantities are determined by

each other for the random network model. We use throughput as our performance metric

throughout this work.
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Information theoretic approaches

The initial approach by Gupta and Kumar [23] may be called network theoretic in the

sense that the wireless network is modeled as a packet network where a packet is either

received or lost depending on the level of interference. From the point of view of the

physical layer of data communication, such an approach is clearly suboptimal since there

is the possibility of employing sophisticated error-correction and multi-user communication

schemes. This has inspired research regarding the information theoretic notion of capacity

of such networks. Another attraction of this approach is its continuity with the elegant

and well-established multi-user information theory [6]. However, this approach does not

lend itself to studying delay. Further, due its generality, it does not provide practical

schemes for achieving capacity. Nevertheless, it does provide a fundamental upper bound

on throughput.

This approach was initiated by Gupta and Kumar in [24] by studying achievable regions.

Xie and Kumar [45] studied several network scenarios and establish a dichotomy between

the cases of relatively high and relatively low attenuation. In [46], Xie, Xue, and Kumar,

studied the effect of fading in wireless networks for the case of high attenuation.

Jovicic, Viswanath, and Kulkarni [27] consider a model with fading (that is, the channel

gains vary over time). Signal is assumed to attenuate as (1 + r)−α with distance r. For

α > 5/2, they obtain an upper bound of order log n/
√

n on throughput scaling. Note that

this upper bound is loose only by a logarithmic factor from the network theoretic approach.

Leveque and Telatar [32] assumed signal attenuation of r−α with distance r and obtained

an upper bound of order n−β log n, where β = 1
d− 1

α . For one-dimensional networks, Leveque

and Preissman [30] obtained an upper bound that is loose only by a logarithmic factor from

the network theoretic approach. In [31], Leveque, Telatar, and Tse, obtain an upper bound

of order (log n)3/
√

n for networks with a regular placement of nodes on a two-dimensional

grid.

In conclusion, the information theoretic framework provides upper bounds on through-

put that are off by logarithmic factors from the network theoretic framework, which vindi-

cates the simplifying assumptions of the network theoretic approach.

Two related models are worth mentioning – many-to-one data gathering and relay net-

works. The case of many nodes sending data to a common destination arises in some

applications. For related literature using the random network framework, see [17] and the

references therein. Relay networks consist of a network with a single source-destination pair

in which all other nodes can act as relays. See [45], [4] and the references therein for related

literature.
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1.1.2 Throughput in mobile networks

In [21], Grossglauser and Tse showed that by allowing the nodes to move, throughput scaling

changes dramatically. They showed that if node motion is independent across nodes and

has a uniform stationary distribution, a constant throughput scaling (Θ(1)) per S-D pair is

achievable. Later, Diggavi, Grossglauser, and Tse [10] showed that a constant throughput

per S-D pair is feasible even with a more restricted mobility model.

1.1.3 Delay

In most networking applications, delay is also a key performance metric along with through-

put. Further, throughput that can be obtained from a network at the cost of increase in

delay may not be useful. In this context, the understanding of throughput-delay trade-off

is key to achieving the quality of service required by the application. The first study to

appear in literature, in this direction, was by Bansal and Liu [3]. They considered a random

network model with both mobile and static nodes. The static nodes are split into sources

and destinations, whereas the mobile nodes have no data of their own and can act as relays.

The authors propose a routing algorithm that is almost optimal in terms of throughput

and study its delay. The optimal throughput-delay trade-off for static networks was stud-

ied in [12] by El Gamal, Mammen, Shah, and Prabhakar. It was later generalized by the

authors in [14]. Neely and Modiano [38] studied the throughput-delay trade-off in mobile

networks using an i.i.d. mobility model. In this model, each node is equally likely to be in

any part of the network at each time instant, independent of the past. Throughput-delay

trade-off for mobile networks using a random walk mobility model was studied in [15] by

El Gamal, Mammen, Prabhakar, and Shah. See [42] for a recent study of throughput-delay

trade-offs with various mobility models. However, this study ignores queuing delay, which

is a crucial component of packet delay, under the assumption that it does not affect the

scaling behavior. In [36], Mammen and Shah showed that even with the mobility restriction

as in [10] (mentioned above), delay scaling remains unchanged.

1.1.4 Energy

As mentioned earlier, energy consumption is a key concern in several applications since

wireless nodes run on batteries. Dana and Hassibi [8] studied the energy efficiency of

random wireless networks. The focus of their work was on energy efficiency without regard

to throughput or delay and without considering interference and transceiver circuit energy.

In [13], El Gamal, Mammen, Prabhakar, and Shah, conducted a preliminary study of the
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trade-off between throughput, delay and transmission energy for random wireless networks

with constant area. Both these works reached the conclusion that energy efficiency increases

with hopping. In [11], El Gamal and Mammen used a model with variable network area

that also takes into account the energy spent in the transceiver circuits and obtained the

optimal trade-offs between throughput, delay, and energy.

Thus the random network framework has spawned a significant amount of research in

the past few years. Among the several references mentioned above, our work consisting

of [15], [14], [11], and [36], will be presented in detail in this thesis.

1.2 Contributions

This thesis extends the random network framework to study delay and energy, in addition

to throughput, and the trade-offs between them and the role of mobility in large wireless

networks. The following are the main contributions of this work:

1. We establish the optimal throughput-delay trade-off for static random networks.

2. We establish the optimal throughput-delay-energy trade-off for static random net-

works.

3. We show that both the above results hold for random networks with packets of con-

stant size. Previous work, including [23], had implicitly assumed that the packet size

could be made arbitrarily small.

4. We establish the throughput-delay trade-off for mobile networks using a random walk

mobility model. An extreme point of the trade-off shows that constant throughput

scaling is achievable and that the corresponding delay is of order n log n.

5. We show that even with restricted mobility, constant throughput scaling is achievable

at a delay of order n log n.

In addition to the above, our work provides a unified framework for understanding

the seemingly disparate results for static and mobile networks. Further, in the course of

establishing the optimal throughput-delay trade-off, we provide simpler proofs of previous

throughput results. Our results also have several implications for the architecture of wireless

networks. These are mentioned in the concluding section of each of the following chapters.
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1.3 Outline of the thesis

Chapter 2 studies throughput-delay trade-off for the static random network by assuming

a fluid model, which means that the packet size is allowed to be arbitrarily small. This

chapter is based on [15] and the proofs use elementary probabilistic analysis. Chapter 3

shows that the optimal trade-off remains unchanged even if the packets are constrained

to have constant size. However, without the fluid assumption, a sophisticated scheduling

algorithm is required to achieve the optimal trade-off. This chapter is based on [15] and

relies on some classical results in queuing theory regarding product form equilibrium in

networks. Chapter 4 develops models for taking energy consumption into account and

establishes optimal throughput-delay-energy trade-offs. This chapter is based on [11] and

the proofs use probabilistic analysis. Chapter 5 studies the throughput-delay trade-off for

mobile random networks by assuming a random walk model for node mobility. This chapter

is based on [15] and the proofs rely on analysis of algorithms, theory of Markov chains,

queuing theory, and analysis of random walks. Chapter 6 deals with a random network on

a sphere, in which nodes are restricted to move on great circles of the sphere. In spite of

this restriction on mobility, we show that a constant throughput scaling can be achieved at

the same delay scaling as for the model without any restriction of mobility, which is studied

in Chapter 5. This chapter is based on [36] and the techniques used are similar to those in

Chapter 5. Finally we conclude in Chapter 7 with some overall implications of our work.

The general structure of each of the following five chapters is as follows. We first

introduce the needed models and definitions and then present the main results. These

results are proved in the sections following it. Each chapter ends with a discussion about

the implications of the results contained in the chapter.

Throughout this work, we use ci to denote constants that do not depend on n.
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Chapter 2

Throughput-Delay Trade-off in

Static Networks: The Fluid Model

Delay is an important performance metric in several applications along with throughput.

Hence the maximum throughput that can be obtained under a delay constraint is more

useful than throughput itself for describing network capability. This leads to the notion of

the optimal throughput-delay trade-off, which is studied in this chapter for wireless networks

in which nodes do not move. In this chapter, we use a fluid model, which means that the

packet size is allowed to be arbitrarily small.

2.1 Model, definitions, and main result

We begin by reminding the reader of the order notation: (i) f(n) = O(g(n)) means that

there exists a constant c and integer N such that f(n) ≤ cg(n) for n > N . (ii) f(n) = o(g(n))

means that limn→∞ f(n)/g(n) = 0. (iii) f(n) = Ω(g(n)) means that g(n) = O(f(n)), (iv)

f(n) = ω(g(n)) means that g(n) = o(f(n)). (v) f(n) = Θ(f(n)) means that f(n) =

O(g(n)); g(n) = O(f(n)).

We now present the static random network model and the model for successful wireless

transmission and then provide definitions of throughput, delay, and their trade-off.

Definition 1 (Random network model). The random network consists of n nodes

distributed uniformly at random in a unit torus. The nodes are split into n/2 distinct

source-destination (S-D) pairs at random. Time is slotted for packetized transmission. For

simplicity, we assume that the time-slots are of unit length. In a static network nodes do

not move.

9
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Definition 2 (Relaxed Protocol Model). Under the Relaxed Protocol model, a trans-

mission from node i to node j in a time-slot is successful, if for any other node k that is

transmitting simultaneously,

d(k, j) ≥ (1 + ∆)d(i, j) for ∆ > 0,

where d(i, j) is the distance between nodes i and j. During a successful transmission, nodes

send data at a constant rate of W bits per second.

Our model for successful transmission is very similar to the Protocol model defined

in [23]. The Protocol model imposes the additional constraint that all nodes have the same

transmission range. Our results would also hold with the Protocol model, however, we use

the relaxed version above since the additional constraint is not required for our results.

In the other commonly used model of successful transmission, namely the Physical

model (see Chapter 4), a transmission is successful if the signal to interference and noise

ratio (SINR) is greater than some constant. It is well known [23] that if signal decays with

distance r as r−δ for δ > 1, the Protocol model is equivalent to the Physical model, where

each transmitter uses the same power. In the rest of this chapter, we shall assume the

Relaxed Protocol model.

To establish our results without being encumbered by issues related to scheduling packets

in the network, we allow the packet size to be arbitrarily small. We refer to this as the fluid

model. In this model, the data sent in a time-slot could correspond to multiple packets.

Thus the time taken for a packet transmission may only be a small fraction of the time-slot

itself. However, a packet received by a node in some time-slot cannot be transmitted by

the node until the next time-slot. The scheduling problem is avoided by using the fluid

model so that the packet size to be small enough depending on the number of nodes in the

network.

Definition 3 (Scheme). A scheme Π for a random network is a sequence of communication

policies, {Πn}, where policy Πn determines how communication takes place in a network of

n nodes.

Definition 4 (Throughput of a scheme). Let BΠn(i, t) be the number of bits of S-D

pair i transferred in t time-slots under policy Πn, for 1 ≤ i ≤ n/2,. Note that this could

be a random quantity for a given realization of the network. Scheme Π is said to have

throughput TΠ(n) if ∃ a sequence of events AΠ(n) such that

AΠ(n) =

{

min
1≤i≤n/2

lim inf
t→∞

1

t
BΠn(i, t) ≥ TΠ(n)

}

,
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and P (AΠ(n))→1 as n→∞.

We allow randomness in policies and as a result the set AΠ(n) above is in the joint

probability space including both the random network of size n and the policy. Randomness

will be used in our schemes for mobile networks in later chapters. We say that an event An

occurs with high probability (whp) if P (An)→1 as n→∞.

Definition 5 (Delay of a scheme). The delay of a packet is the time it takes for the

packet to reach its destination after it leaves the source. Let D i
Πn

(j) denote the delay of

packet j of S-D pair i under policy Πn, then the sample mean of delay (over packets that

reach their destinations) for S-D pair i is

D̄i
Πn

= lim sup
k→∞

1

k

k
∑

j=1

Di
Πn

(j).

The average delay over all S-D pairs for a particular realization of the random network

is then

D̄Πn =
2

n

n/2
∑

i=1

D̄i
Πn

.

The delay for a scheme Π is the expectation of the average delay over all S-D pairs, i.e.,

DΠ(n) = E[D̄Πn ] =
2

n

n/2
∑

i=1

E[D̄i
Πn

].

Note that since the fluid model allows us to scale down the size of the packets, packet

delay, as defined above, is not equivalent to the delay per bit. To measure delay per bit one

would need to keep the packet size constant; but then this would require scheduling in the

network. In Chapter 3, we propose a scheduling scheme to deal with constant size packets.

Definition 6 (Throughput-delay optimality). A pair (T (n), D(n)) is said to be T-D

(throughput-delay) optimal if there exists a scheme Π with TΠ(n) = Θ(T (n)) and DΠ(n) =

Θ(D(n)) and ∀ scheme Π′ with TΠ′(n) = Ω(T (n)), D(Π′)(n) = Ω(D(n)).

Definition 7 (Optimal throughput-delay trade-off). The optimal throughput-delay

trade-off consists of all optimal T-D pairs.

Although we have introduced detailed notation in order to unambiguously define the

above quantities, in the rest of this work we shall avoid the use of subscripts to indicate

the scheme and policy since the scheme or policy under consideration will be clear from the
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context. Also when describing a scheme Π, we shall just describe the policy Πn for arbitrary

n.

Main result:

In Section 2.2, we introduce a cellular scheme (Scheme 1) for static networks, which can

trade-off throughput for delay by varying the cell size. We then prove that the scheme is

optimal leading to the following result.

Theorem 2.1. The optimal throughput-delay trade-off in a static random network is given

by

T (n) = Θ

(

D(n)

n

)

, (2.1)

when T (n) = O
(

1/
√

n log n
)

.

The above result, which is illustrated in Figure 2.1, says that: (i) The highest throughput

per node achievable in a static network is Θ
(

1/
√

n log n
)

, as Gupta and Kumar obtained.

At this throughput the average delay D(n) = Θ
(

√

n/ log n
)

(point Q in Figure 2.1).

(ii) By increasing the cell size and hence the transmission radius, the average number of

hops can be reduced. But because the interference is higher now, the throughput is lower.

When throughput is O
(

1/
√

n log n
)

, equation (2.1) shows the optimal delay-constrained

throughput (segment PQ in Figure 2.1).

2.2 Throughput-delay trade-off

This section establishes the optimal throughput-delay trade-off in a static wireless network

by providing a proof of Theorem 2.1. We first present Scheme 1 and compute the trade-off

achievable using this scheme in Theorem 2.2. Theorem 2.3 provides a converse, which states

that for a given delay scaling no scheme can provide a better throughput scaling than that

of Scheme 1, thus establishing the optimality of Scheme 1 and also proving Theorem 2.1.

2.2.1 Achievability

Our trade-off scheme is a multi-hop, time-division-multiplexed (TDM), cellular scheme with

square cells of area a(n) so that the unit torus consists of 1/a(n) cells as shown in Figure 2.2.

In the following analysis, we ignore the edge effects due to 1/a(n) not being a perfect square.

Before presenting the trade-off scheme, we present three lemmas about the geometry of the

n nodes on the torus divided into square cells of area a(n).
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Figure 2.1: Throughput-delay trade-off for the static random network. The scales of the
axes are in terms of the orders in n.

Lemma 2.1. If a(n) ≥ 2 log n/n, then each cell has at least one node whp.

Proof. Let Ai be the event that cell i is not empty and let m = 1/a(n) be the number of

cells. Then

P (Ai) = 1 − (1 − 1/m)n → 1 − e−n/m.

With m ≤ n/2 log n, it follows that P (Ai) ≥ 1−1/n2 and hence an application of the union

bound completes the proof.

We say that cell B interferes with another cell A if a transmission by a node in cell B

can affect the success of a simultaneous transmission by a node in cell A.

Lemma 2.2. Under the Relaxed Protocol model, the number of cells that interfere with any

given cell is bounded above by a constant c1, independent of n.

Proof. Consider a node in a cell transmitting to another node within the same cell or in

one of its 8 neighboring cells. Since each cell has area a(n), the distance between the

transmitting and receiving nodes cannot be more than r =
√

8a(n). Under the Relaxed

Protocol model, data is successfully received if no node within distance r̄ = (1 + ∆)r of

the receiver transmits at the same time. Therefore, the number of interfering cells, c1, is at
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most

c1 ≤ 2
r̄2

a(n)
= 16(1 + ∆)2,

which, for a constant ∆, is a constant, independent of n (and a(n)).

A consequence of Lemma 2.2 is that there exists an interference-free schedule such that

each cell becomes active regularly once in 1 + c1 time-slots and it does not interfere with

any other simultaneously transmitting cell.

We say that a cell is active in a time-slot if any of its nodes transmits in that time-slot.

A consequence of Lemma 2.2 is that, there exists an interference-free schedule where each

cell becomes active regularly, once in 1 + c1 time-slots and no cell interferes with any other

simultaneously transmitting cell.

Let the straight line connecting a source S to its destination D be called an S-D line.

Lemma 2.3. For a(n) = Ω(log n/n), the number of S-D lines passing through each cell is

O
(

n
√

a(n)
)

, whp.

Proof. Let Hi be the number of hops taken by a packet for S-D pair i, 1 ≤ i ≤ n/2 in

traveling from S to D along the S-D line by hops along adjacent cells of area a(n). For

each S-D pair, Hi depends on the distance Li between S and D and also the orientation

of the S-D line. Now E[Li] is a constant and hence since the hops are along cells having

side-length 1/
√

a(n), it can be shown that

E[Hi] = Θ
(

E[Li]/
√

a(n)
)

. (2.2)

There are m = 1/a(n) cells. Fix a cell j and define Y j
i to be the indicator of the event that

the S-D line of S-D pair i passes through cell j. That is,

Y j
i =

{

1 if any hop of S-D pair i is in cell j

0 otherwise

for 1 ≤ i ≤ n/2 and 1 ≤ j ≤ m. Summing up the total number of hops in the cell in two

different ways we obtain
n/2
∑

i=1

m
∑

j=1

Y j
i =

n/2
∑

i=1

Hi.

Taking expectations on both sides and noting that all the E[Y j
i ] are equal due to symmetry

on the torus, we obtain
nm

2
E[Y j

i ] =
n

2
E[Hi]. (2.3)
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From (2.2) and (2.3) it follows that P{Y j
i = 1} = Θ

(

√

a(n)
)

. Now for a fixed cell j, the

total number of S-D lines passing through it is given by Y =
∑n/2

i=1 Y j
i . This is the sum of

i.i.d. Bernoulli random variables since the position of each node is independent of that of

the others and Y j
i depends only on the positions of the source and destination nodes of S-D

pair i. Moreover E[Y ] = Θ
(

n
√

a(n)
)

, which is Ω
(√

n log n
)

since a(n) = Ω(log n/n) and

hence the Chernoff bound for the sum of i.i.d. Bernoulli random variables (e.g. see [37])

yields

P{Y > (1 + δ)E[Y ]} ≤ exp(−E[Y ]δ2/4).

Choosing δ = 2
√

2 log n/E[Y ] results in

P{Y > (1 + δ)E[Y ]} ≤ 1/n2.

Since δ = o(1), for a(n) = Ω(log n/n) this means that Y = O(E[Y ]) with probability

≥ 1− 1/n2. Now using the union bound over m = O(n/ log n) cells shows that the number

of lines passing through each cell is O(E[Y ]) = O
(

n
√

a(n)
)

with probability ≥ 1−1/n.

The above lemma shows that the number of S-D lines passing through each cell is

≤ c2n
√

a(n) whp, for an appropriate choice of the constant c2.

Now we are ready to describe Scheme 1, which is parameterized by the cell area a(n),

where a(n) = Ω(log n/n) and a(n) ≤ 1.

Scheme 1: Static networks

1. Divide the unit torus using a square grid into square cells, each of area a(n) (see

Figure 2.2).

2. Verify whether the following conditions are satisfied for the given realization of the

random network.

• Condition 1: No cell is empty.

• Condition 2: The number of S-D lines through each cell is at most c2n
√

a(n).

3. If either of the above conditions is not satisfied then use a time-division policy, where

each of the n/2 sources transmits directly to its destination in a round-robin fashion.

4. Otherwise, i.e., if both conditions are satisfied, use the following policy Σn:
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Figure 2.3: The TDM transmission schedule of Scheme 1. Each cell becomes active once in
1 + c1 time-slots and each active time-slot is divided into several packet-slots.
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(a) Each cell becomes active at a regular interval of 1 + c1 time-slots (the constant

c1 comes from Lemma 2.2). Several cells which are sufficiently far apart become

active simultaneously. Thus the scheme uses TDM between nearby cells.

(b) Let the straight line connecting a source S to its destination D be denoted as

an S-D line. A source S transmits data to its destination D by hops along the

adjacent cells lying on its S-D line as shown in Figure 2.2.

(c) When a cell becomes active, it transmits a single packet for each of the S-D lines

passing through it. This is again performed using a TDM scheme that slots each

cell time-slot into packet time-slots as shown in Figure 2.3.

The point of trade-off at which Scheme 1 operates is determined by the parameter a(n)

and the dependence is made precise in the following theorem.

Theorem 2.2. For a(n) ≥ 2 log n/n,

T (n) = Θ

(

1

n
√

a(n)

)

and D(n) = Θ

(

1
√

a(n)

)

,

i.e., the throughput-delay trade-off achieved by Scheme 1 is

T (n) = Θ

(

D(n)

n

)

for T (n) = O

(

1√
n log n

)

.

Proof. If the time-division policy with direct transmission is used, then the throughput is

2W/n and the delay is 1. But since it happens with a vanishingly low probability, as shown

by Lemmas 2.1 and 2.3, the throughput and delay for Scheme 1 are determined by that of

policy Σn.

First we analyze the throughput of Scheme 1. When policy Σn is used, since Condition

1 is satisfied, each cell has at least one node. This guarantees that each source can send

data to its destination by hops along adjacent cells on its S-D line. From Lemma 2.2, it

follows that each cell gets to transmit a packet every 1 + c1 time-slots, or equivalently, the

cell throughput is Θ(1). The total traffic through each cell is that due to all the S-D lines

passing through the cell, which is O
(

n
√

a(n)
)

since Condition 2 is also satisfied. This

shows that

T (n) = Θ
(

1/
(

n
√

a(n)
))

.

Next we compute the average packet delay D(n). As defined earlier, packet delay is the

sum of the amount of time spent in each hop. We first bound the average number of hops

then use the fact that the time spent at each hop is constant, independent of n.
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Since each hop covers a distance of Θ
(

√

a(n)
)

, the number of hops per packet for S-D

pair i is Θ
(

di/
√

a(n)
)

, where di is the length of S-D line i. Thus the number of hops

taken by a packet averaged over all S-D pairs is Θ
(

1
n

∑n
i=1 di/

√

a(n)
)

. Since for large n,

the average distance between S-D pairs is 1
n

∑n
i=1 di = Θ(1), the average number of hops is

Θ
(

1/
√

a(n)
)

.

Now note that by Lemma 2.2 each cell can be active once every constant number of cell

time-slots and by Lemma 2.3 each S-D line passing through a cell can have its own packet

time-slot within that cell’s time-slot. Since we assumed that packet size scales in proportion

to the throughput T (n), each packet arriving at a node in the cell departs in the next active

time-slot of the cell. Thus the delay is at most c1 times the number of hops. From the

above discussion, we conclude that the delay D(n) = Θ
(

1/
√

a(n)
)

. This concludes the

proof of Theorem 2.2.

2.2.2 Converse

Next we show that the throughput-delay trade-off provided by Scheme 1 is optimal for a

static wireless network as far as the scaling is concerned.

Theorem 2.3. If any scheme has throughput, T (n), and delay, D(n), then D(n) = Ω(nT (n)).

Proof. This proof uses techniques similar to those used in the proof of Theorem 2.1 in [23].

Consider a given fixed placement of 2n nodes in the unit torus. Let L̄ be the sample mean

of the lengths of the S-D lines for the given node placement and let the throughput of the

scheme under consideration be λ. Consider a large enough time t, so that by definition,

the total number of bits transported in the network is λnt. Let h(b) be the number of hops

taken by bit b, 1 ≤ b ≤ λnt and let r(b, h) denote the length of hop h of bit b. Therefore,

λnt
∑

b=1

h(b)
∑

h=1

r(b, h) ≥ λntL̄. (2.4)

Now, for two simultaneous transmissions from node i to node j and from node k to node

l, consider

d(j, l) ≥ d(j, k) − d(l, k)

≥ (1 + ∆)d(i, j) − d(l, k), (2.5)
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and

d(j, l) ≥ d(l, i) − d(i, j)

≥ (1 + ∆)d(l, k) − d(i, j). (2.6)

Combining (2.5) and (2.6), we obtain

d(j, l) ≥ ∆

2
(d(i, j) + d(k, l)) .

This result implies that if we place a disk around each receiver of radius ∆/2 times the

length of the hop, the disks must be disjoint for successful transmission under the Protocol

model. Since a node transmits at W bits per second, each bit transmission time is 1/W

seconds. During each bit transmission, the total area covered by the disks surrounding the

receivers must be less than the total unit area. Summing over the Wt bits transmitted in

time t and accounting for edge effects, we obtain

λnt
∑

b=1

h(b)
∑

h=1

π

4

(

∆

2
r(b, h)

)2

≤ Wt. (2.7)

Let the total number of hops taken by all bits be H =
∑λnt

b=1 h(b). Then by convexity, it

follows that




λnt
∑

b=1

h(b)
∑

h=1

1

H
r(b, h)





2

≤
λnt
∑

b=1

h(b)
∑

h=1

1

H
r(b, h)2. (2.8)

Using (2.4), (2.7) and (2.8), we obtain

(

λntL̄
)2 ≤

(

16Wt

π∆2

)

H. (2.9)

Now defining h̄ to be the sample mean of the number of hops over λnt bits, i.e., h̄ = 1
λntH.

Using this to rewrite (2.9) and the obvious fact that λ ≤ W , we obtain

λn ≤ min

{

16W

π∆2L̄2
h̄, nW

}

. (2.10)

By the law of large numbers, L̄ = Θ(1) whp. Moreover the rate of convergence is

exponential in n. Let An be the set such that L̄ = Θ(1) and let I(An) be the indicator of
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set A. Then from (2.10), we have

nE[λ] ≤ E

[

16W

π∆2L̄2
h̄I(An)

]

+ E [nWI(Ac
n)]

≤ c5E[h̄] + o(1), (2.11)

where the last term is o(1) since P (Ac
n) converges to 0 exponentially.

By definition, if a scheme has throughput T (n) then there exists a set Bn on which

λ ≥ T (n) and P (Bn) converges to 1. Therefore we have

E[λ] = E[λI(Bn)] + E[λI(Bc
n)]

≥ T (n)(1 − o(1)). (2.12)

From (2.11) and (2.12), it follows that nT (n)(1−o(1)) ≤ c5E[h̄]+o(1), which is the same

as E[h̄] = Ω(nT (n)). Now each packet spends at least one time-slot at each hop and hence

the delay of each packet is at least as much as the number of hops it takes. As a result, if

D(n) is the delay of the scheme under consideration then by definition, D(n) ≥ E[h̄]. Thus

we have shown that for any scheme, D(n) = Ω(nT (n)).

2.3 Discussion

We established the optimal throughput-delay trade-off in static random networks using a

fluid model. Our scheme for achieving the optimal trade-off is a simple cellular scheme

with two-level TDM (time-division-multiplexing). The entire network area is divided into

cells and there is TDM between neighboring cells, as well as, TDM between nodes in the

the same cell. Further, packets are routed on the shortest path along cells. This has the

implication that such a simple cellular, TDM, shortest path routing scheme is optimal for

throughput and delay scaling. Any scheduling and routing algorithm of this type can be

expected to perform well, when the exact placement of nodes is not known.



Chapter 3

Throughput-Delay Trade-off in

Static Networks: Constant-size

Packets

In Chapter 2, the throughput-delay trade-off for static wireless networks was shown to be

D(n) = Θ(nT (n)), where D(n) and T (n) are packet delay and throughput in a network of

n nodes, respectively. This trade-off was obtained using a fluid model, in which the packets

are allowed to be arbitrarily small. In this fluid model, buffers are not required. Due to

this packet scaling, D(n) is not equivalent to delay per bit.

This raises the question whether the trade-off remains the same when the packet size is

kept constant, which necessitates packet scheduling in the network. This is an important

question, since in real networks, packet size does not change when more nodes are added to

the network. Note that with the additional constraint that the packet size remains constant,

the throughput-delay trade-off can be no better than that in the fluid model. However, a

priori, it is not clear whether the same throughput-delay trade-off as in the fluid case can

be achieved. This is because, packets of constant size necessitate the use of buffers in the

network, due to which routing packets through the network also involves the additional task

of scheduling in the network.

In this chapter, we extend our previous results to the case of static wireless net-

works with buffers and constant-size packets and show that the optimal trade-off is still

D(n) = Θ(nT (n)) (as shown in Figure 2.1), where now D(n) is the delay per bit. The main

contribution is a scheduling policy for which it is shown that the throughput-delay trade-off

is the same as that for the fluid model. Analyzing the delay of any scheduling policy for

21
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a wireless network corresponds to analyzing the delay of an induced discrete-time queuing

network. It is natural to attempt to use a FIFO (First-In-First-Out) queue management in

the wireless network, however, not much is known about delay with FIFO in discrete-time

queuing networks. Thus the study of achievable throughput-delay trade-off with packets of

constant size requires a scheduling policy with good performance that is amenable to anal-

ysis. We provide a solution by coupling the evolution of a discrete-time queuing network

with that of a continuous-time queuing network. This leads to both a packet scheduling

policy (see item 6 of Policy Σn in Section 3.1) for the wireless network and a method for

analyzing the delay. The following is an outline of our solution. Packets in a wireless

network have fixed routes depending on the source-destination pair to which they belong.

The entire wireless network then corresponds to a discrete-time, open queuing network with

general customer routes, in the terminology of queuing theory (e.g. see [28], [44]). In the

case of continuous-time queuing networks, when some more conditions are satisfied (such as

independent Poisson arrivals to each customer route and a symmetric queue at each server)

these are known as Kelly or BCMP networks. For such networks, the equilibrium distri-

bution is known to have a product form. We consider a continuous-time queuing network

with general customer routes with the same topology as the discrete-time network we wish

to study. Further this network is assumed to have Poisson arrivals, constant service time

and Preemptive LIFO at each server so that it is a Kelly (BCMP) network. Then based

on packet arrival times in this continuous-time queuing network at each server, we derive a

scheduling policy for the discrete-time wireless network. Finally, using product form equi-

librium results for continuous-time networks, we determine the exact order of queuing delay

in the discrete-time wireless network.

We would like to note that Gupta and Kumar [23] implicitly used a fluid model for

establishing throughput scaling. Later work by Kulkarni and Viswanath [29] consolidated

the result with an explicit constant packet size model.

The model and definitions of the static random network, the relaxed Protocol model,

throughput, delay, and the throughput-delay trade-off are the same as in Chapter 2. In

this chapter the packet size is assumed to be constant – equal to W bits. Recall that we

assume time-slots to be of unit length and that under the relaxed Protocol model, successful

transmission occurs at W bits per second. Hence W is the maximum size of a packet. Note

that in the definition of delay we used packet delay. However, since the packet size is

constant, packets delay is equal to the delay per bit.

Our main result is as follows.

Theorem 3.1. The optimal throughput-delay trade-off in the static random network model
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with packets of constant size is given by

T (n) = Θ (D(n)/n) ,

for T (n) = O
(

1/
√

n log n
)

.

The above result says that under a delay scaling constraint of D(n) the optimal through-

put scaling is Θ(D(n)/n). And this holds for T (n) = O
(

1/
√

n log n
)

, that is, the entire

range of achievable throughputs in the static random network model.

The rest of this chapter is organized as follows. In Section 3.1, we introduce Scheme

Π and show that it achieves the throughput-delay trade-off stated in Theorem 3.1. Finally

we present a converse that shows that no scheme can provide a better throughput-delay

trade-off than Scheme Π, thus establishing Theorem 3.1.

3.1 Achievability and converse

Our trade-off scheme is a multi-hop, time-division-multiplexed (TDM), cellular scheme with

square cells of area a(n) so that the unit torus consists of 1/a(n) cells as shown in Figure 2.2.

It is similar to Scheme 1 in Chapter 2.

Scheme Σn:

1. Divide the unit torus using a square grid into square cells, each of area a(n) (see

Figure 2.2).

2. Verify whether the following conditions are satisfied for the given realization of the

random network.

• Condition 1: No cell is empty.

• Condition 2: The number of S-D lines through each cell is at most c2n
√

a(n).

3. If either of the above conditions is not satisfied then use a time-division policy, where

each of the n/2 sources transmits directly to its destination in a round-robin fashion.

4. Otherwise, i.e., if both conditions are satisfied, use the following policy Σn:

(a) Each node generates packets according to a Poisson process of rate T (n) =

Θ
(

1/n
√

a(n)
)

. The random network is a discrete-time system whereas the

packet generation is a continuous-time process. So if a packet is generated at

time t, it is available for transmission from time-slot dte onwards.
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(b) Each cell becomes active at a regular interval of 1+c1 time-slots (see Lemma 2.2).

Several cells which are sufficiently far apart become active simultaneously. Thus

the scheme uses TDM between nearby cells.

(c) A source S sends packets to its destination D by relaying or hopping along the

adjacent cells lying on its S-D line as shown in Figure 2.2. Thus, in this scheme,

direct transmission of packets is only between nodes in adjacent cells.

(d) One of the nodes in a cell acts as a relay by maintaining a buffer for the packets

of all the S-D lines passing through that cell. In each time-slot only one packet

can be transmitted. However, a relay node may receive up to four packets from

its adjacent cells before it gets a chance to relay them. Moreover multiple packets

may be generated within the cell which will be available for transmission in the

next time-slot. Hence a virtual queue is formed in each cell which consists of

packets generated within the cell as well as the packets to be relayed through the

cell.

(e) When the cell becomes active, one packet from this virtual queue (if not empty)

is transmitted to an adjacent cell according to a Last-In-First-Out (LIFO) type

of queue service policy. However, the arrival times considered by this policy

are not the actual arrival times of the packets, but the arrival times that would

occur in a continuous-time network with the same arrivals and a PL (Preemptive

LIFO) queue management at each server. This is elaborated later in this section

during the analysis of delay.

Note that each cell has a single relay node and that it maintains a buffer for all packets

of all S-D pairs passing through that cell except for the packets generated by source nodes

within the cell. However, the virtual queue in the cell includes these latter type of packets,

although, the source nodes do not transmit these packets to the relay node in the cell.

We assume that there is coordination within the cell to allow this. As a result, the delay

analysis only needs to consider this virtual queue.

The point of trade-off at which Scheme Π operates is determined by the parameter a(n)

and the dependence is made precise in the following theorem.

Theorem 3.2. For a(n) = Ω(log n/n),

T (n) = Θ
(

1/n
√

a(n)
)

and D(n) = Θ
(

1/
√

a(n)
)

,
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i.e., the throughput-delay trade-off achieved by Scheme Π is

T (n) = Θ (D(n)/n) .

Throughput analysis: If the time-division policy with direct transmission is used, then

the throughput is 2W/n and delay of 1. But since it happens with a vanishingly low

probability, as shown by Lemmas 2.1 and 2.3, the throughput and delay for Scheme Π are

determined by that of policy Σn.

When policy Σn is used, since Condition A is satisfied, each cell has at least one node.

This guarantees that each source can send data to its destination by hops along adjacent

cells on its S-D line. From Lemma 2.2, it follows that each cell gets to transmit a packet

every 1+c1 time-slots, or equivalently, the cell throughput is Θ(1). The total traffic through

each cell is that due to all the S-D lines passing through the cell, which is O
(

n
√

a(n)
)

since Condition B is also satisfied. This suggests that

T (n) = Θ
(

1/n
√

a(n)
)

,

is achievable, if the average delay is finite.

Figure 3.1: The torus on the left with has 16 cells and each cell contains at least one node.
The circled node in each cell acts as a relay. The corresponding queuing network of 16
servers, with each server corresponding to a cell in the wireless network, is shown on the
right.

Delay Analysis: Next we analyze the average packet delay in the wireless network for

Scheme Π when Conditions A and B are satisfied, i.e, when policy Σn is used. Dividing the
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unit torus into square cells of area a(n) results in 1/a(n) cells. One of the nodes in each cell

maintains a buffer and acts as a relay for all the S-D lines passing through that cell. These

relay nodes are the circled nodes in Figure 3.1. The buffer in each cell corresponds to a

queue and the cell itself corresponds to a server that can transmit one packet from this queue

once in 1 + c1 time-slots. This is because each cell becomes active once in 1 + c1 time-slots

as described earlier. Since Scheme Π restricts direct transmissions to be between adjacent

cells, each cell can receive from or transmit to any four of its adjacent cells. This determines

the connectivity between the servers so that the entire wireless network corresponds to a

discrete-time queuing network of 1/a(n) servers, where each server is connected to four

others as shown in Figure 3.1.

Note that the time-division-multiplexing between cells is such that in the c1 slots before

each cell becomes active again each of its neighbors becomes active exactly once. Hence

we can ignore the effect of cells becoming active at regular intervals and instead consider

a discrete-time network of queues ND where D signifies the discrete time nature of this

network. The actual delay in the wireless network would then be 1 + c1 times the delay in

ND.

Queuing network ND: The discrete-time queuing network ND consists of 1/a(n) servers,

each of which can service one packet from its queue in a time-slot if it is not empty. Moreover,

each server is connected to four others as explained above. In the wireless network, packets

travel from their sources to their destinations by hops along adjacent cells on their S-D lines.

Thus the route of a packet depends on the S-D pair to which it belongs. This means that in

ND there are n/2 customer routes corresponding to the n/2 S-D pairs. Recall that packets

arrive in the wireless network at the sources according to independent Poisson processes of

rate T (n). These correspond to exogenous arrivals at the queues in ND. The remaining

arrivals at the queues are due to the departures from other queues. In the terminology of

queuing theory, ND is a discrete-time, open network of queues with general customer routes

(see Chapter 6.6 of [44]).

Delay analysis for such discrete-time networks with general customer routes is not

known, which prevents us from using a simple First-In-First-Out (FIFO) order of service

in ND. We leverage results known about continuous-time networks to obtain the queue

management policy for ND in such a way that the average delay can be computed.

Queuing network NC: Consider a continuous-time open network of 1/a(n) servers having

the same connectivity structure as ND and the same n/2 customer routes (see Figure 3.1).

Let this network be called NC . Further, let the exogenous arrivals in both the networks

NC and ND be the same. And let the service requirement of each packet at each server be
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deterministically equal to unit time. From the description until now, it is clear that NC

is the continuous-time analog of the discrete-time network ND. A Preemptive LIFO (PL)

queue management is used at each server in NC (see Chapter 6.8 of [44] for more details).

The queue size distribution for the continuous time network NC with PL queue man-

agement at each server has a product form in equilibrium as shown in [28] (see Theorems

3.7 and 3.8 of Chapter 3) provided that the following two conditions are satisfied. First,

the service time distribution should be either phase-type (that is, a mixture of Gamma

distributions) or the limit of a sequence of phase-type distributions. The second condition

is that, the total traffic at each server is less than its capacity, which is one in our case.

In our case the service time is constant and equal to 1. Consider the sum of n exponential

random variables each with mean 1/n. This sum has a phase-type distribution and in the

limit as n tends to infinity, its distribution converges to that of a constant random variable.

Thus the first condition is satisfied.

In the wireless network the number of S-D lines passing through each cell is O
(

n
√

a(n)
)

and the arrival process for each S-D pair is an independent Poisson process with rate

T (n) = Θ
(

1/n
√

a(n)
)

. Therefore an appropriate choice of constants guarantees that the

total traffic at each server is less than 1, its service capacity, as Condition B (mentioned just

before the description of policy Σn) is satisfied. Thus the second condition is also satisfied.

Using the product form for the queue size distribution in equilibrium, it follows that the

average queue size at a queue with total traffic λ < 1 and unit mean service is of the form

c3λ/(1 − λ) where c3 is some constant. By Little’s law this implies that the average delay

at each server is bounded above by a constant independent of n. We summarize the above

discussion in the lemma below.

Lemma 3.1. For the continuous-time open network NC with n/2 customer routes as de-

scribed above the average delay at each server is bounded above by a constant independent

of n.

Packet Scheduling in ND using NC : However we cannot use this PL policy in the

discrete time network ND because of the following reasons:

1. Due to the discrete time nature of the network ND, a packet that is generated at time

t becomes eligible for service (i.e. next hop transmission) only at time dte.

2. A complete packet has to be transmitted in a time-slot, i.e. fractions of the packets

cannot be transmitted. This means that a preemptive type of service like PL is not

allowed.
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To address these problems for ND, we present a centralized scheduling policy derived

from emulating in parallel, the continuous-time network NC with PL queue management at

each server. The exogenous arrivals in both NC and ND are the same. Let a packet arrive

in NC at some server at time aC and in ND at the same server at time aD. Then it is served

in ND using a LIFO policy with the arrival time considered to be daCe instead of aD.

Clearly such a scheduling policy can be implemented if and only if each packet arrives

before its scheduled departure time. According to our scheduling policy, the scheduled

departure time can be no earlier than daCe, whereas the actual arrival time is aD. Hence

for this scheduling policy to be feasible, it is sufficient to show that aD ≤ daCe for every

packet at each server. Let dC and dD be the departure times of a packet from some server

in NC and ND respectively. Since the departure time at a server is the arrival time at the

next server on the packet’s route it is sufficient to show that dD ≤ ddCe for each packet in

every busy cycle of each server in NC . In what follows, we show that for all packets in any

busy cycle of any server, the departures in ND occur at or before the departures in NC .

Lemma 3.2. Let a packet depart in NC from some server at time dC and in ND at time

dD, then dD ≤ ddCe.

Proof. Fix a server and a particular busy cycle of NC . Let it consist of packets numbered

1, . . . , k with arrivals at times a1 ≤ . . . ≤ ak and departures at times d1, . . . , dk. Let the

arrival times of these packets in ND be A1, . . . , Ak and departures be at times D1, . . . , Dk.

By assuming that Ai ≤ daie for i = 1, . . . , k, we need to show that Di ≤ ddie for i = 1, . . . , k.

Clearly this holds for k = 1 since D1 = dA1e + 1 ≤ daie + 1 = dd1e. Now suppose it

holds for all busy cycles of length k and consider any busy cycle of k + 1 packets.

If da1e < da2e, then because of the LIFO policy in ND based on times ai, we have

D1 = da1e + 1 ≤ da1e + k + 1 = dd1e. The last equality holds since in NC , the PL service

policy dictates that the first packet of the busy cycle is the last to depart. And the remaining

packets would have departures times as for a busy cycle of length k.

Otherwise if da1e = da2e then the LIFO policy in ND based on arrival times ai results

in D1 = da1e + k + 1 = dd1e and the packets numbered 2, . . . , k depart exactly as if they

belong to a busy cycle of length k. This completes the proof by induction.

Thus we have shown that it is possible to use LIFO in ND based on the arrival times in

NC instead of the actual arrival times in ND. We are now ready to prove Theorem 3.2.

Proof. (of Theorem 3.2) Packets reach their destination with finite average delay, which

shows that the throughput is just the rate at which each source sends its data. This proves

that the throughput T (n) = Θ
(

1/n
√

a(n)
)

.
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Next we compute the average packet delay D(n). Lemma 3.2 also holds for the final

departure of each packet from the network. Therefore if D i
D is the delay of a packet of route

i in ND (i.e. S-D pair i in the wireless network) and Di
C is the delay of the corresponding

packet in NC then Di
D ≤ Di

C + 1. Hence taking expectations it follows that

E[Di
D] ≤ E[Di

C ] + 1, 1 ≤ i ≤ n/2.

Therefore delay averaged over all n/2 routes is given by

D(n) =
2

n

n/2
∑

i=1

E[Di
D] ≤ 2

n

n/2
∑

i=1

E[Di
C ] + 1. (3.1)

Since each hop in the wireless network covers a distance of Θ
(

√

a(n)
)

, the number of hops

per packet for S-D pair i is Θ
(

di/
√

a(n)
)

where di is the length of S-D line i. Now Di
C is

the delay for a packet of route i, which is equal to the sum of the delays along all queues

on its route. But from Lemma 3.1, the average delay at each server is bounded above by

some constant independent of n. Therefore from (3.1), we obtain that

D(n) ≤ 2

n

n/2
∑

i=1

c2
E[di]
√

a(n)
+ 1 = Θ

(

1/
√

a(n)
)

since 2
∑n/2

i=1 E[di]/n = Θ(1).

Finally to see that the trade-off provided by Scheme Π is optimal, consider Theorem 2.3

that was established for the fluid model. The constant packet size requirement is an ad-

ditional constraint compared to the fluid model and hence its throughput-delay cannot be

better than that for the fluid model. This proves that the throughput-delay scaling trade-

off provided by Scheme Π is optimal for the static random network model with packets of

constant size.

3.2 Discussion

The optimal throughput-delay trade-off for random wireless networks was determined in

using a fluid model. In this chapter, we imposed the constraint that the packet size remains

constant and showed that the throughput-delay trade-off remains unchanged. This provides

a justification for the simplifying fluid assumption made earlier since it does not affect the
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essential network dynamics.

It is worth noting that the techniques developed in this chapter cannot be applied

directly to the mobile random network model. This is because, nodes cannot be identified

with cells since they are moving around the network. As a result, it is not possible to

associate a virtual queue with each cell as we did in this work.

In a related model, where the mobile network also has n static nodes along with n

mobile nodes, the optimal trade-off can be obtained for sufficiently low throughputs. We

can show that for any throughput T (n) = Θ(1/n1/2+ε), ε > 0, the trade-off given by T (n) =

Θ(D(n)/n) can be achieved. This is the same as the trade-off for the fluid model. This

establishes the optimal trade-off for this range of low throughputs. The scheme achieving

this trade-off uses the scheduling scheme given in this chapter along with a randomization

technique and chasing in a manner similar to Scheme 3(a) in Chapter 5. However the

optimal trade-off for the mobile network with no static nodes is unknown.



Chapter 4

Throughput-Delay-Energy

Trade-offs or Optimal Hopping

One of the insights provided by the work of Gupta and Kumar [23] on throughput is that the

highest throughput scaling is obtained at the smallest transmission range, or equivalently,

maximum amount of hopping is needed to mitigate interference in the network.

In Chapter 2, the optimal throughput-delay trade-off for a random wireless network was

established to be D(n) = Θ(nT (n)). The work in Chapter 2 also showed that at an optimal

point of the trade-off, delay scales as the number of hops and both throughput and delay

increase as the amount of hopping increases. Thus the amount of hopping determines the

point of the optimal trade-off at which the network operates; more hops results in higher

throughput but also higher delay.

Energy is another important metric and assumes great significance in the case of net-

works with limited energy resources, particularly sensor networks. With the assumption

that signal attenuates with distance r as r−δ, it is easy to see that if relay nodes are placed

uniformly between the source and destination, the total transmission energy decreases as

the amount of hopping increases. This leads one to believe that hopping as much as pos-

sible is good for minimizing energy-per-bit. However, when transceiver circuit energy is

also taken into account, this is no longer the case and the optimal number of hops depends

on the topology and the size of the network [40]. A large body of work exists on opti-

mizing one of throughput, delay and energy subject to a constraint on one of the others

for a given placement of nodes (see [7] for a representative sample). These studies have

focused on optimizing the performance metrics for a given realization of the network, which

is quite different from the framework of random networks where the goal is to obtain general

31
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guidelines for an entire class of networks.

In this chapter, we determine the optimal hopping for energy efficiency along with

throughput and delay using the random network framework. We assume that n nodes are

randomly placed in area A(n) and are split into n/2 source-destination pairs. We allow

the density of nodes in the network, n/A(n), to be anywhere between 1, for a constant

density network, where A(n) = n, and n for a constant area network, where A(n) = 1.

The reason for characterizing networks according to their node densities, as we shall show

later, is that node density determines the amount of optimal hopping in a network. We

assume the Physical model for successful transmission [23], which captures the effect of

interference in the network due to other simultaneously transmitting users. We consider

both Radio-frequency (RF) transmission energy and transceiver circuit energy. Thus the

energy used in communicating a bit from a source to a destination has two components –

one due to transmission, which depends on the number of hops and the distance and power

used at each hop, and the other due to transceiver circuit energy, which is proportional to

the number of hops. Note that by increasing the number of hops, the transmission energy

component decreases whereas the transceiver energy component increases. We establish the

optimal trade-offs between throughput, delay and energy for this random network model.

We find that even after the inclusion of energy consumption into the model, which allows for

power control, hopping continues to determine the optimal trade-offs between throughput,

delay and energy. This happens because the amount of hopping determines the amount of

power to use for optimal energy scaling. As a by-product, we obtain the amount of hopping

that results in the minimum energy scaling.

The outline of the rest of the chapter is as follows. Section 4.1 presents the random

network model, required definitions and a preview of the main results. Section 4.2 states

Theorem 4.1, which is the main result of this chapter and two corollaries. Section 4.3

presents a cellular scheme that achieves the trade-off that is stated to be optimal in The-

orem 4.1. Section 4.4 shows that the trade-off achieved by this scheme is optimal, in that

no scheme can outperform it in terms of scaling. Finally in Section 4.5, we discuss some of

the implications of our results on the design of wireless ad hoc networks.

4.1 Model and main results

In this chapter we use a random network model in which the area is a parameter, rather

than being fixed, as in earlier chapters. Moreover, the Physical model is used instead of the

Relaxed Protocol model for determining successful transmission.



4.1. MODEL AND MAIN RESULTS 33

Definition 8 (Random network model). The random network consists of a torus of

area A(n) in which n nodes are distributed uniformly at random. These n nodes are split

into n/2 distinct source-destination (S-D) pairs at random. Time is slotted for packetized

transmission. For simplicity, we assume that the time-slots are of unit length.

The network area A(n) is allowed to be a function of the number of nodes n and the

density of nodes in the network is n/A(n). We refer to the case when A(n) = 1 as the

constant area model. The other extreme is the constant density model in which A(n) = n,

i.e., n nodes are placed in a torus of area n so that the density of nodes is 1.

Let the distance on the torus between two nodes i and j be denoted by rij. We assume

that signal decays with distance r as r−δ so that power decays as r−2δ, where δ > 1. We

assume the Physical model for successful transmission presented in [23] and also used by

several others since.

Definition 9 (Physical model). A transmission from node i to j is successful if

SINR =
Pr−2δ

ij

N +
∑

k∈Γ,k 6=i r
−2δ
kj

≥ β,

where Γ is the set of simultaneously transmitting nodes. When the transmission is success-

ful, communication occurs at a constant rate W .

The basis of the Physical model is the AWGN channel with noise power N where inter-

ference from other transmitting users is treated as independent Gaussian noise. Thus when

the transmission from node i to node j is successful under the Physical model, the energy-

per-bit due to RF transmission is P/W ≥ β(N + I)r2δ
ij , where I is the total interference

power at node j due to other simultaneous transmissions.

In order to take the transceiver circuit power into account, we assume a constant amount

of energy per bit, c0, is also dissipated during each transmission/reception [40]. Thus

the total energy-per-bit for a successful transmission from node i to j is P/W + c0 ≥
β(N + I)r2δ

ij + c0.

Some authors assume the signal to attenuate with distance r as (1 + r)−δ since the

r−δ attenuation is valid only in the far field. This results in transmission energy-per-bit

approaching a constant strictly greater than 0 as the distance approaches 0. We note that

the results in this chapter remain unchanged under this model for the constant density

random network. This is because a constant amount of energy is anyway consumed at each

hop due to the circuits and further the rate is constant when transmission is successful.
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Scheme, throughput, and delay are the same as defined earlier in Chapter 2. Let the

maximum power used by any node in a scheme be Pmax(n) and let the minimum power be

Pmin(n). We impose the further condition that

Pmax(n)/Pmin(n) < β. (4.1)

Thus the power used by a scheme can depend on n but all transmitters have more or less

the same power.

Energy-per-bit is defined analogously to delay.

Definition 10 (Energy-per-bit). Let E i
Πn

(j) be the energy spent to communicate bit j

of S-D pair i, then the sample mean of energy-per-bit for S-D pair i is

Ē i
Πn

= lim sup
k→∞

1

k

k
∑

j=1

E i
Πn

(j).

The average over all S-D pairs of the energy-per-bit for a particular realization is

ĒΠ(n) =
2

n

n
∑

i=1

Ē i
Πn

.

Energy-per-bit of scheme Π is the expectation of the above average, i.e.,

EΠ(n) = E[ĒΠ(n)].

We will use ET (n) and EC(n) to denote the components of EΠ(n) due to transmission

and the circuit respectively.

The number of hops of a scheme Π is denoted by HΠ(n) and is defined in the same way

as the delay of a scheme. Since it is a repeat of the above with obvious modifications, the

complete definition is omitted.

The T-D (throughput-delay) trade-off is defined as in 2. The D-E (delay-energy) and

T-E (throughput-energy) trade-offs are defined similarly.

Definition 11 (T-D-E trade-off). A triple (T (n), D(n), E(n)) is T-D-E optimal if there

exists a scheme achieving it and for any scheme Π such that TΠ(n) = Ω(T (n)), DΠ(n) =

Ω(D(n)) and for any scheme satisfying TΠ(n) = Ω(T (n)) and DΠ(n) = O(D(n)), EΠ(n) =

Ω(E(n)). The T-D-E trade-off consists of all the T-D-E optimal triples.

We define T-E-D, D-T-E, D-E-T, E-T-D and E-D-T trade-offs similarly.
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We use the shorthand notation, Ω(f(n)) = T (n) = O(g(n)) to mean T (n) = Ω(f(n))

and T (n) = O(g(n)).

Now that the model and the performance metrics have been defined, we summarize the

T-D-E trade-offs that capture the essential elements of our results. The T-D-E and all other

trade-offs are stated and proved in detail in subsequent sections.

For any value of A(n) and δ > 1, D(n) = Θ(H(n)) at any optimal trade-off point and

the T-D trade-off turns out to be D(n) = Θ(nT (n)), which is the same as in [12]. The

trade-offs involving delay and energy-per-bit depend on the value of A(n) and are discussed

below.

Constant Area Network (see Corollary 4.1(i))

The T-D-E trade-off for A(n) = 1 is given by

D(n) = Θ (nT (n)) and E(n) = Θ (D(n)) ,

for Ω(1/n) = T (n) = O
(

1/
√

n log n
)

.

In fact, ET (n) = o(EC(n)) and EC(n) = Θ(D(n)). That is, the circuit energy, which is

proportional to the number of hops, or equivalently the delay, dominates over the transmis-

sion energy as depicted in Figure 4.1(a). As a result, as long as δ > 1, the exact value of δ

does not affect the results.

The best E(n) that can be achieved in the constant area network is Θ(1) and is achieved

when a constant number of hops (that does not increase with n) is used. The corresponding

delay is Θ(1), which is the best possible. However, the highest energy efficiency and lowest

delay come at the cost of the lowest throughput of Θ(1/n). As the amount of hopping in

the network increases by decreasing the transmission range, throughput increases but at

the cost of higher delay and higher energy-per-bit.

Constant Density Network (see Corollary 4.2(i))

The T-D-E trade-off for A(n) = n is given by

D(n) = Θ (nT (n)) and

E(n) = Θ
(

nδD(n)1−2δ
)

,

for Ω(1/n) = T (n) = O
(

1/
√

n log n
)

.
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Figure 4.1: The D-E trade-off in a random wireless network. The scale of each axis is in
terms of the order in n. Point P corresponds to Θ(1) hops while point Q corresponds to

Θ
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)

hops.
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In fact, EC(n) = Θ(D(n)) = o(ET (n)) and ET (n) = Θ
(

nδ(D(n))1−2δ
)

as shown in Fig-

ure 4.1(b). Contrary to the case of the constant area network, here the transmission energy

dominates over the circuit energy. Therefore, the value of δ affects the energy consumption.

The best E(n) that can be achieved in the constant density network is Θ
(√

n(log n)δ− 1
2

)

.

Thus even at best, the energy efficiency of the network decreases with increase in the size

of the network. The best energy scaling is achieved when the maximum amount of hopping

is used. This is because although the circuit energy consumption increases in proportion

to the number of hops, the RF transmission energy, which is the dominant component, de-

creases by using more hops. The corresponding throughput is Θ
(

1/
√

n log n
)

, which is the

highest possible. However, the highest energy efficiency and the highest throughput come

at the cost of the highest delay of Θ
(

√

n/ log n
)

. As the amount of hopping in the network

decreases, delay decreases but at the cost of lower throughput and higher energy-per-bit.

Intermediate Density Network (see Theorem 4.1(i))

For a random network with area A(n), the T-D-E trade-off is given by

D(n) = Θ (nT (n)) , EC(n) = Θ(D(n))

and ET (n) = Θ
(

A(n)δD(n)1−2δ
)

,

for Ω(1/n) = T (n) = O
(

1/
√

n log n
)

.

Thus for general A(n), ET dominates at Θ(1) hops and EC dominates as hops increase as

shown in Figure 4.1(c). The minimum energy-per-bit scaling is obtained when ET = Θ(EC).

This happens at
√

B(n) hops, where B(n) = min{A(n), n/ log n}. The minimum energy-

per-bit scaling is Θ
(

A(n)δB(n)1−2δ
)

. The trade-off between D(n) and E(n) for general

A(n) is thus a combination of that for the extreme cases of A(n) = 1 and A(n) = n.

4.2 Optimal trade-offs

This section states the following main result of the chapter, which establishes the optimal

trade-offs between throughput, delay and energy-per-bit. The corollaries following it are

specializations to the case of the constant area network and the constant density network.

Theorem 4.1. For the random network model with area A(n), at any optimal trade-off

point, D(n) = Θ(H(n)). Further, let B(n) = min{A(n), n/ log n}, then the following state-

ments hold.
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(i) The T-D-E and D-T-E trade-off are given by

D(n) = Θ (nT (n)) , EC(n) = Θ(D(n))

and ET (n) = Θ
(

A(n)δD(n)1−2δ
)

, (4.2)

for Ω(1/n) = T (n) = O
(

1/
√

n log n
)

.

(ii) The D-E-T and E-D-T trade-offs are given by (4.2) for Ω(1/n) = T (n) = O
(

√

B(n)/n
)

.

For Ω
(

√

B(n)/n
)

= T (n) = O
(

1/
√

n log n
)

, the D-E-T and E-D-T trade-offs are

degenerate and are given by T (n) = Θ
(

√

B(n)/n
)

, D(n) = Θ
(

√

B(n)
)

and E(n) =

Θ
(

√

B(n)
)

.

(iii) The T-E-D and E-T-D trade-offs are given by (4.2) for Ω
(

√

B(n)/n
)

= T (n) =

O
(

1/
√

n log n
)

.

For Ω(1/n) = T (n) = O
(

√

B(n)/n
)

, the T-E-D and E-T-D trade-offs are degen-

erate and are given by T (n) = Θ
(

√

B(n)/n
)

, D(n) = Θ
(

√

B(n)
)

and E(n) =

Θ
(

A(n)δB(n)
1
2
−δ
)

.

Substituting A(n) = 1 in Theorem 4.1 yields the following result for the constant area

network.

Corollary 4.1. For the random network with area A(n) = 1, at any optimal trade-off point,

D(n) = Θ(H(n)). Further the following statements hold.

(i) The T-D-E trade-off is given by

D(n) = Θ (nT (n)) and E(n) = Θ (D(n)) ,

for Ω(1/n) = T (n) = O
(

1/
√

n log n
)

. In fact, ET (n) = Θ
(

D(n)1−2δ
)

= o(EC(n)) and

EC(n) = Θ(D(n)).

(ii) The T-E-D, D-T-E and E-T-D trade-offs are identical to the T-D-E trade-off.

(iii) The D-E-T and E-D-T trade-offs are degenerate with D(n) = E(n) = Θ(1) and T (n) =

Θ(1/n).

The D-E-T and E-D-T trade-offs are degenerate, since both the lowest delay and lowest

energy scaling come together when using a constant number of hops as shown by point
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P in Figure 4.1(a). The other trade-offs are identical because as the amount of hopping

increases, throughput increases but at the cost of higher energy-per-bit and higher delay.

Substituting A(n) = n in Theorem 4.1 yields the following result for the constant density

network.

Corollary 4.2. For the constant density random network model, at any optimal trade-off

point, D(n) = Θ(H(n)). Further the following statements hold.

(i) The T-D-E trade-off is given by

D(n) = Θ (nT (n)) and

E(n) = Θ
(

nδD(n)1−2δ
)

,

for Ω(1/n) = T (n) = O
(

1/
√

n log n
)

. In fact, EC(n) = Θ(D(n)) = o(ET (n)) and

ET (n) = Θ
(

nδ(D(n))1−2δ
)

.

(ii) The D-T-E, D-E-T and E-D-T trade-offs are identical to the T-D-E trade-off.

(iii) The T-E-D and E-T-D trade-offs are degenerate with T (n) = Θ
(

1/
√

n log n
)

, D(n) =

Θ
(

√

n/ log n
)

and E(n) = Θ
(√

n(log n)δ− 1
2

)

.

The T-E-D and E-T-D trade-offs are degenerate, since both the highest throughput and

the lowest energy-per-bit come together when using maximal hopping. The other trade-offs

are identical because as the amount of hopping decreases, delay decreases but at the cost of

lower throughput and higher energy-per-bit. This is clear from the T-D trade-off and the

D-E trade-off shown in Figure 4.1(b).

4.3 Achievability using a cellular TDM scheme

In this section, we present Scheme Π that achieves a trade-off between throughput, delay

and energy in a random network of area A(n) with n nodes. We will show that the scaling

trade-off provided by this scheme is of the same order as that claimed in Theorem 4.1. This

will establish that the trade-off claimed in Theorem 4.1 is achievable.

Scheme Π is similar to Scheme 1 in Chapter 2 with modifications to account for the

Physical model. It is a multi-hop, time-division-multiplexed (TDM), cellular scheme pa-

rameterized by a(n), where a(n) = Ω(log n/n) and a(n) ≤ 1. The network area is divided

into square cells, each of area b(n) = a(n)A(n) so that the torus of area A(n) consists of
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Figure 4.2: The torus of area A(n) is divided into cells of area b(n) = a(n)A(n) for Scheme
1. The S-D lines passing through the shaded cell in the center are shown.

1/a(n) cells as shown in Figure 4.2. The parameter a(n) is the fraction of the total network

area that each cell occupies.

Let the straight line joining a source, S, and a its destination, D, be called an S-D line.

Scheme Π is described below.

Scheme Π

1. Divide the unit torus using a square grid into square cells, each of area b(n) = a(n)A(n)

(see Figure 4.2). The packet size is Θ
(

1/n
√

a(n)
)

.

2. Verify whether the following conditions are satisfied for the given realization of the

random network.

• Condition 1: No cell is empty.

• Condition 2: The number of S-D lines through each cell is at most c2n
√

a(n).

3. If either of the above conditions is not satisfied then use a time-division multiplexing

(TDM) policy, where each of the n/2 sources transmits directly to its destination in

a round-robin fashion.

4. Otherwise, i.e., if both conditions are satisfied, use the following policy Πn:
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(a) The cells are divided into k2 groups, where k depends only on δ, β, and N ,

and is independent of n. Figure 4.3 illustrates this for the case of k = 3. All

cells belonging to the same group become active simultaneously and each group

becomes active at a regular interval of k2 time-slots. Thus the scheme uses TDM

between nearby cells.

(b) A source S transmits data to its destination D by hops along the adjacent cells

lying on its S-D line as shown in Figure 2.2.

(c) When a cell becomes active, it transmits a single packet for each of the S-D lines

passing through it. This is again performed using a TDM scheme that slots each

cell time-slot into packet time-slots as shown in Figure 2.3.

(d) Each transmitting node transmits with power P (n) = Pb(n)δ, where P depends

only on β, δ and N and not on n.

PSfrag replacements

1 2 3

4 5 6

7 8 9

Figure 4.3: An illustration of the cells being divided into k2 groups for the case of k = 3,
i.e., 9 groups. All the shaded cells which are in group 1 transmit in the same time-slot. In
the next time-slot all the cells in group 2 transmit and so on.

The point of trade-off at which Scheme Π operates is determined by the parameter a(n)

and this dependence is made precise in the following theorem.

Theorem 4.2. With a(n) = Ω(log n/n), Scheme Π has

T (n) = Ω

(

1

n
√

a(n)

)

, D(n) = Θ

(

1
√

a(n)

)

,
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E(n) = O

(

1
√

a(n)
+ A(n)δa(n)δ− 1

2

)

.

Thus the trade-off achieved by this scheme is

D(n) = Θ (nT (n)) and

E(n) = Θ
(

D(n) + A(n)δD(n)1−2δ
)

for Ω(1/n) = T (n) = O
(

1/
√

n log n
)

.

Proof. As shown in Lemma 2.1 in Chapter 2, no cell is empty whp. Further, it follows from

Lemma 2.3 in Chapter 2 that in our setting, the number of S-D lines passing through each

cell is O
(

n
√

a(n)
)

whp. This guarantees the existence of a constant c2 so that Condition

2 is satisfied whp. Thus Conditions 1 and 2 are satisfied whp.

If the time-division policy with direct transmission is used, then the throughput is 2W/n

with a delay of 1. But since it happens with a vanishingly low probability, the throughput

and delay for Scheme Π are determined by that of policy Πn. Hence we will only consider

policy Πn for the rest of the proof.

First we will establish that for an appropriate choice of k = k(β, δ,N) and P =

P (β, δ,N), the SINR is greater than β at each receiver as required by the Physical model.

This will be done by showing that the worst-case interference power PI(n) at any receiver

is bounded above by a constant that decreases monotonically in k and does not depend

on n for δ > 1. It is easy to see that the placement of the receiver and the transmitters

as shown in Figure 4.4 results in the the worst case interference at the receiver node. Let

Imax(n) be the total interference from all other transmitters when each transmitter uses

power Pb(n)δ. This interference can be split into 3 components (I1(n), I2(n) and I3(n))

based on the positions of the interfering transmitters as shown in Figure 4.4, so that

Imax(n) ≤ I1(n) + I2(n) + 4I3(n). (4.3)

Using m = 1/a(n) to denote the total number of cells, we have,

I1(n) =

√
m/2
∑

i=1

Pb(n)δ

(

(ki − 2)
√

b(n)
)2δ

≤ P

(k − 2)2δ
+

P

(2k − 2)2δ
+

√
m/2
∑

i=2

P

(ki)2δ
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Figure 4.4: The node marked T transmits to the node marked R in an adjacent cell. The
hollow nodes are the other nodes transmitting simultaneously.

≤ P

(k − 2)2δ
+

P

(2k − 2)2δ

+
P

k2δ

∫

√
m/2−1

1
x−2δdx

≤ P

(k − 2)2δ
+

P

(2k − 2)2δ
+

P

(2δ − 1)k2δ
,

for δ > 1/2. Similarly for δ > 1/2, we obtain

I2(n) =

√
m/2
∑

i=1

Pb(n)δ

(

(ki + 1)
√

b(n)
)2δ

≤ P

(k + 1)2δ
+

√
m/2
∑

i=2

P

(ki)2δ

≤ P

(

1

(k + 1)2δ
+

1

(2δ − 1)k2δ

)

.

Using similar but tedious manipulations, which we do not include here, it can be shown

that for δ > 1, I3(n) is less than P times a decreasing function of k. Thus from (4.3) it

follows that Imax(n) = Pf(k) where f(k) is monotonically decreasing in k. Thus in the
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worst case,

SINR ≥ Pb(n)δ (5b(n))−2δ

N + Imax(n)

=
5−δ

N
P + f(k)

.

Since f(k) decreases monotonically in k, we can choose k and P depending on β, δ and N

so that even in the worst case, SINR ≥ β.

We can use this to analyze the throughput of the trade-off scheme. When policy Πn is

used, since Condition 1 is satisfied, each cell has at least one node. This guarantees that

each source can send data to its destination by hops along adjacent cells on its S-D line. In

Scheme Π, each cell becomes active once in every k2 time-slots and moreover the rate at

each transmission is W according to the Physical model since at each receiver, SINR ≥ β

as shown above. Hence the cell throughput is Θ(1). The total traffic through each cell is

that due to all the S-D lines passing through the cell, which is O
(

n
√

a(n)
)

since Condition

2 is also satisfied. This shows that

T (n) = Ω
(

1/n
√

a(n)
)

.

Next we compute the average packet delay D(n). The delay of a packet is the time

it takes to reach its destination after leaving its source. This is equal to the sum of the

amounts of time spent at each hop and so we first bound the average number of hops over

all n/2 S-D pairs.

Since each hop covers a distance of Θ
(

√

b(n)
)

, the number of hops per packet for S-D

pair i is Θ
(

di/
√

b(n)
)

, where di is the length of S-D line i. Thus the number of hops taken

by a packet averaged over all S-D pairs is Θ
(

2
n

∑n/2
i=1 di/

√

b(n)
)

. Now the expectation of

the average distance between S-D pairs, E[ 2
n

∑n/2
i=1 di] = Θ

(

√

A(n)
)

and so the expectation

of the average number of hops is Θ
(

1/
√

a(n)
)

, since b(n) = a(n)A(n).

Recall that each cell is active once every k2 time-slots and since Condition 2 is satisfied,

each S-D line passing through a cell can have its own packet time-slot within that cell’s

time-slot. Since we allow the packet size to scale in proportion to the throughput T (n),

each packet arriving at a node in the cell departs in the next active time-slot of the cell.

Thus the delay is at most k2 times the number of hops. Since k does not depend on n, we

conclude that the delay, D(n) = Θ
(

1/
√

a(n)
)

.

Now we can compute the energy-per-bit E(n) for this scheme. Since the throughput is
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T (n) and there are n/2 S-D pairs, nT (n)L/2 bits are communicated from the sources to

their destinations over a long enough period of L time-slots. The total transmission energy

spent in the network during this time is that due to 1/k2a(n) cells in each time slot, which

is equal to Pb(n)δL/k2a(n). The total circuit energy spent is proportional to the number

of hops in the network, which is L/k2a(n). Hence

E(n) = O
(

PA(n)δa(n)δ−1/nT (n) + 1/na(n)T (n)
)

= O
(

A(n)δa(n)δ−1/2 + 1/
√

a(n)
)

.

This concludes the proof of Theorem 4.2.

4.4 Proof of optimality

In this section, we present a converse to Theorem 4.2 to show that the trade-off provided

by our trade-off scheme is indeed the optimal trade-off as far as scaling is concerned. That

is, we show that no scheme can provide a better scaling trade-off than the one achieved by

the scheme presented in Section 4.3. This is the content of Theorem 4.3 and this along with

Theorem 4.2 proves Theorem 4.1 thus establishing the optimal scaling trade-off between

throughput, delay and energy.

To establish a converse, we need to show that if any scheme has throughput T (n) then

its delay scaling is Ω(nT (n)), i.e., its delay scaling can be no better than that achieved by

Scheme Π in Section 4.3. By the definitions of the performance metrics, this means, we need

to show that if any scheme has throughput T (n) whp over all realizations then its expected

delay over all realizations is Ω(nT (n)). We also need to show a similar relationship between

delay and energy scaling. Before doing this, we consider a fixed realization of a network

and determine how the throughput, delay and energy-per-bit of any scheme depend on the

average transmission range. The analysis of the trade-off scheme in Section 4.3 showed

that the transmission range of scheme determines the amount of hops used by S-D pairs

and this in turn determines the throughput, delay and energy-per-bit. The following lemma

shows that the transmission range of a scheme puts a bound on its performance and that our

trade-off scheme uses multi-hopping in the best possible way, as far was scaling is concerned.

Lemma 4.1. Consider any realization of the random network with 2n nodes in area A(n).

Let di be the distance between S-D pair i, 1 ≤ i ≤ n and let L̄ = 1
n

∑n
i=1 di. With any

scheme for this realization, let the throughput be λ, the average transmission range be r̄, the

average number of hops per bit be h̄ and the average energy-per-bit be Ē. Then the following
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hold:

(a) h̄ ≥ L̄/r̄,

(b) λ ≤ c3A(n)h̄/
(

nL̄2
)

,

(c) Ē ≥ βL̄2δh̄1−2δ + c0h̄.

Proof. (a) Consider any realization of the random network with 2n nodes. Suppose that

a scheme provides throughput λ for this realization. Then given a sufficiently long time

interval T , each source communicates λT bits to its destination. The total number of bits

is B = λnT since there are n S-D pairs. The most general scheme can transmit bits via

multiple hops and paths in the network. Suppose that bit b, 1 ≤ b ≤ B, is communicated

to its destination by Hb hops and let r(b, h), 1 ≤ b ≤ B, 1 ≤ h ≤ Hb be the length of hop h

of bit b. Thus r(b, h) is the transmission range at hop h of bit b.

First note that the average number of hops,

h̄ =
1

B

B
∑

b=1

Hb, (4.4)

and the average transmission range for the scheme is

r̄ =
1

∑B
b=1 Hb

B
∑

b=1

Hb
∑

h=1

r(b, h). (4.5)

Recall that the distance between the source and destination of S-D pair i, 1 ≤ i ≤ n, is

di. Since each bit belonging to S-D pair i has to travel at least distance di, it follows that

λT

n
∑

i=1

di ≤
B
∑

b=1

Hb
∑

h=1

r(b, h). (4.6)

Starting from (4.4), we obtain the following.

h̄ =
1

λnT

B
∑

b=1

Hb

=
1

λnT
∑n

i=1 di

1

n

n
∑

i=1

di

B
∑

b=1

Hb
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(a)

≥ 1

n

n
∑

i=1

di

∑B
b=1 Hb

∑B
b=1

∑Hb

h=1 r(b, h)

(b)
=

L̄

r̄
,

where inequality (a) is due to (4.6) and (b) is by the definitions of r̄ and L̄.

(b) The proof of this part of the lemma is essentially the same as that of Theorem 2.3

in Chapter 2 which uses the Protocol model and follows from the equivalence between the

Physical model and the Protocol model as shown in [23].

Let the position of node i be denoted by Xi and let |Xi − Xj | denote the distance

between nodes i and j. Then as shown in the proof of Theorem 2.1 of [23], the Physical

model implies that if node i is transmitting to node j, and k is any other simultaneously

transmitting node then

|Xk − Xj | ≥ (1 + ∆)|Xi − Xj |,

where ∆ =
(

βPmin

Pmax

)
1
2δ − 1.

As a result of this equivalence with the Protocol model, as shown in [23], in every

time-slot t
∑

(b,h)∈Γt

r(b, h)2 ≤ c3A(n),

where Γt is the set of (b, h) pairs such that hop h of bit b occurs in time-slot t and c3

is a constant that depends only on W . This is based on the idea that each transmission

consumes an area proportional to the square of the range of transmission and the total area

is A(n). Summing over all T time-slots, we obtain

B
∑

b=1

Hb
∑

h=1

r(b, h)2 ≤ c3A(n)T. (4.7)

By convexity,

r̄2 ≤ 1
∑B

b=1 Hb

B
∑

b=1

Hb
∑

h=1

r(b, h)2.

Combining the above two equations and rearranging, we obtain

B
∑

b=1

Hb ≤
c3A(n)T

r̄2
. (4.8)
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Substituting from (4.5) into (4.6) and using (4.8), we obtain

λT

n
∑

i=1

di ≤
c3A(n)T

r̄2
r̄.

This can be rewritten as

λn

(

1

n

n
∑

i=1

di

)

≤ c3A(n)

r̄
.

Now using part (a) of the lemma, we obtain

λnL̄ ≤ c3A(n)h̄

L̄
,

which proves part (b) of the lemma.

(c) Consider hop h of bit b and let P (b, h) be the power used for this transmission.

Suppose this transmission occurs in time-slot t. Then as per the Protocol model

P (b, h)r(b, h)−2δ

N +
∑

(i,j)∈Γt
P (i, j)r(i, j)−2δ

≥ β.

Thus by ignoring the interference, we obtain

P (b, h) ≥ βNr(b, h)2δ .

Therefore the average transmission energy-per-bit over time T ,

ĒT =
1

B

B
∑

b=1

Hb
∑

h=1

P (b, h)

≥
∑B

b=1 Hb

B

1
∑B

b=1 Hb

B
∑

b=1

Hb
∑

h=1

P (b, h)

(a)

≥ h̄βr̄2δ

(b)

≥ βL̄2δ h̄1−2δ, (4.9)

where inequality (a) is due to convexity and inequality (b) is due to part (a) of the lemma.

As per our energy model, each hop consumes a constant amount of energy, c0 and hence
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the average circuit energy, ĒC = c0h̄. As a result, the average energy-per-bit

Ē = ĒT + ĒC ≥ βL̄2δ h̄1−2δ + c0h̄,

which proves part (c) of the lemma.

We would like to note that (4.9) in the proof of part (c) of the above lemma is a

natural extension of the minimum transmission energy-per-bit for an AWGN channel to

the case of a network with multiple hops. For the AWGN channel with noise power N , the

rate when using power P to communicate over a distance r is 1
2 log

(

1 + Pr−2δ/N
)

, which

implies that the minimum transmission energy-per-bit is Nr2δ/2. In our case, if we ignore

the interference due to other simultaneous transmissions, the minimum energy-per-bit for

a single transmission over distance r would be βNr2δ/W , which is the same as that for

the AWGN channel except for the constant β/W . Thus the above lemma lower bounds

the minimum energy-per-bit in the case of a network by taking into account multiple hops

and ignoring the effect of interference due to other simultaneous transmissions. Ignoring

interference does not hurt in determining the correct scaling, as long as it does not dominate

the noise N and this is what our trade-off scheme does.

Using the above lemma, we prove the converse to Theorem 4.2 for the cases of the T-D-E

and D-T-E trade-offs. This converse establishes that no scheme can provide a better T-D-E

or D-T-E scaling trade-off than that provided by our trade-off scheme.

Theorem 4.3. In a random network with area A(n), if a communication scheme has has

throughput, T (n), delay, D(n) and energy-per-bit, E(n) then

D(n) = Ω (nT (n)) and

and if the scheme has D(n) = Θ(nT (n)) then

E(n) = Ω
(

D(n) + A(n)δD(n)1−2δ
)

.

Proof. From part (b) of Lemma 4.1, we have

λ ≤ c3A(n)h̄

nL̄2
. (4.10)
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Combining this with the obvious fact that λ ≤ W , we obtain

λn ≤ min

{

c3A(n)h̄

L̄2
, nW

}

. (4.11)

Now we can use the same steps as in the proof of Theorem 2.3 following (2.10) to

conclude that D(n) ≥ E[h̄] = H(n). Thus we have shown that for any scheme,

D(n) = Ω(H(n)) = Ω(nT (n)). (4.12)

This establishes the desired relationship between throughput and delay. Next we deal

with energy-per-bit. Taking expectation on both sides of part (c) of Lemma 4.1, we obtain

E(n) = E
[

Ē
]

≥ βE
[

L̄2δh̄1−2δ
]

+ c0E
[

h̄
]

= E
[

L̄2δh̄1−2δ
]

+ c0H(n). (4.13)

Now L̄ = Θ
(

√

A(n)
)

whp and moreover the rate of convergence in the law of large

numbers is exponential in n. Let A be the event that L̄ = Θ
(

√

A(n)
)

then

E[h̄1−2δ ] = E[h̄1−2δ |A]P (A) + E[[h̄1−2δ |Ac](1 − P (A)). (4.14)

Now h̄1−2δ is a polynomial in n and since 1−P (A) decays exponentially fast to 0, it follows

that

E
[

h̄1−2δ
]

= E
[

h̄1−2δ |A
]

P (A)(1 − o(1)).

Using the above, we obtain

E
[

L̄2δh̄1−2δ
]

≥ E
[

L̄2δh̄1−2δ|A
]

P (A)

≥ c4A(n)δE
[

h̄1−2δ |A
]

P (A)

= c4A(n)δE
[

h̄1−2δ
]

(1 − o(1))

(a)

≥ c4A(n)δE
[

h̄
]1−2δ

(1 − o(1))

= c4A(n)δH(n)1−2δ(1 − o(1)),

where inequality (a) is due to Jensen’s inequality.
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Using the above equation, (4.13) can be rewritten as

E(n) = Ω
(

A(n)δH(n)1−2δ + H(n)
)

.

Now assume that the optimal trade-off between throughput and delay is achieved by a

scheme, i.e., D(n) = Θ(nT (n)). Then it follows from (4.12) that D(n) = Θ(H(n)). As a

result, we have

E(n) = Ω
(

A(n)δD(n)1−2δ + D(n)
)

.

The above converse shows that the trade-off obtained by Scheme Π in Section 4.3 is

optimal in terms of scaling and this establishes the optimal T-D-E and D-T-E trade-offs for

the random network. This also proves part (i) of Theorem 4.1. Converses for the remaining

two parts can be proved similarly. The additional variable B(n) arises in Theorem 4.1

because, to ensure connectivity in the network, the number of hops must be O
(

√

n/ log n
)

.

4.5 Discussion

Using a random network model to study large, ad hoc wireless networks, previous work

established the optimal throughput-delay trade-off. The optimal number of hops to min-

imize energy consumption for a given placement of nodes has been studied in a separate

body of work. In this chapter, we used a random network model to unify these results

by establishing the optimal trade-offs between throughput, delay and energy-per-bit. In so

doing, we also determined the amount of hopping needed to operate at an optimal point

of the trade-off between these performance metrics. We also showed that at any optimal

trade-off point, delay scales as the number of hops and the amount of hopping determines

the trade-off point at which the network operates depending on the node density. This is a

consequence of the interference-limited nature of communication, due to which the amount

of hopping determines the optimal power to use for transmissions.

Maximum hopping is required for the highest throughput but results in the worst delay.

Whether it is energy efficient or not depends on the network node density. Hopping is

expensive in terms of energy in a constant area network with node density n and the mini-

mum energy-per-bit is obtained using Θ(1) hops. On the other hand, in a constant density

network, hopping is necessary for energy efficiency. But even with maximum hopping that

provides the highest energy efficiency, the energy-per-bit increases as the network grows in

size.
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Our results suggest some general guidelines for building ad hoc wireless networks.

1. In high density networks consisting of low data-rate nodes, where the main concerns

are energy and delay, our results suggest the use of minimal hopping. This also saves

the energy and delay overheads of implementing complex multi-hopping protocols.

2. In high density networks consisting of high data-rate nodes with limited energy, max-

imum hopping is needed to accommodate the high throughput requirement. As our

results show, this requires the nodes to operate at far from minimum energy con-

sumption in addition to the overhead of high protocol complexity. In this case it may

be necessary to have an infrastructure of relay nodes with unconstrained access to

energy.

3. In applications where the network extends over a large geographical area, in spite of

maximal hopping being optimal, energy efficiency can be low. Again this problem can

be mitigated by adding wired or wireless infrastructure.

4. We showed that a cellular, TDM network architecture with equal node transmission

powers determined by the cell size achieves the optimal scaling. Such an architecture

is attractive due to its simplicity.

In Scheme Π presented in Section 4.3, the size of packets scaled down with n. This fluid

model was used to avoid the problem of scheduling packets in the network. However, it is

easy to see that by using the scheduling scheme in Chapter 3, the same trade-off can also

be achieved using packets of constant size. Hence the results in this chapter also hold with

packets of constant size.



Chapter 5

Throughput-Delay Trade-off in

Mobile Networks

Grossglauser and Tse [21] introduced a mobile random network model and showed that

constant throughput scaling can be achieved if the nodes move independently with an

ergodic and uniform stationary distribution. The corresponding delay was not quantified,

however, it was expected to be high, since mobility was utilized to communicate packets.

In this chapter, we begin by showing that the corresponding delay is of order n log n. This

sets the stage for studying the throughput-delay trade-off, which provides some key insights

into the role of mobility in wireless networks.

5.1 Model and main results

Definition 12 (Mobile random network model). The random network consists of n

nodes distributed uniformly at random in a unit torus. The nodes are split into n/2 distinct

source-destination (S-D) pairs at random. Time is slotted for packetized transmission. For

simplicity, we assume that the time-slots are of unit length. In a static network nodes do not

move. In the case of a mobile network, the mobility model, which we denote as the random

walk (RW) model, is as follows. The unit torus is divided into n square cells of area 1/n

each, resulting in a two-dimensional
√

n × √
n discrete torus. The initial position of each

node is equally likely to be any of the n possible cells independent of others. Each node

independently performs a simple random walk on the two-dimensional
√

n × √
n discrete

torus. By a simple random walk, we mean the following: let a node be in cell (i, j) ∈
{0, . . . ,√n− 1}2 at time t, then, at time t + 1 the node is equally likely to be in any of the

53
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four adjacent cells {(i − 1, j), (i + 1, j), (i, j − 1), (i, j + 1)}, where addition and subtraction

are modulo
√

n.

Note that, implicitly this models a situation where each node moves 1/
√

n distance in

unit time, that is, velocity scales as 1/
√

n. Further, note that in the random walk model,

nodes move independently according to a uniform stationary and ergodic distribution as in

previous work [21]. The additional assumption of the random walk model is not required

for throughput results and is used only in the analysis of delay.

At this point, we would like to argue that the random walk model is a good model for

capturing real motion in the physical world due to its Markovian nature, so that the present

position determines the distribution of the future position. It is sufficiently simple and well

studied by probabilists, so as to allow analysis of complicated quantities such as queuing

delay, which depends heavily on the motion model.

The definitions of throughput, delay, and the trade-off between them is as in Chapter 2.

Further, we use the fluid model, that is, the packets are allowed to be arbitrarily small.

The main results of this chapter are as follows.

Mobile network at T(n) = Θ(1):

In [21], a two-hop scheme that achieves constant throughput scaling in mobile wireless

networks was presented. It was expected that the delay would be high since mobility was

utilized to communicate packets. Delay scaling, however, was not quantified. In Chapter 5,

we introduce Scheme 2, which is essentially the same as the two-hop scheme in [21]. We show

that this scheme achieves constant throughput scaling for the mobile network and determine

its associated constant. Using results and methods from random walks and queuing theory,

we determine the exact order of delay for the random walk model of node mobility.

Theorem 5.1. Scheme 2 for the mobile random network has throughput T (n) = Θ(1) and

its delay scales as

D(n) = Θ (n log n) .

Point R in Figure 5.1 corresponds to the throughput-delay scaling provided by Scheme

2. Packet size remains constant in Scheme 2 and hence it does not require a fluid model.

Note that any trade-off that can be achieved using constant-size packets can obviously be

achieved using the fluid model since the constraint of requiring packets to have a constant

size is removed.
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Figure 5.1: Throughput-delay trade-off for the mobile random network. Again, the scales
of the axes are in terms of the orders in n.

Trade-off in the mobile random network:

In Chapter 5 we introduce Schemes 3(a) and 3(b) that achieve the optimal throughput-delay

trade-off in mobile networks. To provide lower delay, Scheme 3(a) does not use mobility to

relay packets. In fact, mobility makes this scheme significantly more complex than Scheme

1, even though the throughput-delay trade-off achieved is the same for both schemes. This is

because packets need to chase the nodes to achieve low delay. However, mobility is essential

for higher throughput and this is harnessed by Scheme 3(b) at the cost of higher delay. The

throughput-delay results for mobile networks are as follows.

Theorem 5.2. The optimal throughput-delay trade-off for the mobile random network is

as follows.

(a) For the range of T (n) = O
(

1/
√

n log n
)

, similar to the case of static network,

T (n) = Θ

(

D(n)

n

)

.

(b) For T (n) = ω
(

1/
√

n log n
)

and T (n) = O(1/ log n) the optimal throughput-delay
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trade-off is characterized as,

T (n) = Θ

(

1
√

n a(n) log n

)

and

D(n) = Θ

(

n log

(

1

a(n)

))

,

where a(n) is a parameter such that a(n) = Ω(log n/n) and a(n) ≤ 1.

Segment PQ in Figure 5.1 corresponds to Theorem 5.2(a) and segment Q1R corresponds

to Theorem 5.2(b). Note that the effect of mobility is to significantly increase the range of

achievable throughput albeit at the expense of a very large delay.

Independently and around the same time, it has been shown in [33], using a Brownian

motion model for node mobility, that any throughput higher than Θ(1/
√

n) comes at the

expense of a very high delay. The same conclusion follows from the optimal throughput-

delay trade-off for mobile networks obtained using the random walk mobility model in this

chapter.

The results for mobile networks provide several insights into the role of mobility in

wireless networks.

• For throughput of O
(

1/
√

n log n
)

, the trade-off in mobile networks is identical to that

in static networks. This suggests that, although mobility can enhance the throughput

of wireless networks, it does not alter the trade-off between throughput and delay for

the range of throughputs achievable in static wireless networks. Further, the scheme

achieving the above trade-off does not use the mobility of the nodes to communicate

packets. This suggests that for low delay applications, mobility is in fact a hindrance

and makes communication schemes significantly more complex.

• As soon as mobility is used to boost the throughput beyond Θ
(

1/
√

n log n
)

, the delay

jumps up to Θ(n log log n). Thereafter, even though the throughput increases to

Θ(1), the delay only increases to Θ(n log n). In this sense there is almost no trade-off

between throughput and delay for this range of high throughputs. This also means

that if mobility is used to boost the throughput even slightly beyond that in static

wireless networks then the delay shoots up to its highest value.

We would like to note that the trade-off with random walk mobility is dramatically

different from the one with the less realistic i.i.d. mobility [38]. With i.i.d. mobility the

optimal trade-off is given by D(n) = Θ(nT (n) for T (n) = O(1).
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5.2 Scheme with constant throughput scaling

In this section, we present a scheme (which is similar to the one in [21]) and show that it

achieves constant throughput and then analyze its delay in Subsection 5.2.2. The analysis

of delay for this scheme will also help in characterizing the throughput-delay trade-off in

mobile wireless networks in Section 5.3.

Scheme 2: T (n) = Θ(1) in mobile networks

1. Divide the unit torus into n square cells, each of area 1/n.

2. Each cell becomes active once in every 1+ c1 time-slots (Lemma 2.2 then ensures that

all transmissions are successful).

3. In an active cell, the transmission is always between two nodes within the same cell.

4. Each time-slot is divided into two sub-slots A and B. The following is done in each

active cell.

(a) In sub-slot A, if one or more source nodes are present and the cell contains two

or more nodes, pick one source node at random. With probability 0 < p1 < 1,

the randomly chosen node transmits its packet to another randomly chosen node

in the same cell, which acts as a relay. This node could also happen to be the

destination. And with probability 1 − p1 it does nothing.

(b) In sub-slot B, if the cell contains one or more destination nodes and two or more

nodes in all, pick one destination node at random. Another randomly chosen

node in the same cell acts as a relay and transmits to this destination a packet

that is destined for it if it has one. This node could also happen to be the source.

Otherwise nothing happens.

5.2.1 Achievability of constant throughput scaling

We now show that this scheme achieves a constant throughput scaling using a simpler proof

than the one in [21]. Our proof is based on showing that the total network throughput is

Θ(n). The symmetry of the scheme and the use of at most one relay ensure that this total

network throughput is equally divided among the n/2 S-D pairs resulting in T (n) = Θ(1).

Theorem 5.3. The throughput in a mobile random network using Scheme 2 is T (n) = Θ(1).
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Proof. Consider the transmission of packets from sources in sub-slot A over a period of T

time-slots. Due to division into sub-slots the packet size is W/2 bits. Let A(i, t) be the

number of packets transmitted from source i in time-slot t and let A(t) =
∑n/2

i=1 A(i, t) be

the total number of packets transmitted in time-slot t. The number of bits transmitted by

source i in time-slot t is just WA(i, t)/2.

Next we determine E[A(t)]. Let C(t) be the number of cells which contain at least one

of the n/2 source nodes and two or more nodes in all. Then from the description of Scheme

2 it follows that E[A(t)] = p1E[C(t)]/(1 + c1). Now let Ii be the indicator for the event

that cell i contains at least one source node and two or more nodes in all. Let E1 be the

event that cell i contains exactly one source node and E2 be the event that cell i contains

two or more source nodes. Similarly let F1 be the event that cell i contains one or more

destination nodes. Also let

pk =

(

n/2

k

)(

1

n

)k (

1 − 1

n

)n/2−k

→e−1/2

2kk!
.

That is, pk is equal to the probability that k nodes are in cell i. Then for 1 ≤ i ≤ n,

E[Ii] = P ((E1 ∩ F1) ∪ E2)

= P (E1)P (F1) + P (E2)

= p1(1 − p0) + (1 − p0 − p1)

→ 1

2
e−1/2

(

1 − e−1/2
)

+ 1 − e−1/2 − 1

2
e−1/2

= c3 > 0, (5.1)

as n → ∞. Therefore,

E[A(t)] =
p1

1 + c1
E[C(t)]

=
p1

1 + c1
E

[

n
∑

i=1

Ii

]

=
np1

1 + c1
E[I1]

→ c4n, (5.2)

where c4 = c3p1/(1 + c1) > 0.

Now the mobile random network is an irreducible finite-state Markov chain and A(t) is

a bounded non-negative function of the state of this Markov chain at time t. Therefore by
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the ergodicity of such a Markov chain,

lim
T→∞

1

t

T
∑

t=1

A(t) = E[A(t)] → c4n.

Thus the total rate at which packets are transmitted from sources is Θ(n). From the

symmetry of the nodes and the randomness of the scheme it follows that each of the n/2

sources transmits at rate of Θ(1). These packets either reach the destination or are queued

at the relay nodes, in which case they are transmitted to their final destinations in some of

the B sub-slots. By choosing 0 < p1 < 1 in Scheme 2, we have ensured that the arrival rate

to each queue is less than the rate at which the queue can be serviced. This ensures the

stability of the queues as a result of which the throughput per S-D pair is just the rate at

which each source transmits data. And we have shown that this is Θ(1) thus proving that

Scheme 2 yields T (n) = Θ(1).

The above proof also shows that the constant throughput per S-D pair that can be

achieved is close to c4W/2 bits per second for large enough n. Now c3 = 0.2095 and

reasonably small values of ∆ result in 1+ c1 = 16, which results in c4 = 0.13p1. Thus under

Scheme 2, for large enough n, the throughput between each source-destination pair is about

0.65% of the maximum possible value of W bits per second.

5.2.2 Analysis of delay

The nodes perform independent random walks. Hence only Θ(1/n) of the packets belonging

to any S-D pair reach their destination in a single hop (which happens when both S and

D are in the same cell in sub-slot A). Thus, most of the packets reach their destination via

a relay node, where the delay has two components: (i) hop-delay, which is constant and

independent of n, and (ii) mobile-delay, which is the time a packet spends at the relay while

it is moving until it is delivered to its destination. Next, we analyze the mobile-delay.

Relay-queue: From the description of Scheme 2, for each S-D pair, each of the remaining

n − 2 nodes acts as a relay. Each node maintains a separate queue for each of the S-D

pairs as illustrated in Figure 5.2. Thus the mobile-delay is the expected delay at such a

relay-queue. By symmetry, all such queues at all relay nodes are identical. Consider one

such relay-queue, i.e., fix an S-D pair and a relay node R. To compute the expected delay of

this relay-queue, we need to study the characteristics of its arrival and departure processes.

A packet arrives at the relay-queue when (i) R is in the same cell as S, (ii) the cell

becomes active, (iii) S and R are chosen as a transmit-receive pair, and (iv) S transmits
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Figure 5.2: For any S-D pair, the remaining n−2 nodes act as relays. Each node maintains
a separate queue for each of the n − 2 S-D pairs.

a packet (which happens with probability p1). Similarly, a departure can occur from the

queue when (i) R is in the same active cell as D, (ii) the cell becomes active, and (iii) R

and D are chosen as a transmit-receive pair. Such a time-slot is called a potential departure

instant and the sequence of inter-potential-departure times is called the potential-departure

process. A packet actually departs, only if, in addition to the above, R also has a packet

for D, i.e., the relay-queue is not empty. In the analysis below, we ignore the effect of the

the cell becoming active once in 1 + c1 time-slots since the actual delay is 1 + c1 times the

delay computed in this manner by ignoring it.

We say that two nodes meet if they are in the same cell. The joint position of two nodes

due to independent random walks can also be viewed as a difference random walk relative to

the position of one node. Then the inter-meeting times are just the inter-visit times of state

(0, 0) for the difference random walk on a
√

n×√
n discrete torus. Hence the inter-meeting

times of nodes S and R, τ0, τ1, . . ., form an i.i.d. sequence. Let τ be a random variable with

their common distribution. The moments of τ that will be required later are given in the

following lemma, which is proved in Subsection 5.4.

Lemma 5.1. The first and second moments of τ are given by

E[τ ] = n, E[τ 2] = Θ(n2 log n).

In what follows, we obtain upper and lower bounds of the same order on the delay of

the relay-queue, thus pinning down the exact order of delay scaling. To obtain an upper
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bound, we progressively define queues that are simpler to analyze. We first upper bound

the delay of the relay-queue by that of another queue, Q1, which has i.i.d. inter-arrival

times. The delay of Q1 is then upper bounded by that of Q2, which, in addition, has i.i.d.

inter-potential-departure times. The delay of Q2 is then upper bounded by the sum of

delays through two queues, Q3 and Q4, in tandem. Queue, Q3, is a GI/GI/1 queue, so

that Kingman’s upper bound can be used. Queue, Q4, is not a GI/GI/1 queue, but we

are still able to bound the delay using the moments of the inter-arrival and inter-potential-

departure times. For both these queues, the required moments can be expressed in terms

of the moments of the inter-meeting time of two nodes, which we obtain using random walk

analysis. We now proceed to the details.

Upper bound: As mentioned above, the inter-meeting times of nodes S and R form an

i.i.d. sequence. The inter-arrival times, however, are not independent because an arrival

occurs with probability p1 only if S and R are chosen as a transmit-receive pair. The

probability that S and R are chosen as a transmit-receive pair depends on the number of

other nodes in the same cell. If S and R are not chosen, in spite of being in the same

cell, the likelihood of there being many more nodes in the same cell increases. Due to the

random walk model of the node mobility, if there is a crowding of nodes in some part of

the network, it remains crowded for some time in the future. Hence due to the Markovian

nature of node mobility, inter-arrival times in the relay-queue are not independent.

Consider a queue, Q1, in which there is an arrival with probability p1 whenever S and

R meet, irrespective of whether S and R are chosen as a transmit-receive pair. The inter-

arrival times of this queue are then stochastically dominated by the inter-arrival times of

the relay-queue. Let the potential-departure process of Q1 be the same as that of the relay-

queue. Then the delay of Q1 provides an upper bound on the delay of the relay queue. It

is easy to see that the sequence of inter-arrival times of Q1 is i.i.d. and that the common

distribution is that of the sum of G independent copies of τ , where G ∼ Geom(p1). Recall

that τ is the inter-meeting time of S and R.

Let the potential-departure process of the relay-queue (and also Q1) be denoted by {Si}.
Next we will study this process in order to replace it with another coupled process with less

frequent potential departures. Recall that the potential departure time-slots are the ones

in which a packet can be emptied from the queue if the queue is not empty. These are the

times when R and D are in the same cell and are chosen as a transmit-receive pair. Let

α0, α1, . . . be the time-slots in which R and D are in the same cell and let Ei, i = 0, 1, . . .,

be the indicator of the event that αi is also a potential service instant. That is, Ei is an

indicator for the event that R and D are chosen as a transmit-receive pair at time αi.
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Let αi denote {α0, . . . , αi} and Ei denote {E0, . . . , Ei}. Then P (Ei = 1|αi, Ei−1), i =

0, 1, . . . is the probability that Ei = 1 given α0, . . . , αi and E0, . . . , Ei−1. This is the prob-

ability that R and D are chosen as a transmit-receive pair given that they are in the same

cell in time-slot αi and given the entire past consisting of α0, . . . , αi and E0, . . . , Ei−1. From

the description of Scheme 2 it is clear that the probability of the event {Ei = 1} depends

on the number of other nodes in the cell containing R and D. This, in turn, depends on the

entire past of the processes {Ei} and {αi} due to the Markovian nature of node mobility.

Thus the potential-departure process is generated by the processes {αi} and {Ei}. This

is because time-slot αi, when R and D are in the same cell for the ith time, is chosen as a

potential departure instant with probability P (Ei = 1|αi, Ei−1).

Due to the dependence on the past of {Ei}, the inter-potential-departure times are also

dependent. We will next show that this dependence is not too much, in the sense that

irrespective of the past, the probability of the event {Ei = 1} is greater than a positive

constant that does not depend on n. The following lemma is proved in Subsection5.4.

Lemma 5.2. There exists a constant, c6, (independent of n) such that for all large enough

n,

P
(

Ei = 1|αi, Ei−1
)

≥ c6 > 0.

Now let Q2 be a queue such that each time-slot in which R and D meet is chosen to be

a potential departure instant with probability c6. Then by Lemma 5.2, the inter-potential-

departure times for this queue would be stochastically dominated by those for Q1. If Q2

has the same arrival process as Q1 then the delay of Q2 is an upper bound on that of Q1.

As before, the sequence of inter-potential-departure times of Q2 is i.i.d. and the common

distribution is that of the sum of G independent copies of τ , where G ∼ Geom(c6). As a

result, we have upper bounded the delay of the relay-queue by the delay of Q2, which has

i.i.d. inter-arrival times and i.i.d. inter-potential-departure times. To obtain an upper

bound on the delay, we only use the first two moments of the inter-arrival time and the

inter-potential-departure time. Since both of these are sums of a Geometric number of

independent inter-meeting times, it is easy to check that their moments are of the same

order as that of the inter-meeting time. As a result, the constants p1 and c6 do not affect

the delay scaling. Further, Q2 is stable as long as the arrival rate is less than the service

rate, i.e., p1 < c6. Since we are interested in determining the delay scaling, for simplicity,

we assume that in Q2, an arrival occurs whenever S and R meet with probability 0.5 and a

potential departure occurs whenever R and D meet.
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Now we bound the delay of Q2 by the sum of the delays through two queues, Q3 and

Q4, in tandem. Both Q3 and Q4 will be shown to have delay of O(n log n), which implies

that the delay of Q2 is O(n log n). Queues Q3 and Q4 are constructed as follows. The

arrival process of Q3 is the same as that of Q2. The potential-departure process of Q3 is an

i.i.d. Bernoulli process with parameter 2/3n (or potential departure rate 2
3n). An arrival

occurs at Q4 whenever there is a potential-departure at Q3. If Q3 is non-empty, then the

arrival to Q4 is the head-of-line packet transferred from Q3 to Q4 or else a dummy packet

is fed to Q4. Thus the arrival process at Q4 is the same as the potential-service process

at Q3. By construction, the delay of a packet through this tandem of queues, Q3 and Q4,

upper bounds the delay experienced by a packet through Q2. Now from Lemmas 5.3 and

5.4 stated below and proved in Subsection 5.4, both Q3 and Q4 have an expected delay of

O(n log n).

Lemma 5.3. The expected delay of a packet through Q3 is O(n log n).

Lemma 5.4. The expected delay of a packet through Q4 is O(n log n).

Hence the expected delay of the packets of each S-D pair relayed through each relay R

is O(n log n). The delay of a scheme is the expectation of the packet delay averaged over

all S-D pairs and all relay nodes. Hence it follows that the delay of Scheme 2 is O(n log n).

Lower bound: We now establish a lower bound on the delay of Scheme 2. Consider a

packet arrival at the relay node when it is in cell (i, j). Let the destination be in cell

(k, l), which is equally likely to be any one of the n cells since the destination performs an

independent random walk. Using the difference random walk, the delay is at least equal to

the time required for the random walk to reach state (k, l) starting from state (i, j). Hence

the expected value of the delay can be lower bounded as

E[D] ≥
√

n−1
∑

i,j=0

√
n−1
∑

k,l=0

π(i, j)π(k, l)E(i,j)T(k,l)

= Θ(n log n), (5.3)

where (5.3) is from p. 11 in Chapter 5 of [1].

Combining this lower bound with the earlier upper bound leads to the following theorem.

Theorem 5.4. The delay of Scheme 2 is

D(n) = Θ (n log n) .
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5.3 Throughput-delay trade-off in mobile networks

In this section we establish the optimal throughput-delay trade-off for mobile random net-

works under the random walk (RW) model for node mobility. To achieve this trade-off, we

introduce Scheme 3. The scheme is divided into two parts based on the range of through-

put handled by it. Scheme 3(a) is for T (n) = O(1/
√

n log n), while Scheme 3(b) is for

T (n) = ω(1/
√

n log n). These ranges are dealt with separately since the schemes achieving

the optimal trade-off in these ranges are fundamentally different. In the low throughput

range, the optimal scheme cannot use the mobility of nodes to communicate packets. In fact,

Scheme 3(a) is significantly more complex than Scheme 1. Even though it provides the same

trade-off, it needs to overcome difficulties created by node mobility. On the other hand,

in the high throughput range, it is essential to use the mobility of nodes to communicate

packets.

Both these schemes divide the network into square cells of area a(n), which is a parameter

that determines the point of trade-off. We would like to note that these cells are a part

of the scheme and are unrelated to the n cells used in the definition of the random walk

mobility model.

5.3.1 Trade-off for low throughput

Scheme 3(a) described below requires the packet size to scale down as Θ
(

1/
(

n
√

a(n)
))

,

and similar to Scheme 1, it is a cellular TDM scheme. Due to the mobility of the nodes,

the packets need to chase their destination nodes, which makes the scheme and its analysis

significantly more complex. For the sake of our proof technique, the scheme drops a packet

that is unsuccessful in chasing down its destination for long. A more precise description of

the scheme follows.

Scheme 3(a): Mobile networks at low throughput

1. Divide the unit torus into square cells, each of area a(n) (see Figure 2.2).

2. A cellular TDMA transmission scheme is used, in which, each cell becomes active at

regularly scheduled cell time-slots (see Figure 2.3). From Lemma 2.2, each cell gets a

chance to be active once every 1 + c1 cell time-slots.

3. A packet is sent from its source S to its destination D by chasing the destination for

at most k(n) = Θ(log log n) stages as follows:
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(a) Consider a packet that is generated at S, when S is in cell C 0. Let D be in cell

C1 at that time.

(b) Set k = 1.

(c) In stage k, the packet is sent from cell Ck−1 to cell Ck via hops along adjacent

cells on the line joining centers of cells Ck−1 and Ck.

(d) When the packet reaches cell Ck, assume that the destination D is in the cell

Ck+1. If Ck+1 = Ck then the packet is delivered to D. Otherwise, set k = k + 1.

(e) If k < k(n), repeat (c)-(d), else drop the packet.

4. In every active time-slot of a cell, each of the source nodes residing in the cell at that

time generates a new packet for its respective destination. These new packets are

transmitted in the same time-slot.

5. Packet size scales as Θ
(

1/
(

n
√

a(n)
))

and hence in an active time-slot a cell can

transmit Θ
(

n
√

a(n)
)

packets. If at any time instant a cell has more packets than it

can transmit then the excess packets are dropped.

6. Packets transmitted to a cell not containing any node are dropped.

In the above scheme packets are dropped if one of the following three scenarios occurs.

(i) Empty cells: Due to mobility of nodes, it is possible that a cell may be empty in some

time-slot. In part b) of step 3) above, a packet may be lost if it is transmitted to any

empty cell.

(ii) Overloading of cells: In the case of Scheme 1 we could provide a guarantee whp on

the maximum number of S-D lines passing through each cell. In this case, due to

mobility, the number of S-D lines passing through a cell may exceed its capacity of

Θ
(

n
√

a(n)
)

packets. If this occurs, the excess packets are dropped as mentioned in

step 5) above.

(iii) Unsuccessful chasing: A packet that does not reach its destination after k(n) stages

of chasing is also dropped.

The following theorem shows that the fraction of packets dropped is negligible, i.e., goes

to 0 as n → ∞. We assume that error correction is employed to combat this packet loss,

however this requires only a constant fraction of the total throughput and hence does not

affect the throughput scaling. Thus, in spite of node mobility, Scheme 3(a) achieves the

same throughput-delay trade-off as Scheme 1 for static networks.
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Figure 5.3: In scheme 3(a), the unit torus is divided into square cells of area a(n). In stage
1 of chasing, a packet starts from cell C0 containing its source, and moves by hops along
adjacent cells towards cell C1 which contains its destination node at that time. By the time
it reaches cell C1, its destination has moved to cell C2. So in stage 2 of chasing, the packet
hops from cell C2 to cell C3. And this continues for at most k(n) stages or until the packet
reaches the cell containing its destination.
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Theorem 5.5. Scheme 3(a) achieves the throughput-delay trade-off given by:

T (n) = Θ

(

D(n)

n

)

, for T (n) = O

(

1√
n log n

)

.

We first analyze the throughput of Scheme 3(a). The delay of a packet, as per the

description of the scheme, is (1 + c1) times the number of hops taken by a packet. In the

process of determining the throughput, we shall determine the average number of hops per

packet during the k(n) stages. This will allow us to determine the average packet delay.

As explained in the description of Scheme 3(a) above, each source generates a packet of

size Θ
(

1/
(

n
√

a(n)
))

each time the cell it belongs to become active. Each cell becomes

active once every 1 + c1 time-slots, according to Lemma 2.2. Hence, independent random

walk of nodes under the RW model implies that each node is in an active cell for a constant

fraction 1/(1+ c1) of the time w.p. 1 due to ergodicity. That is, each source node generates

traffic at rate Θ
(

1/
(

n
√

a(n)
))

under Scheme 3(a). Thus, to show that each S-D pair

achieves throughput Θ
(

1/
(

n
√

a(n)
))

, it is sufficient to show that the fraction of the

packets dropped under Scheme 3(a) goes to 0 as n → ∞.

To show that the fraction of dropped packets goes to 0 as n → ∞, we need to bound

the total traffic generated by all k(n) stages. The total traffic due to all k(n) stages is the

number of packets that a cell is required to transmit in a time-slot. We analyze this in the

following three lemmas by utilizing arguments similar to that in the proof of Lemma 2.3.

See Subsection 5.4 for proofs of Lemmas 5.5 and 5.6. For simplicity of analysis, we assume

that each cell becomes active every time-slot instead of 1+c1 time-slots. This simplification

does not change the results in the order notation.

Lemma 5.5. The number of packets of stage 1 passing through each cell in a time-slot is

O
(

n
√

a(n)
)

with probability at least 1 − 1/n3.

Lemma 5.6. For k ≥ 2, the number of packets of stage k passing through each cell in a

time-slot is O

(

(

n2

m

)2−k
)

with probability at least 1 − 1/n3.

Lemma 5.7. The number of packets passing through each cell in a time-slot is O
(

n
√

a(n)
)

with probability at least 1 − 1/n2.9.

Proof. There are k(n) = O(log log n) stages. Using the union bound over k(n) stages and

the bounds given by Lemma 5.5 and Lemma 5.6, we can show that the total number of
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packets (due to all k(n) stages), P (n), passing through each cell is

P (n) = O(n
√

a(n)) +

k(n)
∑

k=2

O

(

(

n2

m

)2−k)

, (5.4)

with probability at least 1 − k(n)/n3 ≥ 1 − 1/n2.9.

Next, we evaluate the summation on the right hand side of (5.4). Consider the largest

index k such that
(

n2

m

)2−k+1

≥ 2

(

n2

m

)2−k

. (5.5)

This gives
(

n2

m

)2−k

≥ 2. (5.6)

That is,

k ≤ log log n2/m − log log 2

log 2
.

Note that the parameter k(n) in Scheme 3(a) is chosen to satisfy this condition. Moreover

for k < k(n), the ratio of consecutive terms,

(

n2

m

)2−k+1

(

n2

m

)2−k
=

(

n2

m

)2−k

≥ 2,

due to (5.6). As a consequence,

k(n)
∑

k=2

(

n2

m

)2−k

≤
k(n)
∑

k=2

(

n2

m

)2−2

2−k+2

=

√
n

m1/4

k(n)−2
∑

k=0

2−k

≤ 2
√

n

m1/4
. (5.7)

Replacing (5.7) in (5.4), we obtain that, for large enough n, with probability at least

1 − 1/n2.9,

P (n) = O(n
√

a(n)) + O

( √
n

m1/4

)

. (5.8)
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Now, a(n) = Ω(log n/n). Hence, n
√

a(n) = Ω
(√

n log n
)

. Since m = Ω(1), this will imply

that the right hand side of (5.8) is O(n
√

a(n)).

Remark: The packet size is of order Θ
(

1/
(

n
√

a(n)
))

and the associated constant in this

Θ notation is chosen such that the total data due to all the packets can be supported in

one time-slot.

Proof of Theorem 5.5: We show that the fraction of packets dropped due to (i) over-

loading of cells, (ii) unsuccessful chasing, and (iii) empty cells, goes to 0 as n → ∞. This

will immediately imply that the throughput of Scheme 3(a) is as claimed in Theorem 5.5.

Packets dropped due to overloading of cells: Since the number of hops in each stage

is O
(

1/
√

a(n)
)

and there are at most Θ(log log n) stages, the total number of packets in

the network is O
(

n log log n/
√

a(n)
)

. Thus the process describing the number of packets

in each of the 1/a(n) cells is a finite-state Markov chain that is induced by the underlying

Markov chain due to the random walk of nodes on the
√

n×√
n discrete torus as specified by

the RW model. This is aperiodic and hence an ergodic Markov chain. Hence by choosing

packets of size Θ
(

1/
(

n
√

a(n)
))

, the fraction of time when the the number of packets

through any cell exceeds its capacity is pn ≤ 1/n2.9. Now consider a long time duration

t in which nT (n)t bits corresponding to nt packets are sent from the sources to their

destinations. Of these, at most O
(

n log log npnt/
√

a(n)
)

is dropped due to overloading in

cells since the total number of packets in the network is O
(

n log log n/
√

a(n)
)

. Hence if

pn = o
(

log log n
√

a(n)
)

, the fraction of packets dropped approaches 0 as n → ∞, which is

indeed the case here.

Packets dropped due to unsuccessful chasing: We need to determine the fraction of

packets dropped due to the destination moving away from its initial position in the last

stage, i.e., stage k(n). Recall that the choice of k(n) is such that it is the largest index with

property (5.5). Hence
(

n2

m

)2−k(n)

≥ 2

(

n2

m

)2−k(n)−1

,

which in turn yields

m2−k(n) ≤ 4. (5.9)

Using (5.9) in (5.55), we obtain

lk(n) = O
(m

n

)

.

Now using the fact that m = O (n/ log n), it follows that lk(n) → 0 as n → ∞. On the other

hand, for our motion model where the nodes move according to a two-dimensional random
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walk on the
√

n×√
n discrete torus and cell size of Ω(log n/n), the average time taken by a

node to move out of a cell is Ω(log n). Hence the probability that a packet is dropped due

to unsuccessful chasing tends to 0 as n → ∞.

Packets dropped due to empty cells: Finally in any time-slot, the packets that need

to be relayed through cells that do not contain any nodes are lost. Now consider a fixed

time-slot. Each node is equally likely to be in any of the cells, thus by Lemma 2.1, the

probability that any cell is empty is ≤ 1/n2. Again, using ergodicity and the bound on the

number of packets transmitted per time-slot, which is O
(

n
√

a(n)
)

, the fraction of packets

dropped due to cells being empty goes to 0 as n → ∞.

Thus, the net fraction of packets dropped due to (i) overloading in cells, (ii) empty cells

and (iii) unsuccessful chasing goes to 0 as n → ∞. In other words, almost all the packets

that are generated in Scheme 3(a) reach their destination successfully. As noted before, the

number of packets generated by each source per unit time is Θ(1), and since each packet

is of size Θ
(

1/
(

n
√

a(n)
))

, the net throughput per S-D pair is Θ
(

1/
(

n
√

a(n)
))

. This

completes the proof of the achievability of throughput as claimed in Theorem 5.5.

Average Delay: Next we compute the average delay of packets. Under Scheme 3(a), the

average delay of a packet in stage k is lk as it makes lk hops on average in the kth stage.

Hence from (5.55), we obtain that the average delay, D(n), is

D(n) =

k(n)
∑

k=1

lk

≤ √
c5m +

k(n)
∑

k=2

c5m

n

(

n2

m

)2−k

. (5.10)

Using (5.7) in (5.10), for large enough n, we obtain

D(n) ≤ √
c5m +

2c5m
√

n

nm1/4

≤ c5

√
m + 2c5

√
m

√√
m

n
= O

(√
m
)

, (5.11)

where (5.11) holds because m = O(n/ log n) = o(n). Thus as claimed the average packet

delay D(n) = O (
√

m). This completes the proof of Theorem 5.5.
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5.3.2 Trade-off for high throughput

To obtain a throughput higher than Θ
(

1/
√

n log n
)

, we need to use mobility, and to keep

the delay as low as possible, we need to use multiple hops cleverly. This naturally leads to

a scheme that combines Scheme 3(a) (which provides low throughput with low delay) and

Scheme 2 (which provides high throughput with high delay). A first approach would be

to time-share between Scheme 3(a) and Scheme 2. It is easy to show that such a scheme

can achieve any throughput in the range from Θ
(

1/
√

n log n
)

to Θ(1), but the average

delay remains fixed at Θ(n log n). By using Scheme 3(b), which is a careful combination of

Scheme 2 and Scheme 3(a), the throughput-delay trade-off can be slightly improved. And

it turns out that the performance of Scheme 3(b) is optimal.

Scheme 3(b) uses the chasing technique of Scheme 3(a) by using hopping along adjacent

cells of size Θ(log n/n) as the underlying packet transport mechanism. However this chasing

is not done all the way from each source to its destination. Instead, the mobility of an

intermediate mobile relay node is employed as in Scheme 2 to increase the throughput. The

chasing technique of Scheme 3(a) is used only to send packets from a source to a mobile

relay node or from a mobile relay node to a destination when they are sufficiently close.

Nodes get sufficiently close to each other due to their mobility and the amount of closeness

is captured by the parameter b(n) of the scheme, which determines the trade-off point.

In the description of the scheme and the proof we refer to two ways of measuring distance

between two nodes.

1. The step-distance or distance in terms of steps between two nodes with positions

(i1, j1) and (i2, j2) on the
√

n × √
n discrete torus is |i2 − i1| + |j2 − j1|, where the

subtraction is modulo
√

n. Thus this distance is simply the Manhattan distance on

the underlying discrete torus.

2. The hop-distance or distance in terms of hops, which is the number of hops a packet

would take along adjacent cells of the straight line joining the nodes to reach from

one node to the other. The cells in this case are determined by the scheme and are

always of area of Ω(log n/n) in Scheme 3(b).

Scheme 3(b): Mobile networks at high throughput

1. Divide the unit torus into square cells each of area a(n) = Θ(log n/n) as in Figure 5.4.

The scheme uses a parameter b(n) that determines the point of trade-off. Let l(n) =

c6

√

nb(n) and c0(n) = c7

√

nb(n).
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2. A cellular TDMA transmission scheme is used, in which, each cell becomes active at

regularly scheduled cell time-slots. By Lemma 2.2, these active time-slots are at most

1 + c1 time-slots apart.

3. Each node in the network maintains a separate FIFO queue for each of the n/2 S-D

pairs in the network.

4. Each time-slot is divided into two equal subslots, A and B. The network operates in

two phases – SR (source to relay) phase in the A subslots and RD (relay to destination)

phase in the B subslots.

5. SR phase: (Source-to-Relay in the A subslots)

(a) For the SR phase, each source node maintains a counter and a state variable for

every other node. Let SSR
ij be the value of the state variable and CSR

ij be the value

of the counter at source node i for some mobile node j. The state variable SSR
ij

is binary valued and is used to determine whether node i should send packets to

node j or not. Each counter is initially at count 0 and is operated as follows:

i. If CSR
ij = 0 and the step-distance between nodes i and j is greater than l(n)

then set CSR
ij = −1.

ii. If CSR
ij = −1 and the step-distance between nodes i and j is no greater than

l(n) then set CSR
ij = c0(n) and with probability p0, 0 < p0 < 1 set SSR

ij = 1

otherwise reset to SSR
ij = 0.

iii. In each A subslot of the SR phase, the counter decrements by one until it

reaches 0.

(b) In the SR phase when a cell becomes active, every source node i in the cell sends

a packet intended for its destination to every other node j in the network for

which CSR
ij > 0 and SSR

ij = 1. These nodes act as relay nodes for this source

node. These packets reach these relay nodes using the transport mechanism of

Scheme 3(a) during the A subslots of the SR phase.

6. RD phase: (Relay-to-Destination in the B subslots)

(a) For the RD phase, each mobile node i maintains a counter for every destination

node j denoted by CRD
ij . They are initially set to 0 and operated in the same

way as the counters for the SR phase as follows:
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That is, each CRD
ij is set to 0,−1 or c0(n) based on the step-distance between

nodes i and j and the previous value of the counter. Each counter is initially at

count 0 and is operated as follows:

i. If CRD
ij = 0 and the step-distance between nodes i and j is greater than l(n),

set CRD
ij = −1.

ii. If CRD
ij = −1 and the step-distance between nodes i and j is no greater than

l(n), set CRD
ij = c0(n).

iii. In each B subslot of the SR phase, the counter decrements by one until it

reaches 0.

(b) In the RD phase when a cell becomes active, every node i in the cell sends a

packet to every other destination node j in the network, for which CRD
ij > 0, if

it has a packet intended for that destination node. That is, if the FIFO queue

corresponding to a destination is not empty, then a packet for that destination

is emptied out of the queue. These packets reach their respective destinations

using the transport mechanism of Scheme 3(a) during the B subslots constituting

the RD phase.

7. Packet size scales as Θ
(

1/
√

n3b(n)3 log n
)

and hence in an active time-slot, a cell

can transmit Θ
(

√

n3b(n)3 log n
)

packets. If in any time-slot, a cell has more packets

than it can transmit then the excess packets are dropped.

8. Packets transmitted to a cell not containing any node are dropped.

As shown in Figure 5.4, in Scheme 3(b), a source node S sends a packet intended for

its destination to a mobile relay node R, which is no farther than l(n) hops initially. It

continues to do so for c0(n) time slots during which it is improbable that S and R get

too far (i.e. farther than Θ(l(n)) step-distance) from each other due to the random walk

mobility model. These packets are sent using the chasing strategy of Scheme 3(a) by hops

along adjacent cells of size Θ(log n/n). This mobile relay R, in turn, sends the packet to

the destination D when R and D get sufficiently close. Sending with probability p0 < 1

ensures that arrival rate to each relay node is less than the service rate so that the queues

at the mobile relay nodes are stable.

Theorem 5.6. Scheme 3(b) provides the following throughput and delay.

(i)

T (n) = Θ

(

1
√

nb(n) log n

)

,
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Figure 5.4: Scheme 3(b) is a cellular TDM scheme like Scheme 3(a). All other mobile nodes
act as relays for each S-D pair as in Scheme 2. Sources send packets to relays and relays send
packets to destinations only when they are sufficiently close using the chasing technique of
Scheme 3(a).
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(ii)

D(n) = O

(

n log

(

1

b(n)

))

,

where the parameter satisfies b(n) = Ω(log n/n) and b(n) = O(1). That is, the achievable

throughput-delay trade-off for Scheme 3(b) is

T (n) = Θ

(

D(n)

n

)

.

We first analyze the throughput of this scheme and then its delay. The throughput

analysis requires extensions of the techniques used in the proof of Theorem 5.5.

Proof of Theorem 5.6(i): The throughput analysis involves showing that (i) if no packets

are dropped then the throughput is as claimed, and that (ii) the fraction of packets dropped

by the underlying packet transport mechanism of Scheme 3(a) is negligible.

First note that the traffic in the SR and RD phases are similar and hence it is sufficient

to analyze just the SR phase. Let Cij(t) denote the value of the counter at source node i

for some mobile node j at time t. Let Xij(t) be the indicator of the event that Cij(t) is

positive, i.e., Xij(t) = 1 if Cij(t) > 0 and zero otherwise. For simplicity, assume that each

cell becomes active every time-slot (instead of once every 1 + c1 time slots) and whenever

Xij(t) = 1, source i transmits a new packet to a relay j (instead of also considering the state

variable Sij(t) which is positive with probability p0). It is easy to see that these assumptions

do not affect the results in the order notation.

Now let {T̃k} be the intervals between consecutive transitions of Xij(t) from 0 to 1 (see

Figure 5.5). Then {T̃k} is an i.i.d. sequence due to the independent random walks of the

nodes. Let T̃ be a random variable with the common distribution of these random variables.

As shown in Lemma 5.8

E[T̃ ] = Θ
(

√

n/b(n)
)

.

The random walk of nodes i and j on the discrete torus is a stationary and ergodic

process and hence the process Xij(t) derived from it is also stationary and ergodic. Hence

w.p. 1,

lim
s→∞

s
∑

t=1

Xij(t)/s = E[Xij(t)].

The quantity above is the rate at which packets are sent from source node i to relay node

j in t time-slots.

Now each time Xij(t) makes a transition from 0 to 1, it remains at 1 for c0(n) time-slots.

Hence using the random variable version of the elementary renewal theorem (see [44]), it is
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easy to see that w.p. 1,

lim
s→∞

s
∑

t=1

Xij(t)/s = c0(n)/E[T̃ ]

= Θ

(

√

nb(n)
1

√

n/b(n)

)

= Θ(b(n)). (5.12)

Hence we have

P{Xij(t) = 1} = E[Xij(t)] = Θ(b(n)). (5.13)

Each source node uses the other n − 2 nodes as relays. By considering all these n − 2

relays and the direct path, it follows from (5.12) that if no packets are dropped then the

throughput for each S-D pair in terms of packets is

lim
s→∞

s
∑

t=1

∑

j 6=i

Xij(t)/s = Θ(nb(n)).

Now since the packet size is Θ
(

1/
(

n3/2b(n)3/2
√

log n
))

it is immediate that if no packets

are dropped then the throughput per S-D pair is Θ
(

1/
√

nb(n) log n
)

as claimed. The rest

of the proof shows that the fraction of packets dropped goes to zero. In Scheme 3(b), as in

Scheme 3(a), packets are dropped due to (i) overloading in cells, (ii) transmission to empty

cells, and (iii) unsuccessful chasing. Scheme 3(b) uses cells of size Θ(log n/n) and hence as

shown in the proof of Scheme 3(a), the fraction of packets being dropped due to (ii) and

(iii) goes to 0. To establish (i), it is sufficient to show that the number of packets passing

through each cell is O
(

√

n3b(n)3 log n
)

whp, which we do next.

Next let Dij(t) be the distance in steps from node i to node j. If Xij(t) makes a transition

from 0 to 1 at time τ then we know that Dij(τ) = l(n). After this Xij(t) stays at 1 for

c0(n) time-slots. Since nodes i and j are moving according to independent random walks,

the distance between them increases by at most two steps in each time-slot. Therefore,

Dij(t) ≤ l(n) + c0(n) = O(l(n)) for τ ≤ t ≤ τ + c0(n). Thus we have

Dij(t) = O(l(n)) given Xij(t) = 1. (5.14)

Now let Lij(t) be the distance in hops between nodes i and j if Xij(t) = 1 and 0 otherwise.
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Then Lij(t) = O(Dij/
√

log n)) since the cells are of size log n/n and so

E[Lij(t)]

= E[Lij(t)|Xij(t) = 1]P{Xij(t) = 1}
= E[Lij(t)|Xij(t) = 1]Θ(b(n)) (5.15)

= O(E[Dij(t)|Xij(t) = 1]b(n)/
√

log n) (5.16)

= O(l(n)b(n)/
√

log n)

= O(b(n)3/2
√

n/ log n), (5.17)

where (5.15) is due to (5.13) and (5.16) follows from (5.14).

For exactly the same reasons as those pointed out while analyzing the traffic of Scheme

3(a), the traffic in stage 1 of Scheme 3(b) dominates the traffic of all other stages. Hence

we will only analyze traffic of stage 1 here. Now let Y c
ij(t) be the number of packets in stage

1 of source i to node j passing through cell c at time t. As shown during the analysis of

traffic in stage 1 of Scheme 3(a), we have Y c
ij(t) ∈ {0, 1, 2}.

Now a packet sent out from source i at time t−k passes through some cell in the network

at time t if and only if Lij(t − k) > k. There are m = n/ log n cells in the network and

summing over all these cells we obtain

m
∑

c=1

Y c
ij(t) =

∞
∑

k=0

I{Lij(t − k) > k},

where I(A) is the indicator function of the event A. Taking expectations on both sides,

using the symmetry of the cells and 5.17, this gives

mE[Y c
ij(t)] =

∞
∑

k=0

P{Lij(t − k) > k}

=

∞
∑

k=0

P{Lij(t) ≥ k}

= E[Lij(t)]

= O(b(n)3/2
√

n/ log n).

Hence we have

E[Y c
ij(t)] = O

(

b(n)3/2
√

log n/n
)

. (5.18)

The total number of packets passing through cell c in time-slot t is given by Y =
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∑

i

∑

j 6=i Y
c
ij(t). The total number of distinct source-relay pairs is Θ(n2). For each such pair,

by symmetry and (5.18), E[Y c
ij(t)] = O

(

b(n)3/2
√

log n/n
)

. Hence the expected number of

packets passing through cell c in time-slot t is

E[Y ] = Θ
(

n2E[Y C
SR(t)]

)

= O
(

√

n3b(n)3 log n
)

. (5.19)

Thus it is sufficient to show that Y = Θ
(

E[Y C(t)]
)

whp in order to establish that the

number of packets through each cell is O
(

√

n3b(n)3 log n
)

whp. Next, we establish this.

Note that terms of the form Y c
ii(t) are always 0 and terms of the form Y c

ij(t) and Y c
ik(t)

for j 6= k are independent. So are terms of the form Y c
ij(t) and Y c

kj(t) and terms where all

indices are different. Another important property which we use crucially is that if nodes

j and k are not in cell c and Y c
ij = Y c

ik = 1 then Y c
jk(t) is necessarily 0. This happens

because Y c
ij(t) = Y c

ik(t) = 1 implies that nodes j and k lie on the same side of cell c under

consideration and hence the line connecting j and k does not pass through cell c. The same

holds when Y c
ji = Y c

ki = 1. This is not true however if either of the nodes j and k lies in cell

c. However this can be handled by dealing with the first and last hops separately which is

easy since it depends only on the distribution of nodes themselves. Hence we ignore this

aspect for the sake of simplicity.

Now fix a cell c and a time-slot t and define Zij = 1 if Y c
ij(t) > 0 and 0 otherwise. Then

Yij(t) ≤ 2Zij and hence

Y ≤ 2

n/2
∑

i=1

n
∑

j=1

Zij

=

n/2
∑

i=1

n
∑

j=i+1

Zij +

n/2
∑

i=2

i−1
∑

j=1

Zij.

In what follows, we will show that the first sum above is of the same order as its expected

value whp. The same technique would show that the same is true for the second sum also

whp and hence that the total traffic Y is of the same order as its expected value whp.

So consider the M = Θ(n2) terms in the first sum, i.e., {Zij , 1 ≤ i ≤ n/2, i < j ≤ n}.
These are identically distributed Bernoulli random variables with pn = P{Zij = 1} =

O
(

b(n)3/2
√

log n/n
)

. The dependence properties of {Yij(t)} carry over to {Zij} so that,

for example, Zij = Zik = 1 implies that Zjk = Zkj = 0. For simplicity we rewrite {Zij , 1 ≤
i ≤ n/2, i < j ≤ n} as {Zi, 1 ≤ i ≤ M}. Now let {Z̃i, 1 ≤ i ≤ M} be i.i.d. Ber(pn) random
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variables and let Z =
∑M

i=1 Zi and Z̃ =
∑M

i=1 Z̃i. Now

E[Zk] =
∑

(i1,...,ik)∈{1,...,M}k

E [Zi1 , . . . , Zik ]

=
∑

(i1,...,ik)∈{1,...,M}k

P{Zi1 = . . . = Zik = 1}.

Similarly, we can write E[Z̃k] as the sum of terms of the form P{Z̃i1 = . . . = Z̃ik = 1}.
Consider a term of the form P{Zi1 = . . . = Zik = 1}. If all the Zis contained in this

term are independent then this is the same as the corresponding term of E[Z̃k]. When

there is a dependence, the term becomes zero due to the particular nature of dependence as

mentioned above, due to which for some distinct indices i, j, k, Zi = Zj = 1 implies Zk = 0.

However, for E[Z̃k] the corresponding term is still non-zero. Hence E[Zk] ≤ E[Z̃k] for all

k ≥ 0. As a result, for any t > 0,

E[exp(tZ)] ≤ E[exp(tZ̃)]. (5.20)

So we can write for t > 0,

P{Z > (1 + δ)E[Z]} ≤ E[exp(tZ)]

exp((1 + δ)tZ)

≤ E[exp(tZ̃)]

exp((1 + δ)tZ̃)

≤ exp(−E[Z̃ ]δ2/2),

using the Chernoff bounding technique for the sum of i.i.d Bernoulli random variables. Now

E[Z̃] = O(Mpn) = O
(

n3/2b(n)3/2
√

log n
)

. Choosing an appropriate δ we have Z = O(E[Z])

whp. Hence the total number of packets through a cell is O
(

n3/2b(n)3/2
√

log n
)

whp. Using

the union bound over the n/ log n cells establishes the claim about the throughput of Scheme

3(b).

Next we analyze the delay for Scheme 3(b). The delay of a packet is determined by

the queuing delay at a relay node. We first upper bound this queuing delay by that of a

GI/GI/1 queue and then use Kingman’s upper bound for the GI/GI/1 queue. To use this

upper bound, we require to compute the first two moments of the inter-arrival times and the

service times. For Scheme 3(b), these moments are related to the corresponding moments

of the hitting times of subsets of the torus.

Proof of Theorem 5.6(ii): Two types of relaying are used in Scheme 3(b). First, there
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is relaying by hops along adjacent cells of size of Θ(log n/n) when a packet is sent from

a source to a mobile relay node which we call relaying by hops. Second, the mobile relay

node carries the packet until it gets near the destination for further hop-relaying. Thus the

total delay experienced by a packet in moving from its source S to its destination D via a

mobile relay R involves two types of delay - (i) the hop-delay Dh(n), which is the delay in

relaying by hops from S to R and then from R to D, and (ii) the queuing delay Dq(n) in the

queue at R for that S-D pair. Only packets that reach from S to R directly (i.e., without an

intermediary mobile relay node) are not subject to queuing delay, which form a negligible

fraction.

First we determine Dh(n), the delay due to relaying by hops. Consider a packet that is

relayed by hops from its source S to a mobile relay node R or its destination. The counters

in Scheme 3(b) ensure that this process starts only when S and R are initially within a

step-distance of l(n) hops. Thereafter due to the random walk model for mobility of nodes,

the average distance between S and R monotonically increases with time and at time c0(n)

the average distance in terms of number of steps is less than l(n) + Θ(
√

c0(n)) = Θ(l(n))

since l(n) = Θ(c0(n)). Hence from the analysis of Scheme 3(a) it can be seen that the delay

due to relaying by hops along cells of size Θ(log n/n) is

Dh(n) = Θ
(

l(n)/
√

log n
)

= Θ
(

√

nb(n)/ log n
)

. (5.21)

Now we proceed to determine Dq(n), the queuing delay. Since the underlying packet

transport mechanism is that of Scheme 3(a), packets are dropped in the network. However

packets are dropped during the relaying by hops and hence does not affect the queuing

delay at the mobile relay nodes.

For any S-D pair the delay at each mobile relay node is the same and by symmetry each

S-D pair has the same delay. Hence we only need to compute the queuing delay for any

one such queue. So fix an S-D pair and a mobile relay node R and let the queue at this

relay node be called Q1. First consider the arrival process to this queue which is depicted

in Figure 5.5. The solid line in in the figure is non-zero when S and R when S and R are at

a distance no more than l(n) hops. The counter is set to c0(n) the first time this happens

and the dashed line is non-zero when the counter is positive. Packets are sent from S to R

during this period when the counter is positive if the corresponding state variable is 1. Note

that some of the arriving packets may be dropped due to the way Scheme 3(a) operates.

However by considering a queue Q2 in which these packet drops are ignored we obtain an

upper bound on the queuing delay in Q1.

Packets arrive at R with a delay of Dh(n) due to hopping. However these packets arrive
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PSfrag replacements

0
timeTi Ti+1 Ti+2

T̃j T̃j+1

c0(n)

Figure 5.5: The solid line is non-zero when S and R are within a distance of l(n) hops of
each other. The dashed line is non-zero when the counter at S for R is positive. Packets
are sent from S to R when the dashed line is non-zero if the state variable is 1 as explained
in the description of Scheme 3(b).

in order (although some of the packets may arrive together) because of the way Scheme

3(a) works. Now the step-distance between S and R when any packet departs is at most

l(n)+c0(n) and so Dh(n) ≤ (c6 +c7)
√

nb(n)/ log n = Dmax
h (say). So if we consider a queue

in which each packet arrives exactly Dmax
h time-slots after its departure from S, then the

sum of the average delay of this queue and Dmax
h is an upper bound to the delay in Q2.

Now as will be shown later (and as claimed in the Theorem), it turns out the the queuing

delay is of an order strictly greater than that of Dmax
h hence it does not matter in the order

of the average delay of Q2. Moreover the arrival and service processes are jointly stationary

since they are based on the motion of nodes S, R and D. Hence in order to determine an

upper bound of the same order as the actual delay we can instead consider a queue, say

Q3, in which arrivals occur when the counter is positive and the state variable is 1.

Let T̃ be a random variable denoting the time interval between two instants when the

counter is set to c0(n) consecutively. Then {T̃j} in Figure 5.5 is a sequence of i.i.d. random

variables each with the same distribution as T̃ . Also let T be a random variable denoting

the time interval between two slots when the distance between S and R decreases to l(n)

from greater than l(n) consecutively. Then {Ti} in Figure 5.5 is a sequence of i.i.d. random

variables each with the same distribution as T .

The departure process is similar and departures occur when the corresponding counter

is positive if the queue is not already empty. The delay for this queue is the same as that

for Q4, a queue in which a single arrival occurs at the start of each period of length c0(n)

of arrivals in Q3 and a departure occurs at the beginning of each period of c0(n) departures

in Q3. The inter-arrival times in Q4 form an i.i.d. process and the distribution of the
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inter-arrival time is the same as the sum of K independent copies of T̃ where K is an

independent Geometric random variable with parameter p0. Hence the first two moments

of the inter-arrival time in Q4 are the same as those of T̃ which is the time interval between

two instants when the counter is set to c0(n) consecutively. Similarly the inter-service times

are also i.i.d. and hence as done in the delay analysis of Scheme 2, we can upper bound

the delay of Q4 by that of a GI/GI/1 queue Q5 whose service time distribution is the same

as the inter-service time distribution of Q4. Further using Kingman’s upper bound for the

GI/GI/1 queue as in the delay analysis of Scheme 2 and the fact that the moments of the

inter-arrival time and service time in Q5 are of the same order, we can write

Dq(n) = O
(

E[T̃ 2]/E[T̃ ]
)

. (5.22)

Substituting the moments of T̃ from Lemma 5.8 which is presented after this proof, we

obtain

Dq(n) = O(n log(1/b(n))). (5.23)

As a result the delay for Scheme 3(b) scales as

D(n) = Dh(n) + Dq(n) = O(n log(1/b(n))).

Remark: At the choice of b(n) = Θ(1) the performance of the scheme is vastly different for

b(n) = 1 and b(n) 6= 1. This discontinuity of trade-off is the consequence of using mobility

since b(n) = 1 means that the mode of operation is that of Scheme 3(a) where mobility is

not used to move the packets toward their destinations. The delay jumps up immediately

as mobility is used with b(n) 6= 1.

Lemma 5.8. For T̃ , as defined earlier,

E[T̃ ] = Θ

(
√

n

b(n)

)

, and

E[T̃ 2] = O

(

log

(

1

b(n)

)

√

n3

b(n)

)

.

Proof. Consider the counter at a source node for some other node. Recall that T̃ is a random

variable denoting the time interval between two consecutive transitions of the counter from

−1 to c0(n). For simplicity, assume that each cell becomes active every time-slot (instead

of once in 1 + c1 time slots). Then by definition, T̃ ≥ c0(n). Let T be a random variable
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denoting the time interval between two slots when the distance between S and R decreases

to l(n) from greater than l(n) consecutively. Then {Ti} in Figure 5.5 is a sequence of i.i.d.

random variables each with the same distribution as T .

Consider the random variable K = inf{k : T1 + · · · + Tk > c0(n)}, where Ti are i.i.d.

with the distribution of T . Then, by definition

T̃ =

K
∑

k=1

Tk. (5.24)

From definition of K,
∑K−1

k=1 Tk ≤ c0(n). Hence, from (5.24)

T̃ > TK and T̃ ≤ c0(n) + TK . (5.25)

This implies that,

E[T ] ≤ E[T̃ ] ≤ c0(n) + E[T ], (5.26)

and

E[T̃ 2] ≤ c2
0(n) + c0(n)E[T ] + E[T 2]. (5.27)

Next we compute E[T ], E[T 2] to determine E[T̃ ], E[T̃ 2]. In the random walk motion model,

each node moves according to a simple random walk on the discrete
√

n × √
n torus. Let

X(t) ∈ {(i, j) : 0 ≤ i, j ≤ √
n − 1} be such a random walk on the

√
n ×√

n torus. Since T

is determined by the independent random walks of S and R on the torus, equivalently we

can study it using a difference random walk of a single node as was done in the analysis of

delay for Scheme 2.

Now let A be the set of cells of the torus which are at a distance no greater than l(n)

from (0, 0), i.e.,

A = {(i, j) : d((i, j), (0, 0)) ≤ l(n)}.

And let ∂A be the set of cells of the torus which are exactly at distance l(n) from (0, 0),

i.e.,

∂A = {(i, j) : d((i, j), (0, 0)) = l(n)}.

Then T as defined above is the time taken by a node performing a difference random walk

to perform another transition from Ac to A starting from such a transition. Since we are

interested only in the exact order of the moments, we can consider the simple random walk

instead of the difference random walk on the discrete torus. Hence to determine E[T ] and

E[T 2] we can redefine T as follows.
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Let π denote the stationary distribution for the random walk on the torus which we

know is uniform and let for a set B let π(B) =
∑

v∈B π(v) be the probability of the set B

under π. By the probability distribution πB , we mean πB(v) = π(v)/π(B) if v ∈ B and

zero otherwise.

Now instead of the random walk {X(t)}, consider a Markov chain given by Z(t) =

(X(t − 1), X(t)). The state space of {Z(t)} is clearly the set of directed edges of the torus.

Let ∂A+ be the set of edges of the torus directed from A to Ac and let ∂A− be the set of

edges of the torus directed form Ac to A. For this new Markov chain {Zt}, T is the first

return time to the set ∂A−, i.e.,

T = inf{t ≥ 1 : Z(t) ∈ ∂A−},

starting from Z(0) ∼ π∂A− .

Before proceeding to compute the first two moments of T , note that there are 4n states

in the state space corresponding to the 4 directed edges emanating from each vertex of the

torus. Moreover the stationary distribution of {Z(t)} is also uniform. This can be easily

verified (e.g. see the proof of Lemma 6.5 in [37] or the proof of Lemma 7 in Chapter 3 of

[1]). Also note that the number of states in A is 4l(n) = 4c6

√

nb(n). Now using Kac’s

formula, we obtain

E[T ] = = Eπ∂A+T

= 1/π(∂A+) (5.28)

= 4n/c8

√

nb(n)

= c8

√

n/b(n). (5.29)

Now using equation (21) in Chapter 2 of [1], we obtain

E[T 2] = Eπ
∂A+ [T 2]

= (2EπT + 1) /π(∂A+)

= (2EπT + 1) E[T ], (5.30)

where the last equality follows from (5.28).

Let E be the set of all directed edges of the torus and let EA be the set of directed edges

that are between vertices in A. Consider the following two possible cases, based on the

starting position of Z(0), to compute Eπ[T ].
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Case 1. Suppose Z(0) = e ∈ E − (EA∪∂A−)
4
= E1. Under this situation for Z(·) to visit any

edge in ∂A−, the original random walk needs to enter A starting from a node in Ac chosen

with the uniform distribution restricted to Ac. Thus it is the same as TA, the hitting time

of set A of vertices, starting with initial distribution π(Ac). Using Lemma 5.9 following this

proof, it follows that

EπAc TA = O(n log(1/b(n))).

Thus,

EπE1
[T ] = O(n log(1/b(n))). (5.31)

Case 2. Suppose Z(0) = e ∈ EA ∪ ∂A− 4
= E2. Under this starting condition, the original

random walk starts inside the set A. Hence visiting edge of ∂A− requires that the original

random walk first get out of the set A, and then visit ∂A− given that Z(·) is in E − (EA ∪
∂A−)(= E1). From basic first passage time results for one-dimensional random walks, it is

easy to see that the expected time to get out of set A starting from any position inside A

is O
(

l(n)2
)

. Using this and Case 1, we obtain

EπE2
[T ] ≤ EπE1

[T ] + O(l(n)2)

= O (n log(1/b(n)) + O
(

l(n)2
)

= O (n log(1/b(n)) . (5.32)

From Case 1 and Case 2, using (5.31) and (5.32), we obtain

EπT = O(n log(1/b(n))). (5.33)

Finally combining (5.30) and (5.33),

E[T 2] = O

(

log(1/b(n))

√

n3

b(n)

)

. (5.34)

The following lemma used in the above proof is proved in Subsection 5.4.

Lemma 5.9. Consider the subset A = {(i, j) : 0 ≤ i, j <
√

m} on a two-dimensional
√

n×√
n discrete torus. That is, A is a square set of

√
m×√

m cells of the discrete torus.
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Let TA be the hitting time of A then

EπAc TA = O
(

n log
( n

m

))

.

5.3.3 Optimality of the trade-offs

In this section, we establish the optimality of Scheme 3 under the random walk (RW) model.

Consider any communication scheme operating under the RW model. Then the distance

traveled by a packet between its source and destination is the sum of the distances traveled

by hops and the total distance traveled by the mobile relays that are used by the packet

under this scheme. Let l̄(n) be the sample mean of the distance traveled by hops (i.e.,

by wireless transmission) and let r̄(n) be the sample mean of the distance traveled by a

packet per hop. In the following lemma, proved in Subsection 5.4, we obtain a bound on

throughput scaling as a function of l̄(n) and r̄(n) using a technique similar to the one used

in Theorem 2.3. We then show that to achieve this optimal throughput, the minimum delay

incurred is of the same order as the delay of Scheme 3, which will establish the optimality

of Scheme 3.

Lemma 5.10. Consider any scheme such that the sample mean of the distance traveled

by hops is l̄(n) and the sample mean of the distance traveled per hop is r̄(n). Then its

achievable throughput,

T (n) = O

(

1

nl̄(n)r̄(n)

)

. (5.35)

The above lemma is proved in Subsection 5.4. Next we state a result regarding the

mean hitting time of a subset of cells for a random walk on the
√

n × √
n discrete torus.

It is a consequence of Lemma 2.1 in [9] and the strong approximation (of random walk by

Brownian motion) results as used in the proof of Theorem 1.1 in [9].

Lemma 5.11. Let Tr be the time to hit a set of cells of the discrete torus contained in a

disk of radius r < R/2 around a point x starting from the boundary of a disk of radius R

around x. Then for a symmetric random walk on
√

n ×√
n discrete torus,

E[Tr] = Θ(n log r−1).

Now we are ready to prove the optimality of Schemes 3(a) and 3(b) using Lemma 5.10

and Lemma 5.11.
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Optimality of Scheme 3(a): Consider any communication scheme that uses cellular

transmission and possibly utilizes node mobility to achieve the optimal throughput-delay

trade-off for T (n) = O(1/
√

n log n). Let l̄(n) be the sample mean of the distance traveled

by hops under this scheme. Let r̄(n) be the sample mean of the hop distance, then by

Lemma 5.10, T (n) = O
(

1/
(

nl̄(n)r̄(n)
))

. For this scheme, the average delay due to hops

alone, i.e., the time taken to travel by hops is Θ
(

l̄(n)/r̄(n)
)

.

Now, if l̄(n) = Θ(1), T (n) = O (1/ (nr̄(n))) and D(n) = Ω(1/r̄(n)). That is, T (n) =

O (D(n)/n). Hence from Theorem 5.5, among all schemes that have l̄(n) = Θ(1), Scheme

3(a) is optimal. As a consequence, if Scheme 3(a) is not optimal then it must be that

l̄(n) = o(1) for the optimal scheme.

If l̄(n) = o(1), then at least a constant fraction of the packets must travel a distance of

Θ(1) using the node mobility. From Lemma 5.11, it follows that for such packets, the delay

is Ω(n). But then, D(n) = Ω(n) = ω(nT (n)) since T (n) = o(1). Hence, Scheme 3(a) is

optimal among all schemes with l̄(n) = o(1).

This shows that Scheme 3(a) provides the optimal throughput-delay trade-off as far as

the scaling is concerned.

Optimality of Scheme 3(b): Consider an optimal communication scheme that uses

cellular transmission, possibly along with the mobility of nodes, to achieve the optimal

throughput-delay trade-off for T (n) = ω(1/
√

n log n). Let l̄(n) and r̄(n) be as defined

above. By Lemma 5.10, T (n) = ω(1/
√

n log n) requires that l̄(n) = o(1). But from the

preceding discussion, when l̄ = o(1), the mobile-delay (the time spent at a mobile relay

node) dominates the hop-delay (the time spent in performing hops). Thus when throughput

is ω(1/
√

n log n), to maximize the throughput for a given delay any optimal scheme must

have the smallest possible r̄(n), which is Θ(
√

log n/n). Therefore, any optimal scheme for

this range of high throughput has T (n) = Θ
(

1/
(

l̄(n)
√

n log n
))

.

Consider a throughput-delay optimal scheme. For any such scheme, fixing a throughput

T (n), fixes l̄(n), which is the average distance traveled by hops. The goal of an optimal

scheme then, is to travel this distance by hops in a manner so as to minimize the average

time for a packet to reach its destination.

Consider the transmission of a packet p starting from its source S and moving toward

its destination D, initially at a distance d from S. Recall that a packet travels a distance

l̄ = l̄(n) through hops and the rest through the motion of the nodes relaying it. Define tp

to be the time it takes the packet p, after leaving its source S, to reach its destination D.

We ignore the time required for hops as the mobile delay dominates the total delay. Let

E[tp] be the expectation of tp for a given l̄ and d. Note that the expectation is over the
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distribution induced by the random walks of the nodes.

We claim the following.

Lemma 5.12. For any l̄ and d, a scheme that minimizes E[tp] must perform all the hops

the first time the packet is at a distance less than or equal to l̄ from its destination D.

Proof. For l̄ ≥ d, the Lemma clearly holds. Next consider the case where l̄ < d. To prove

the Lemma for this case, consider the following two schemes. Scheme A uses the entire

hop distance l̄ when the packet reaches within a distance l̄ of D for the first time, which is

consistent with the claim of the lemma. Scheme B uses a hop of length ε when the packet

is at a distance d̃ (d > d̃ > l̄) from D, and uses the remaining hop distance l̄− ε at the end,

as in Scheme A.

We want to show that, on average, a packet takes longer to reach D in Scheme B than

in Scheme A. For simplicity, we assume that D is fixed. This does not affect generality as

all nodes perform independent symmetric random walks.

Consider the path of a packet originating at distance d from D. Until the packet reaches

within a distance d̃ of D, its path is the same in both schemes. As illustrated in Figure 5.3.3,

under Scheme B, at point X, which is at a distance d̃ from D, the packet travels a distance

ε by hops toward D to reach Y. Under Scheme A, the packet remains at point X. At this

instant, the remaining time for the packet to reach D under Scheme A, tA, is the time taken

to reach a ball B(D, l̄) starting from X, and under Scheme B, it is the time tB taken to reach

B(D, l̄ − ε), starting from Y. We now show that on average tA < tB. Consider a point D’

on the line X–D at distance ε from D (as depicted in Figure 5.3.3). Since all nodes perform

independent symmetric random walks, the probability that a path starting from X reaches

B(D, l̄) is the same as the probability that any path starting from Y reaches B(D ′, l̄). Note

that, by construction, B(D, l̄ − ε) ⊂ B(D′, l̄). Hence the time for a packet at Y to reach

B(D′, l̄) is stochastically dominated by the time needed to reach B(D, l̄ − ε). This proves

that the time taken by Scheme A is strictly smaller than the time taken by Scheme B on

average.

Using the above argument inductively for all hops establishes the Lemma.

The above lemma shows that a throughput-delay optimal scheme must utilize all the

hops at the end. Since in Scheme 3(b), half the hops are performed at the end, it follows

that its throughput-delay trade-off is of the same order as that of an optimal scheme. The

argument used above is for the case when the scheme allows only one copy of each packet

in the network at any time. Clearly the scaling is unaffected by the use of Θ(1) copies of

each packet.
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The optimality of Schemes 3(a) and 3(b) establishes the following theorem.

Theorem 5.7. Among all schemes such that the number of copies of any packet in the

network at any time is Θ(1), Scheme 3 obtains the optimal throughput-delay trade-off for

mobile networks.

5.4 Remaining proofs

Proof of Lemma 5.2: Let the cells on the torus be numbered 1 to n. Let X i(t) be the cell

in which node i resides at time t for i = 1, . . . , n. Without loss of generality let node 1 be the

relay node and node 2 be the destination node. Now X(t) = (X 3(t), . . . , Xn(t)) is a Markov

chain formed by the independent random walks of the n− 2 nodes other than the relay and

the destination on the two-dimensional torus. The corresponding equilibrium distribution

is independent and uniform, i.e., each node is equally likely to be in any of the n cells.

This implies that at time α0, X1(α0) = X2(α0) = U0 where U0 is uniformly distributed

on {1, . . . , n}. And nodes 3 to n are also distributed independently and uniformly over

the n cells. Due to symmetry on the torus, by arguing inductively, it can be seen that for

k = 0, 1, . . . , X1(αk) = X2(αk) = Uk ∼ Uniform{1, . . . , n}.
For typographical ease, let F = {Ei = 1}. Then for a network of n nodes, we have

P
(

Ei = 1|αi, Ei−1
)

=
∑

X(αi)

P
(

F |X (αi) , αi, Ei−1
)

P
(

X (αi) |αi, Ei−1
)

=
∑

X(αi)

P (F |X (αi)) P
(

X (αi) |αi, Ei−1
)

(5.36)

≥ min
X(αi)

P (F |X(αi))
∑

X(αi)

P (X(αi)|αi, Ei−1)

= min
X(αi)

P (F |X (αi)) , (5.37)

where (5.36) is true since Ei is independent of everything else given X (αi) since it deter-

mines the configuration of occupancies of all the n cells by the other n − 2 nodes. Next

we show that the configuration that minimizes P (F |X(αi)) is the one in which n − 2 cells

contain one node each.

In time-slot αi, let Fk be the event that R and D meet in cell k and let sk, dk denote

the cell occupancies, i.e., number of source and destination nodes respectively in cell k (not

including R and D) for 1 ≤ k ≤ n. Obviously, sk, dk are determined by X(αi). Recall that
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R and D are equally likely to meet in any of the n cells and hence

P (F |X(αi)) =

n
∑

k=1

P (Ei = 1|X(αi), Fk)P (Fk)

=
1

n

n
∑

k=1

1

(1 + dk)(1 + sk + dk)
. (5.38)

Now clearly for l ≥ 0 and k ≥ 1

1

(k + 1)(k + 2)(k + l + 1)
<

1

2
,

and for l ≥ 1 and k ≥ 0
1

(k + 1)(k + l + 1)(k + l + 2)
<

1

2
.

With simple algebraic manipulations, these can be rewritten as

1

(k + l + 1)(k + 1)
+

1

2
<

1

(k + 2)(k + l + 1)
+ 1, (5.39)

1

(k + l + 1)(k + 1)
+

1

6
<

1

(k + 1)(k + l + 2)
+ 1. (5.40)

Consider two cells with occupancies s1 = l, d1 = k + 1 and s2 = 0, d2 = 0. Then their

contribution to the sum in (5.38) is given by the right hand side of (5.39). Now by moving

one of the nodes from cell 1 into cell 2 we obtain s1 = l, d1 = k and s2 = 0, d2 = 1. For this

case, the left hand side of (5.39) gives the contribution to the sum in (5.38). Thus the last

inequality says that if a cell contains more than 1 destination nodes and there is another

empty cell then P (F |X(αi)) can be reduced by moving one of the destination nodes to an

empty cell. Similarly (5.40) says that if a cell contains more than 1 source nodes and there

is another empty cell then P (F |X(αi)) can be reduced by moving one of the source nodes

to an empty cell. But in our case with n cells and n − 2 nodes, empty cells always exist.

Hence starting from any initial cell occupancies, we progressively obtain that P (F |X(αi))

is minimized when each of the n − 2 nodes occupies a different cell.

Next we compute the term in (5.37), which is the probability of R and D being chosen

as a transmit-receive pair for the worst case of cell occupancies mentioned above. Using
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(5.38), we obtain

min
X(αi)

P (F |X (αi)) =
1

n

(

(n − 2)

2

[

1

4
+

1

2

]

+ 2

)

=
3

8
− 5

4n

→ 3

8
. (5.41)

This proves the lemma for any choice of c6 < 3/8.

Remark: It is interesting to obtain an upper bound on P (Ei = 1|αi, Ei−1) in the same

manner. It is easy to see that the configuration that maximizes this probability is the

one in which all n − 2 nodes are in the same cell. Hence using (5.38) and recalling that

F = {Ei = 1}, we obtain

P (Ei = 1|αi, Ei−1) ≤ 1

n

(

(n − 1) +
4

n2

)

= 1 − 1

n
+

4

n3
→ 1.

This shows that 3/8 − 5/4n ≤ P (Ei = 1|αi, Ei−1) ≤ 1 − 1/n + 4/n3, indicating the extent

of dependence in the process.

Proof of Lemma 5.1: We need to compute the first and second moments of τ , which is

the inter-meeting time of two nodes, i and j, moving according to independent random walks

on a
√

n×√
n discrete torus. Let the position of node i at time t be X i(t) = (X i

1(t), X
i
2(t)),

where X i
k(t) ∈ {0, . . . ,√n − 1} for k ∈ {1, 2}.

Now consider the difference random walk between nodes i and j, defined by X ij(t) =

(Xij
1 (t), X ij

2 (t)), where X ij
k (t) = X i

k(t)−Xj
k(t) mod

√
n, for k = 1, 2. The meeting time of

two nodes i, j is identified by the event {X ij(t) = (0, 0)}. Thus the inter-meeting time is

the stopping time

T ij = inf{t ≥ 1 : X ij(t) = (0, 0), X ij(0) = (0, 0)}.

This is in fact the first return time to state (0, 0). Since we are only interested in the scaling

orders of the first two moments, we instead consider the first return time to state (0, 0) for

a simple random walk X(t) on a
√

n × √
n discrete torus. The first return time to state

(0, 0) is given by

T = inf{t ≥ 1 : X(t) = (0, 0), X(0) = (0, 0)}.

First note that, X(t) is a Markov chain with a uniform equilibrium distribution π,

i.e. π(i, j) = 1/n for 0 ≤ i, j ≤ √
n − 1. For any finite-state ergodic Markov chain,
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the expectation of the first return time to any state is the reciprocal of the equilibrium

probability of the Markov chain being in that state. In particular, the average first return

time to state (0, 0) is n, i.e. E[T ] = n. By the same argument, E[τ ] = n.

Next, we wish to compute E[T 2], which is of the same order as E[τ 2]. First consider

the quantity

T0 = inf{t ≥ 0 : X(t) = (0, 0)},

which is the hitting time of state (0, 0). Let E(i,j)T(k,l) denote the expected time to first hit

state (k, l) starting from state (i, j). Then

Eπ[T0] =

√
n−1
∑

i,j=0

π(i, j)E(i,j)T(0,0)

=

√
n−1
∑

i,j=0

π(i, j)E(i,j)T(k,l) (5.42)

=

√
n−1
∑

i,j=0

√
n−1
∑

k,l=0

1

n
π(i, j)E(i,j)T(k,l)

=

√
n−1
∑

i,j=0

√
n−1
∑

k,l=0

π(i, j)π(k, l)E(i,j)T(k,l)

= Θ(n log n), (5.43)

where (5.42) holds because
∑

ij E(i,j)T(0,0) =
∑

ij E(i,j)T(k,l) for any 0 ≤ k, l ≤ √
n − 1 due

to symmetry of states corresponding to cells on the torus. The validity of (5.43) is from

page 11 of Chapter 5 in [1].

Using Kac’s formula (see Corollary 24 in Chapter 2 of [1]) and (5.43), we obtain

E[T 2] =
2Eπ[T0] + 1

π(0, 0)

= 2Θ
(

n2 log n
)

+ n.

Therefore, we obtain E[τ ] = n and E[τ 2] = Θ(n2 log n).

Equipped with the above lemma, we are now ready to prove Lemma 5.3.

Proof of Lemma 5.3: An arrival occurs to Q3 when S and R meet with probability

0.5. Let {Xi} be the sequence of inter-arrival times to this queue. Then, Xi are i.i.d.

with E[X1] = 2E[τ ] = 2n and E[X2
1 ] = Θ(E[τ 2]) = Θ(n2 log n) from Lemma 5.1. The

potential-departure process is an i.i.d. Bernoulli process with parameter 1/1.5n. Let {Yi}



94 CHAPTER 5. T-D TRADE-OFF IN MOBILE NETWORKS

be the sequence of service times then Yi is a Geometric random variable with mean 1.5n.

Hence E[Y1] = 1.5n and E[Y 2
1 ] = Θ(n2). Let D3 denote the delay of a packet through Q3.

The service process is independent of the arrival process and hence Q3 is a GI/GI/1 FCFS

queue. Then, by Kingman’s upper bound [44] on the expected delay for a GI/GI/1 – FCFS

queue, the expected delay of Q3 is upper bounded as

E[D3] = O

(

E[X2
1 ] + E[Y 2

1 ]

E[X1]

)

= O

(

n2 log n + n2

n

)

= O (n log n) .

A GI/GI/1 queue has i.i.d. inter-arrival times and i.i.d. service times. But unlike Q3,

Q4 is not a GI/GI/1 queue because the inter-potential departure times are i.i.d., and not

the service times. As a result, Kingman’s upper bound cannot be used. Instead we obtain

an upper bound by considering a queue sampled at potential departure instants and by

exploiting the memorylessness of the inter-arrival times.

Proof of Lemma 5.4: Consider the service process of Q4, which is 1 at a potential

departure instant and 0 otherwise. This is a stationary, ergodic process since the inter-

potential-departure times are i.i.d. with mean n. The Bernoulli arrival process to Q4 is

independent of the service process with mean inter-arrival time 1.5n. Since the arrival

and service processes form a jointly stationary and ergodic process with mean service time

strictly less than mean inter-arrival time, the queue has a stationary, ergodic distribution

with finite expectation as shown by [34]. Thus Q4 is stable.

Let Q̃t be the number of packets in the queue in time-slot t and let Qi be the number of

packets in the queue at potential departure instant i. Thus the process {Qi} is obtained by

sampling {Q̃t} at potential departure instants. Let Ai+1 be the number of arrivals between

potential departure instants i and i + 1. Then the evolution of Qi is given by

Qi+1 = Qi − 1{Qi>0} + Ai+1. (5.44)

Comparing the evolution of the process {Qi} with that of {Q̃t} shows that {Qi} also has

a stationary, ergodic distribution. Recall that τ is the inter-meeting time of R and D.

Then since the arrival process is Bernoulli and the inter-potential departure times are i.i.d.

with common distribution that of τ , it is clear the {Ai} is a stationary process. Let Q̃, Q

and A be random variables with the common stationary marginals of {Q̃t}, {Qi} and {Ai}
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respectively. Then taking expectation in (5.44) under the stationary distribution, we obtain

P (Q > 0) = E[A]. (5.45)

The arrival process is i.i.d. Bernoulli and hence conditioned on τ , the distribution of A is

Binomial (τ, 2/3n). Since E[τ ] = n from Lemma 5.1, we obtain

E[A] = E[E[A|τ ]] = E
[ τ

1.5n

]

=
2

3
. (5.46)

Squaring (5.44), taking expectation, using the independence of Qi and Ai+1 and then rear-

ranging terms, we obtain

2(1 − E[A])E[Q] = P (Q > 0) + E[A2] − 2E[A]P (Q > 0).

Using (5.45) and (5.46) in the above, we obtain

E[Q] =
E[A] + E[A2] − 2E[A]2

1(1 − E[A])

=
3

2

(

E[A2] − 2

9

)

. (5.47)

Recall that conditioned on τ the distribution of A is Binomial (τ, 2/3n) and hence

E[A2] = E[E[A2|τ ]]

=
2E[τ ]

3n
+

4

9n2

(

E[τ2] − E[τ ]
)

=

(

2

3
− 4

9n

)

+
4

9n2
Θ(n2 log n)

= Θ(log n), (5.48)

where we used Lemma 5.1. As a result it follows from (5.47) that

E[Q] = Θ(log n). (5.49)

Next, we will bound E[Q̃] using E[Q]. To this end, consider a time-slot t and let the

number of potential departures before time-slot t be I(t). Thus time-slot t is flanked by

potential departures I(t) and I(t) + 1. Then Q̃t ≤ QI(t) + AI(t)+1. Also using the fact that
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{Q̃t} is ergodic, with probability 1, we have

E[Q̃] = lim
T→∞

1

T

T
∑

k=1

Q̃k

≤ lim
T→∞

1

T

I(T )+1
∑

j=1

(Qjτj+1 + Aj+1τj+1)

= lim
T→∞

I(T ) + 1

T

1

I(T ) + 1

I(T )+1
∑

j=1

(Qjτj+1 + Aj+1τj+1)

=
1

E[τ ]
(E[Q1τ2] + E[A1τ1]) (5.50)

=
1

n

(

E[Q]E[τ ] +
2

3n
E[τ2]

)

(5.51)

= O(log n). (5.52)

We used the fact that I(T )/T→1/E[τ ] by the elementary renewal theorem [44] in (5.50)

and the independence of Qj and τj+1 in (5.51). Let D4 denote the delay of a packet through

Q4. Using Little’s formula, since the arrival rate is 2/3n, we conclude that

E[D4] =
3n

2
E[Q̃] =

3n

2
O(log n) = O(n log n).

Proof of Lemma 5.5: Consider a fixed cell, say cell 1, out of m = 1/a(n) cells. First

we determine the traffic due to stage 1 in time-slot 0 which is the number of packets that

cell 1 is required to transmit in time-slot 0.

Let Yi be the number of packets of the S-D pair i at cell 1 in time-slot 0. We claim that

no more than two packets of S-D pair i can be passing through cell 1 in time-slot 0. This is

because k packets of S-D pair i can pass through cell 1 at the same time if and only if for

k consecutive time-slots, the source node S moves closer to cell 1 by 1 hop along the line

joining S and D. Now, cells are of size at least Θ(log n/n), whereas according to the RW

model, the nodes can only move Θ (1/
√

n) distance in unit time. Hence this can hold for

at most k = 2. Thus, Yi ∈ {0, 1, 2}. Next, we compute E[Yi].

Let Li(s) be the length (in terms of number of hops) of the straight line joining the

center of cells that contain S and D at time s of S-D pair i. Now, a packet generated at
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time −s, s ≥ 0 can be part of stage 1 at time 0, only if Li(−s) > s. This is true because

otherwise packet generated at time −s is already transmitted for s times till time 0 and

hence it is either in stage 2 or has reached the destination. Using this, we obtain

m
∑

j=1

Yi(j) ≤
∞
∑

s=0

I({Li(−s) > s}),

where I(A) is the indicator function of the event A and Yi(j) is the number of packets of

stage 1 of the ith S-D pair at cell j at time 0. By symmetry, E[Yi(j)] = E[Yi(1)] = E[Yi].

Then,

mE[Yi] ≤
∞
∑

s=0

P{Li(−s) > s}

(a)
=

∞
∑

s=0

P{Li(0) > s}

= E[Li(0)]

(b)
= Θ

(

1/
√

a(n)
)

.

Above, (a) holds because of the stationarity of Li(·) under the RW model. And (b) is true

because under the RW model the average distance between an S-D pair is Θ(1/
√

a(n)) hops

since the actual physical distance is Θ(1).

From above, E[Yi] = Θ
(

√

a(n)
)

. Now let Zi = I({Yi 6= 0}). Then by Markov’s

inequality,

P ({Zi = 1}) = P ({Yi ≥ 1}) ≤ E[Yi].

The total number of packets passing through cell 1 at time 0 is
∑n/2

i=1 Yi ≤ 2
∑n/2

i=1 Zi. Since

under the RW model, all n/2 S-D pairs move independently, {Zi} are independent and due

to symmetry they are distributed identically. Thus we can define {Z̃i} to be i.i.d. Bernoulli

random variables with parameter pn = Θ
(

√

a(n)
)

so that Zi is stochastically dominated

by Z̃i. As a result, the total number of packets is stochastically dominated by 2
∑n/2

i=1 Z̃i.

By an application of the Chernoff bound,
∑n/2

i=1 Z̃i ≤ npn with probability at least 1− 1/n4

for large enough n. Thus, cell 1 has O(npn) = O
(

n
√

a(n)
)

packets passing through it in

time-slot 0 with probability at least 1 − 1/n4. Due to symmetry, the same is true for all m

cells. Hence, by the union bound, each of the m cells has O
(

n
√

a(n)
)

packets of stage 1

in time-slot 0 with probability at least 1 − m/n4 ≥ 1 − 1/n3.

Proof of Lemma 5.6: Let H(Ck−1, Ck) denote the number of hops made by a packet
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in stage k for k = 1, . . . , k(n) − 1. For a given packet this is the hop distance between

Ck−1 and Ck (as explained in the description of Scheme 3(a)). Let lk = E[H(Ck−1, Ck)].

Since, each source node S is at a physical distance of Θ(1) from its destination on average,

l1 = Θ(1/
√

a(n)). It is clear that the traffic of stage k depends on lk, which in turn depends

on lk−1. Hence, we first determine the relation between lk and lk−1 for k ≥ 2 in order to

evaluate lk.

By definition, H(Ck−1, Ck) is the displacement of the destination node of the packet

while the packet was being transported in stage k from cell C k−2 to cell Ck−1. Under

Scheme 3(a), if a packet is not dropped, it reaches Ck−1 from Ck−2 in time H(Ck−2, Ck−1)

since each hop takes a constant amount of time. The average distance moved by destination

node in this time is Θ
(

√

H(Ck−2, Ck−1)/n
)

under the RW model. That is, the destination

node is displaced from Ck−1 by Θ
(

√

H(Ck−2, Ck−1)/na(n)
)

hops on average. Putting this

together, we obtain the following.

lk = E[H(Ck−1, Ck)]

= E
[

E
[

H(Ck−1, Ck)|H(Ck−2, Ck−1)
]]

= E

[

Θ

(
√

H(Ck−2, Ck−1)

na(n)

)]

= Θ





E
[

√

H(Ck−2, Ck−1)
]

√

na(n)





= O

(

√

E[H(Ck−2, Ck−1)]
√

na(n)

)

, (5.53)

where (5.53) follows from Jensen’s inequality. Equation (5.53) gives us the following recur-

sion. For k ≥ 2,

lk = O

(
√

mlk−1

n

)

. (5.54)

Now, as noted earlier, l1 = O
(

1/
√

a(n)
)

= O (
√

m). For ease of presentation, let c5 ≥ 1

be constant such that for large enough n, l1 ≤ √
c5m and lk ≤

√

c5mlk−1/n. Putting all



5.4. REMAINING PROOFS 99

this together, we obtain

lk ≤
√

c5mlk−1

n

≤
(c5m

n

)

Pk−1
j=1 2−j

l2
−k+1

1

≤
(c5m

n

)1−2−k+1

(c5m)2
−k

≤ c5m

n

(

n2

m

)2−k

. (5.55)

Now we are ready to analyze the traffic load on cells due to stage k, k ≥ 2. The analysis

of stage 1 showed that at most 2 packets of the same S-D pair can pass through a cell in

the same time-slot. This happens only if the source moves in a particular way so that in

adjacent time-slots the distance to the cell being considered reduces by one hop. Similarly

by considering the motion of both the source and the destination it can be shown that in

stage 2 the number of packets of the same S-D pair that can pass through a cell is at most

3. For stage k ≥ 3, since a packet originates from a fixed cell, rather than from a mobile

node like S, it follows that the number of packets of the same S-D pair passing through a

cell in the same time-slot is no more than 3.

Consider stage k. As in stage 1, let Yi be the number of packets for S-D pair i at cell

1 at time 0. From the above discussion, Yi ∈ {0, 1, 2, 3}. Let Li(s) denote the length in

hops, H(Ck−1, Ck), for a packet of the S-D pair i entering stage k in time-slot s. Due to

the symmetry of the cells under the RW model (using arguments similar to that used in

analysis of stage 1) and (5.55), we obtain

mE[Yi] ≤
∞
∑

s=0

P ({Li(−s) > s})

=

∞
∑

s=0

P ({Li(0) > s}

= E[Li(0)]

= O

(

m

n

(

n2

m

)2−i)

.
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Thus,

E[Yi] = O

(

1

n

(

n2

m

)2−i)

. (5.56)

Again using the same method as in the analysis of stage 1, it can be shown that the total

number of stage k packets passing through each cell is O

(

(

n2

m

)2−k
)

with probability at

least 1 − 1/n3.

Proof of Lemma 5.9: Let X(t) = (X1(t), X2(t)) be a two-dimensional simple RW on

the
√

n × √
n discrete torus. Let B = {1,√m, . . . , (

√

n/m − 1)
√

m}, i.e., B is the set of

elements of {0, . . . ,√n− 1} which are multiples of
√

m. Let Y1(t) ∈ B be the discrete-time

process such that Y1(t) is the last (including the current) state visited by X1(t) in B. Thus

the process Y1(t) is a coarser version of X1(t) that changes state only when X1(t) moves
√

m steps away on the one-dimensional discrete torus. Similarly, define Y2(t) to be the last

state visited by X2(t) in B and let Y (t) = (Y1(t), Y2(t)).

Now let Z(t) be the process obtained by sampling Y (t)/
√

m whenever its value changes.

Thus Z(t) ∈ {0, . . . ,
√

n/m} proceeds in steps and ignores the random amount of time that

Y (t) spends in each step. Now Z(t) is a random walk on the discrete
√

n/m×
√

n/m torus,

such that the next state is one of the eight possible neighbors. Let T Z
0 be the hitting time

of state (0, 0) for the random walk Z(t). This is the number of steps taken by Z(t) to hit

(0, 0). Since we are only interested in the order, we can use the corresponding moment for

the simple random walk instead. Thus we obtain

EπTZ
0 = O

( n

m
log
( n

m

))

.

Now Z(T Z
0 ) = (0, 0) implies that for some time T , X(T ) ∈ A. In fact, T is the random

time required for T Z
0 steps of Z(t). Hence E[T ] is an upper bound on E[TA]. Let T̃ (i) be

the time required for step i of Z(t), i.e., the time for Y (t) to change state for the ith time.

The T̃ (i) are clearly i.i.d. Moreover, T Z
0 is independent of T̃ (i) and

T =

T Z
0
∑

i=1

T̃ (i).

Let T̃1 and T̃2 be the random times required for Y1(t) and Y2(t) respectively, to change

their states. Then E[T̃1] = E[T̃2] = m, since this is the time required for a simple random

walk on the integers to exit from {−√
m+1, . . . ,

√
m− 1}. Moreover, T̃ (i) is dominated by
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T̃1 since Y (t) changes state if either of Y1(t) or Y2(t) change. Hence E[T̃ (i)] ≤ E[T̃1] = m.

Now in using T to upper bound TA, we need to take care of the possibility that X(t)

may not start from a state that is an element of B × B and hence Y (t) is undefined

until both X1(t) and X2(t) hit some element of B. But this time is at most equal to

maxT1, T2 ≤ T1 + T2. Hence allowing for the initial expected time for X(t) to reach one of

the elements of B, which is at most 2m, we obtain

n − |A|
n

EπAc TA = EπTA

≤ EπT + 2m

≤ Eπ

T Z
0
∑

i=1

T̃ (i) + 2m

= E
[

TZ
0

]

E
[

T̃ (1)
]

+ 2m

= O
(

n log
( n

m

))

.

Proof of Lemma 5.10: If the throughput of the network is T (n), the number of bits

transmitted in a large enough time t is at least ntT (n)/2. We will ignore this factor of 1/2

as it does not affect the scaling. Now consider a bit b, where 1 ≤ b ≤ ntT (n). Let h(b)

denote the number of hops taken by bit b and let r(b, h) denote the length of hop h of bit

b. Then
ntT (n)
∑

b=1

h(b)
∑

h=1

r(b, h) ≥ ntT (n)l̄(n). (5.57)

Using the same reasoning as the one which led to (2.7), we obtain

ntT (n)
∑

b=1

h(b)
∑

h=1

π

4

(

∆

2
r(b, h)

)2

≤ Wt. (5.58)

Let the total number of hops taken by all bits be

H =

ntT (n)
∑

b=1

h(b).
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Then by convexity, we obtain





ntT (n)
∑

b=1

h(b)
∑

h=1

1

H
r(b, h)





2

≤
ntT (n)
∑

b=1

h(b)
∑

h=1

1

H
r(b, h)2. (5.59)

Combining (5.58) and (5.59) we obtain,





ntT (n)
∑

b=1

h(b)
∑

h=1

1

H
r(b, h)





2

≤ 16Wt

π∆2H
= c3

t

H
, (5.60)

where c3 is a constant that does not depend on n. Substituting from (5.57) into (5.60) and

rearranging we obtain
ntT (n)l̄(n)

H
r̄(n) ≤ c3

t

H
, (5.61)

where

r̄(n) =

ntT (n)
∑

b=1

h(b)
∑

h=1

1

H
r(b, h)

is the sample mean of hop-lengths over H hops as defined earlier. Rearranging we obtain

T (n) ≤ c3

nl̄(n)r̄(n)
. (5.62)

This completes the proof of Lemma 5.10.

5.5 Discussion

This chapter established the optimal trade-off between throughput and packet delay for

mobile wireless networks. We presented a scheme similar to the one in [21] and showed

that the delay corresponding to Θ(1) throughput scales as Θ(n log n), when the nodes move

according to independent random walks. Further, we described and analyzed a scheme that

achieves the optimal throughput-delay trade-off for mobile networks by varying the number

of hops, the transmission range, and the degree to which node mobility is used. For the

low throughput range achieved in static networks, we found that the trade-off for mobile

networks is the same as that for static networks. For higher throughputs, there is almost no

trade-off between throughput and delay – the same maximum delay is incurred regardless

of the throughput.

Several questions remain to be tackled for a better theoretical understanding of the
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data communication aspect of random wireless networks. With the exception of Scheme

2, the chapter assumed a fluid model in which the packet size is allowed to be arbitrarily

small. A priori, it is not clear what the trade-off will be with the additional constraint

that packet size remains constant. In Chapter 3, we showed that for static networks, the

trade-off remains unchanged even with packets of constant size. We believe that the same

should hold for mobile networks, but such a result remains to be established.

In this chapter we assumed a random walk model for node mobility. One expects

that the scaling results would be the same for a larger class of Markovian motion models.

Determining the class of such motion models would be another future challenge.
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Chapter 6

Throughput and Delay With

Restricted Mobility

Grossglauser and Tse [21] showed that by allowing the nodes to move, the throughput

scaling changes dramatically. Indeed, if node motion is independent across nodes and has

a uniform stationary distribution, a constant throughput scaling (Θ(1)) per S-D pair is

feasible. This raised the question: what kind of mobility is necessary for achieving constant

throughput scaling? Diggavi, Grossglauser and Tse [10] considered a restricted mobility

model where each node is allowed to move along a randomly chosen great circle on the unit

sphere with a uniform stationary distribution along the great circle. They showed that a

constant throughput per S-D pair is feasible even with this restricted mobility model. Thus

they established that node motion with a stationary distribution on the entire network area

is not necessary for achieving constant throughput scaling.

The constant throughput scaling result of [10] for a network with restricted mobility

raises the question whether the high throughput in spite of restricted mobility is at the

expense of increased delay. Motivated by this question, we study the delay scaling for

constant throughput scaling in a network with restricted mobility. Somewhat surprisingly,

we find that delay scaling is not affected by this mobility restriction either. That is, delay

scales as Θ(n log n), which is the same as the delay scaling when mobility is not restricted.

This seemingly surprising result can be explained as follows. Since there are n nodes in

a network of constant area, the neighborhood of each node is Θ(1/n). Based on this, let

us say that two nodes meet or are neighbors when they are within a distance of Θ (1/
√

n).

The following condition ensures constant throughput scaling in the mobile network models

presented in [21], [10] and this chapter: for Θ(1/n) fraction of the time, each node is a

105
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neighbor of every other node with only Θ(1) other nodes in its neighborhood. This ensures

that the total network throughput is Θ(n) and that it is distributed evenly among the n/2

S-D pairs, so that the throughput is Θ(1). Delay is determined by the first and second

moments of the inter-meeting time of the nodes. In the case of unrestricted mobility, the

inter-meeting time of any two nodes is equivalent to the inter-visit time to state (0, 0) for a

2-D random walk on a
√

n×√
n grid. In the restricted mobility case also the inter-meeting

time turns out to be equivalent to the inter-visit time to state (0, 0) for a slightly different

random walk. However the first two moments are still of the same order and hence the

queuing delay is the same, leading to the same delay scaling. As a result, even with this

particular mobility restriction, the maximal throughput scaling and the corresponding delay

scaling remain unchanged.

The rest of the chapter is organized as follows. In Section 6.1, we introduce the random

mobile network model, some definitions and notation. In Section 6.2, we present a scheme

using random relaying and show that it achieves constant throughput scaling. In Section 6.3,

we show that the delay for this scheme is Θ(n log n).

6.1 Model and definitions

In this section, we present the network model, and the definitions of the performance metrics

– throughput and delay.

We begin with the meaning of uniform distribution of great circles on a sphere. Let

S2 denote the surface of a sphere in R
3 with unit area. For x ∈ S2, let x′ ∈ S2 be

the diametrically opposite point of x. Let G(x) denote the great circle obtained by the

intersection of S2 with the plane passing through the center of S2 and perpendicular to the

line xx′. Let x be called the pole of G(x). If the pole of a great circle is chosen according

to a uniform distribution on S2 then the great circle is said to have a uniform distribution.

Definition 13 (Natural random walk). A natural random walk on a discrete torus of size

m is the process S(t) ∈ {0, . . . ,m− 1}, t = 0, 1, . . ., such that S(0) is uniformly distributed

over {0, . . . ,m − 1} and S(t + 1) is equally likely to be any element of {S(t), S(t) − 1

mod m,S(t) + 1 mod m}.

This differs from a simple random walk, where S(t+1) is equally likely to be any element

of {S(t) − 1 mod m,S(t) + 1 mod m}. In this chapter, we are interested only in scaling

results, which, as we show later, depend on the first two moments of various hitting times

for two-dimensional random walks. Hence we use the terms simple and natural random

walks interchangeably.
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Definition 14 (Random network). The random network consists of n nodes that are split

into n/2 distinct source-destination (S-D) pairs at random. Time is slotted for transmission.

Associated with each node is a great circle of S2 chosen independently according to a uniform

distribution.

The great circle of each node has
√

n equidistant lattice points numbered from 0 to
√

n − 1 placed on it arbitrarily resulting in a one-dimensional discrete torus of size
√

n.

Each node moves according to a natural random walk on these lattice points on its great

circle. Figure 6.1 shows a realization of the random network model. Note that since the

sphere has unit area, its radius is 1/2
√

π. Hence each great circle has perimeter
√

π because

of which the distance between two adjacent lattice points is
√

π/n.

PSfrag replacements

i j

zij

Cij

Figure 6.1: A realization of the random network model. Only the lattice points on the great
circles of nodes i and i are shown. The intersection of their great circles is zij. The shaded
circle is Cij and i and j become neighbors when they are at the two dark lattice points.

We use the Relaxed Protocol model for successful transmission, where the distance

between nodes is the distance on the sphere. The definitions of throughput and delay are

as in Chapter 2.

The differences between this model and the model in [10] are: (i) the Relaxed Protocol

model is used instead of the Physical model, and (ii) each node is assumed to move ac-

cording to a natural random walk instead of just a stationary, ergodic motion with uniform

stationary distribution on the great circle. However, this model has the same 1-D mobility
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restriction. Further, the proofs clearly show that the assumption of mobility according to a

natural random walk is not necessary for achieving constant throughput scaling and is used

only for computing delay.

Now observe that some realizations of the random network may result in the configu-

ration of nodes being such that it is not possible to achieve constant throughput scaling.

Hence we first define a typical configuration which captures the fact that the distribution

of great circles is sufficiently uniform everywhere on the sphere. We need some notation to

introduce this definition.

Let Gi denote the great circle of node i ∈ {1, . . . , n}. For any two nodes i 6= j, Gi and

Gj are not identical with probability 1 under the random network model. Two distinct

great circles must intersect in exactly two points. For each pair i 6= j, select one of the

two distinct intersection points of Gi and Gj uniformly at random and call it zij . Let Cij

denote the disk on the sphere centered at zij with radius (2 + ∆)
√

π/n. See Figure 6.1 for

an illustration.

Definition 15 (Typical configuration). A configuration (i.e., realization of the random

network) is said to be typical if the number of great circles passing through each Cij is

Θ (
√

n).

Definition 16 (Neighbor). We say that nodes i and j are neighbors at time t if both

nodes i and j are at the lattice points of their respective great circles that are closest to zij .

In Figure 6.1, the lattice points for nodes i and j that are closest to zij have been

darkened. Under the random walk model, it is possible that in some time-slot, a node may

not have any neighbors.

6.2 Scheme with constant throughput scaling

In this section we present Scheme Π and show that it achieves constant throughput scaling.

In the next section its delay scaling will be analyzed. Before presenting the scheme, we

prove a property of the random network model which makes the scheme feasible.

Lemma 6.1. Configurations are typical whp.

Proof. Consider any two nodes i and j. First note that the probability that Gi and Gj

coincide is zero. Also any two distinct great circles necessarily intersect at exactly two

points. By definition, Cij has area c1/n (for some positive constant c1) since it has radius

(2 + ∆)
√

π/n.
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Let Ik, k = 1, . . . , n, k 6= i, j, be an indicator random variable for the event that the

great circle of node k, Gk, passes through Cij . By definition, Ik are i.i.d. Bernoulli random

variables with parameter p, where p = c2/
√

n where c2 is a positive constant. This is

because a great circle passes through a disk of radius R if and only if its pole lies in an

equatorial band of width 2R. The probability of this event is Θ(R) as the position of pole

is uniformly distributed over the sphere.

Thus, the total number of great circles passing through Cij is given by a random variable

X =
∑

k Ik with E[X] = (n−1)c2/
√

n = Θ(
√

n). An application of the well-known Chernoff

bound for the sum of i.i.d. Bernoulli random variable (e.g., see [37]), yields

P{|X − E[X]| ≥ δE[X]} ≤ 2 exp
(

−δ2E[X]/2
)

=
1

n3
, for δ =

√

2(log 2+3 log n)
E[X] . (6.1)

The choice of δ in (6.1) shows that X = Θ(E[X]) = Θ (
√

n) with probability at least

1 − 1/n3. Hence by the union bound over all n(n − 1)/2 possible Cij for i, j = 1, . . . , n, we

obtain that with probability at least 1 − 1/n, the number of great circles passing through

each Cij is Θ (
√

n).

The operation of Scheme Π depends on whether the configuration is typical or not. If

the configuration is not typical, direct transmission is used between the S-D pairs along

with time-division multiplexing. That is, the sources transmit to their destinations once in

2/n time-slots in a round-robin fashion. If the configuration is typical then Policy Σn as

described below is used. Policy Σn is a variant of the policies presented in [21], [10].



110 CHAPTER 6. RESTRICTED MOBILITY

Policy Σn:

1. Each time-slot is divided into two sub-slots – A and B.

2. Sub-slot A

(a) Each source node independently becomes active with probability p∆ > 0.

(b) If an active node has one or more neighbors then with probability 0 < α < 1, it

chooses one at random and a packet intended for its destination is transmitted

to this randomly chosen neighbor, which acts as a relay node.

3. Sub-slot B

(a) Each node independently becomes active with probability p∆ > 0.

(b) If an active node has one or more neighbors that are destination nodes, it chooses

one at random. The active node, which acts as a relay, transmits a packet

intended for this destination node, if it has any, in FIFO order.

In policy Σn, each node acts as a relay for all the other n/2−1 S-D pairs. A packet reaches

from its source to its destination as shown in Figure 6.2. A source node, S, transmits its

packet to a random relay node, R, which may also happen to be the destination itself. The

random relay node then moves around carrying the packet. Finally, when it becomes a

neighbor of the destination, D, the packet is transmitted to D. A relay node may receive

several packets from a source before it gets a chance to transmit to the destination. To

handle this, each relay node maintains a separate queue for each of the other n/2 − 1 S-D

pairs. The actual mechanism is slightly more complicated. Since each node decides to

transmit at random, it is possible that two nearby nodes transmit simultaneously so that

some transmissions are not successful under the Protocol model.

6.2.1 Achievability of constant throughput scaling

In order to analyze the throughput of Scheme Π, we first state a result about the probability

of successful transmission between two nodes when they are neighbors under policy Σn.

Lemma 6.2. Under policy Σn, the following hold in a typical configuration.

(a) In sub-slot A, if nodes S and R are neighbors of each other, S transmits a packet to

R successfully with a strictly positive probability, independent of n.
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PSfrag replacements

S

R

D

CSR CRD

Figure 6.2: Source node, S, transmits its packet to a random relay node, R. The packet
is carried by R, until its transmission to the destination node, D, when R and D become
neighbors. The dotted great circles correspond to other nodes which can act as relays.

(b) In sub-slot B, if nodes R and D are neighbors of each other, R transmits a packet to

D successfully with a strictly positive probability, independent of n.

Proof. We shall only prove for the case of sub-slot A since the proof for the other part is

similar. Consider a sub-slot A in which S and R are neighbors. Let E1 be the event that

S becomes active and E2 be the event that S chooses R as a random relay and no other

source node in CSR becomes active. If both events E1 and E2 occur, S transmits to R and

the transmission is successful under the Relaxed Protocol model. Thus,

P ( S transmits to R successfully) = P (E1 ∩ E2)

= P (E1)P (E2|E1). (6.2)

From the description of Policy Σn it is clear that P (E1) = αp∆, which is a strictly

positive constant. Next we compute P (E2|E1) and show that it is lower bounded by a

strictly positive constant, independent of n, which will imply the statement of the lemma.

Given that S is active, the probability of successful transmission to R depends on how

many other nodes are present in CSR since these nodes could interfere, i.e., transmit simul-

taneously so that the transmission from S to R is not successful under the Relaxed Protocol
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model.

Since we have a typical configuration, the number of distinct great circles of source

nodes that intersect CSR is Θ(
√

n), that is, between c3
√

n and c4
√

n for some constants

c3, c4. Moreover each great circle has Θ(1) lattice points that are in CSR. For a natural

random walk on a discrete torus of size
√

n, the probability of being at any particular

position is 1/
√

n. Hence the probability that any of the Θ (
√

n) source nodes whose great

circles intersect CSR is present in CSR is Θ(1/
√

n), that is, between c5
√

n and c6/
√

n for

some constants c5, c6. Due to the independent movement of all nodes, we obtain that for a

typical configuration, the probability of k nodes being present in CSR is at least

(

c3
√

n

k

)(

c5√
n

)k(

1 − c6√
n

)c4
√

n−k

≈ (c3c5)
k exp(−c4c6)

k!
,

for large enough n. If CSR has k nodes not including S and R then S certainly has no more

than k +1 neighbors. In this situation, R is chosen by S with probability at least 1/(k +1).

Further there are at most k other source nodes and the probability that no other node in

CSR becomes active is at least (1 − p∆)k. Thus,

P (E2|E1) ≥
n−2
∑

k=0

(c3c5)
k exp(−c4c6)

k!

1

k + 1
(1 − p∆)k

≥ exp(−c4c5)

n−2
∑

k=0

(c3c5(1 − p∆))k

(k + 1)!
.

It is easy to see that for 0 < p∆ < 1, the term on the right hand side is lower bounded by

a strictly positive constant. Hence, P (E2|E1) is strictly positive. This completes the proof

of the lemma.

Theorem 6.1. Scheme Π achieves T (n) = Θ(1).

Proof. Consider a typical configuration so that policy Σn is used. Fix a source node S

and a relay node R. Let A(t) be the number of bits transmitted from S to R in sub-slot

A of time-slot t. If S transmits to R successfully in sub-slot A of time-slot t, A(t) = W/2

otherwise A(t) = 0.

First we determine E[A(t)]. Let F1 be the event that S and R are neighbors and F2 be

the event that S transmits to R successfully. Then

E[A(t)] =
W

2
P{F1 ∩ F2} =

W

2
P{F1}P{F2|F1}. (6.3)
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From Lemma 6.2(a), P{F2|F1} ≥ c5 > 0. Due to the independent motion of nodes S

and R according to natural random walks, the joint description of their positions is a two-

dimensional random walk on a discrete torus of size
√

n × √
n. It is easy to see that the

stationary distribution for this process is the uniform distribution on n joint positions.

Since S and R become neighbors when they are in one particular joint position out of these

n joint positions, it follows that the probability of S and R being neighbors is 1/n, i.e.,

P (F1) = 1/n. Hence from (6.3) it follows that E[A(t)] = Θ(1/n).

Now the positions of nodes S and R form an irreducible, finite state Markov chain

and A(t) is a bounded, non-negative function of the state of this Markov chain at time t.

Therefore by the ergodicity of such a Markov chain, the long-term throughput between S

and R is

lim
T→∞

1

T

T
∑

t=1

A(t) = E[A(t)] = Θ(1/n).

Thus the throughput between a source node S and any other node in sub-slot A is Θ(1/n).

Similarly, it can be shown that the throughput between any node and a destination node

D in sub-slot B is also Θ(1/n). The value of 0 < α < 1 guarantees that the arrival rate of

packets belonging to every S-D pair at any relay node is strictly less than the service rate.

This ensures the stability of the queues formed at the relay nodes, which in turn implies

that the throughput between each S-D pair is simply the sum of the throughputs between

S and the other n − 1 nodes in sub-slot A. Hence the throughput of each S-D pair is Θ(1).

We have shown that in a typical configuration, Scheme Π provides Θ(1) throughput

between all S-D pairs. From Lemma 6.1, configurations are typical whp. Hence it follows

that Scheme Π has throughput T (n) = Θ(1).

Note that for the unrestricted mobility models in Chapter 1 and the one in [21], it is

possible to prove a stronger result that each S-D pair has Θ(1) throughput for any n with

probability 1, instead of probability approaching 1 as n tends to infinity, as in the present

case.

6.3 Delay of the scheme

Under Scheme Π, if the configuration is not typical, direct transmission is used, in which case

the delay for each packet is 1. Since the delay of a scheme is defined to be the expectation

over all configurations of the average delay, the delay for Scheme Π is determined by the

expected delay over typical configurations. So we shall assume that the configuration is

typical.
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Consider a particular S-D pair. Packets from S reach D either directly by a single hop

in sub-slot A or through any of the other n− 2 nodes, which act as relays. Since the nodes

perform independent random walks, only Θ(1/n) of the packets belonging to any S-D pair

reach their destination in a single hop. Thus, most of the packets reach their destination via

a relay node, in which case the delay is two time-slots for two hops plus the mobile-delay,

which is the time spent by the packet at the relay node.

Each relay node maintains a separate queue for each of the S-D pairs. Fix a relay node,

R, and consider the queue for the S-D pair under consideration. The mobile-delay mentioned

above is the delay at this relay-queue.To compute the average delay for this relay-queue,

we need to study the characteristics of its arrival and potential departure processes.

6.3.1 Lower bound

First we obtain a lower bound on the delay at the relay-queue. Each node performs a random

walk on a 1-D torus of size
√

n on its great circle. We say that an S-D pair intersects node

R’s great circle k vertices apart if the lattice points where R can become neighbors of S and

D are k lattice points (vertices) apart on the 1-D discrete torus of R.

Fix an S-D pair and consider a particular relay node R and suppose that this S-D pair

intersects the great circle of R i vertices apart. Suppose that when a packet is transmitted

successfully from S to R, D is j lattice points away from the position where it can become

a neighbor of S. Let Tij be the random time it takes for a random walk on a
√

n×√
n torus

to hit (0, 0) starting from (i, j). The first time R and D meet after a packet is transmitted

from S is distributed as Tij . Hence the delay for this packet in reaching D is at least Tij. Of

course, the delay can be much more since the packet may not be successfully transmitted or

even transmitted at all when R and D meet for the first time after the arrival of the packet.

Now, when a packet is transmitted successfully from S to R, D is equally likely to be in any

of its
√

n lattice points since it performs an independent random walk. Hence if the S-D

pair intersects the great circle of R i vertices apart then the expected delay for packets of

this S-D pair relayed through R is lower bounded by 1√
n

∑

√
n−1

j=0 Tij .

Using the Chernoff bound for the sum of i.i.d. Bernoulli random variable (e.g., see [37]),

it can be shown that Θ(
√

n) S-D pairs intersect the great circle of each node i points apart

for 0 ≤ i ≤ √
n− 1 whp. Hence the delay of Scheme Π, which is the expected delay over all

packets is

D(n) = Ω



E





1

n

√
n−1
∑

i,j=1

Tij







 .
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As shown in [1], E
[

1
n

∑

√
n−1

i,j=1 Tij

]

= Θ(n log n). Therefore,

D(n) = Ω(n log n). (6.4)

6.3.2 Upper bound

The rest of this section derives an upper bound which is of the same order as the lower

bound. It is hard to obtain an upper bound on the delay in the relay-queue since the arrival

and service processes are complicated and dependent. We progressively obtain queues that

are simpler to analyze and upper bound the delay of the previous queue as follows. We first

upper bound the delay in the relay-queue by that in another queue, Q1, in which the arrival

process is simpler. The delay of Q1 is upper bounded by that in Q2, which has a relatively

simpler service process. However, the arrival and service process are not independent. The

final part consists of introducing a virtual server with i.i.d. Geometric service times to break

this dependence. With this overview, we proceed to the details.

Recall that a packet arrives at the relay-queue when (i) S and R are neighbors, (ii)

S becomes active (which happens with probability αp∆), (iii) S chooses R as a random

relay, and (iv) the transmission from S to R is successful. Similarly, a packet can depart

from the queue when (i’) R and D are neighbors, (ii’) R becomes active (which happens

with probability p∆), (iii’) R chooses D as the destination node, and (iv’) the transmission

is successful. We call such a time-slot a potential departure instant and the sequence of

inter-potential-departure times is called the potential-departure process. Let the potential-

departure process of the relay-queue be called {Si}. The qualifier potential is used since a

departure can occur only if R has a packet for D.

Upper bound on delay of relay-queue by that of Q1

Consider a queue Q1 in which arrivals happen whenever (i), (ii) and (iii) above are satisfied,

irrespective of whether (iv) is satisfied or not. The potential departure process for Q1 is the

same as that for the relay-queue. Then it is clear that the expected delay in Q1 provides

an upper bound on that in the relay-queue.

Recall that the motion of each node is an independent 1-D random walk on a discrete

torus of size
√

n. We will say that two nodes meet when they become neighbors. Since nodes

move independently the joint position of nodes R and D is a random walk on a
√

n ×√
n

discrete torus and R and D become neighbors when the 2-D random walk is in state (0, 0),

without loss of generality. Therefore, the inter-meeting time of R and D is distributed like

the inter-visit time of state (0, 0) of a 2-D random walk. Since this is a Markov chain with n
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states having a uniform stationary distribution, we know that the sequence of inter-meeting

times of nodes R and D, denoted by {τi, i ≥ 0}, is an i.i.d. process. Further, if τ is a random

variable with the common distribution then

E[τ ] = n. (6.5)

However a potential departure instant does not occur each time R and D meet. A

potential departure instant occurs only if R also becomes active, chooses D as the random

destination and the transmission is successful. If R and D are not chosen in spite of being

in the same cell, it increases the likelihood of there being many more nodes in the same

cell. Due to the random walk model of the node mobility, if there is a crowding of nodes

in some part of the network then it remains crowded for some time in the future. Hence

due to the Markovian nature of node mobility, the inter-potential-departure times are not

independent.

Upper bound on delay of Q1 by that of Q2

We want to obtain an upper bound on the delay of Q1 which has potential-departure process

{Si}. To do this we will consider a queue, Q2, which has the same arrival process as Q1 but a

different departure process {S̃i} such that S̃i|S̃i−1, . . . stochastically dominates Si|Si−1, . . ..

Then the expected delay in Q2 would provide an upper bound on the the expected delay in

the relay-queue.

Nodes R and D perform independent random walks on 1-D tori of size
√

n on their great

circles as shown in Figure 6.2 and R and D meet when both are at a particular pair of lattice

points. This is represented schematically in Figure 6.3, where R performs a vertical 1-D

random walk and D performs a horizontal 1-D random walk. The joint motion of nodes R

and D is equivalent to a random walk on a 2-D torus of size
√

n ×√
n and R and D meet

when this 2-D random walk is in state (0, 0). The inter-meeting times of nodes R and D

correspond to the i.i.d. process {τi}. Further, let αi = τ1 + . . . + τi for i ≥ 1, i.e., αi is

the time-slot in which R and D meet for the ith time. In a typical configuration, we know

that the number of other great circles that pass through CRD is Θ (
√

n). Allowing for the

worst case, based on Lemma 6.1, let there be c7
√

n = m − 2 other great circles that pass

through CRD. These can also be thought of as performing independent random walks on

the horizontal 1-D torus. Let nodes R and D be numbered 1 and 2 and the other c7
√

n

nodes be numbered from 3 to m and let X(t) = (X1(t), . . . , Xm(t)) denote the position of

these m nodes on the
√

n ×√
n discrete torus at time t.
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Figure 6.3: Schematic representation of the motion of nodes R and D on their respective
great circles with ζ =

√
n − 1.

A constant number of lattice points of the 1-D torus correspond to CRD and these are

shown by the shaded region in Figure 6.3 and is referred to as set A. Let Ei be the indicator

for the event that R chooses D and the transmission is successful in time-slot αi. That is,

Ei is the indicator for the event that αi is a potential departure instant. Let Ni be the

number of other destination nodes in A in time-slot αi. Then P{Ei = 1} depends on Ni

only. Now, Ni depends on X(αi) which depends on the past given by E i−1 = {E0, . . . , Ei−1}
and τ i = {τ0, . . . , τi}. Thus the potential-departure process is generated by choosing some

of the meeting instants of R and D according to a probability modulated by Ni, which is

another independent process as shown in Figure 6.4.

Above we described how the process {Si} can be generated using the processes {Ni}
and {τi}, which in turn were obtained from {X(t)}, which corresponds to the independent

random walks of all m nodes. Next we shall perturb the process {X(t)} to obtain {X̃(t)}
and the corresponding {τ̃i} and {Ñi}. Let Z(t) be a 1-D horizontal random walk on a torus

of size
√

n. Let X̃i(t) = Xi(t)+Z(t) be the position of node i, 1 ≤ i ≤ m, where the addition

is modulo
√

n. Then the inter-meeting times of any two nodes are the same as before since

the position of each node is shifted horizontally by the same amount due to Z(t). As a

result the processes τi and τ̃i are identical. Under the modified setup, the lattice point at

which R and D meet can be any element of the set B = {(i, 0) : 0 ≤ i ≤ √
n − 1} instead
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PSfrag replacements
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Figure 6.4: The ‘x’ marks correspond to the times when R and D meet each other. At some
of these meeting instants the R-D transmission can be successful. Such points have been
circled and correspond to Ei = 1. The inter-potential-service times are thus the sum of a
few of the inter-meeting times of R and D.

of always being (0, 0). The above perturbation was used to obtain this property which is

crucial for the proof technique of Lemma 6.3. Let Ñi be the number of other destination

nodes in the set A + Z(t). Then, {Ñi} is identical to {Ni}. Thus the process {Si} can also

be generated (through {Ei}) using {Ñi} and {τ̃i} instead of {Ni} and {τi}. Therefore we

shall use X̃i(t) as the position of node i at time t instead of Xi(t). Under this perturbed

motion, R can be seen as if it performs a 2-D random walk on the
√

n ×√
n torus while D

and the other m − 2 nodes perform a 1-D random walk on a 1-D torus of size
√

n which is

subset B of the 2-D torus. Moreover, given X̃m
3 (αi) = (X̃3(αi), . . . , X̃m(αi)), P{Ei = 1} is

independent of everything else.

Lemma 6.3. There exists a constant (independent of n) c8 > 0 such that

P
(

Ei = 1|τ i, Ei−1
)

≥ c8 > 0.

Proof. The initial position of R, X1(0) has a uniform distribution on the
√

n×√
n torus. The

initial positions of D and nodes 3 to m have independent uniform distributions on subset

B = {(i, 0) : 0 ≤ i ≤ √
n − 1} of the

√
n × √

n torus. As a result X1(α1) = X2(α1) = I

where I is a random variable with a uniform distribution over B.

Let V = (X̃3(αi), . . . , X̃m(αi)) be the configuration of the m−2 nodes other than R and

D. Then the conditional probability of a potential departure given the past can be written
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as

P
(

Ei = 1|τ i, Ei−1
)

=
∑

V

P
(

Ei = 1|V, τ i, Ei−1
)

P
(

V, τ i, Ei−1
)

P (τ i, Ei−1)

≥min
V

P (Ei = 1|V, τ i, Ei−1)

[

∑

V

P (V, τ i, Ei−1)

P (τ i, Ei−1)

]

=min
V

P (Ei = 1|V, τ i, Ei−1)

=min
V

P (Ei = 1|V ) , (6.6)

where the last equality holds because Ei is independent of everything else given V .

Given a configuration V , the number of nodes in A+(i−1, 0) for i = 1, . . . ,
√

n torus can

be found and this in turn determines the P (Ei = 1|V ). Hence, if Vi denotes the number of

nodes other than R and D in the set A+(i−1, 0) for i = 1, . . . ,
√

n then we can equivalently

let the configuration be V = (V1, . . . , V√
n).

Now consider a fixed configuration, V = v = (v1, . . . , v√n), and let Z be a random

variable which takes value vi, 1 ≤ i ≤ √
n with probability 1/

√
n. Let A consist of c9 (some

constant) elements. Then

E[Z] =
1√
n

√
n

∑

k=1

vk =
c9(m − 2)√

n
= Θ(1). (6.7)

Recall that X1(αi) = I, where I is a random variable with uniform distribution on B.

Further, from the description of Scheme Π, if there are vk destination nodes other than D in

CRD then Ei = 1 if R chooses D out of all destination nodes that are its neighbors and the

other vk nodes do not transmit. Since CRD contains all neighbors and more, the number of

neighbors can be no more than Xi and hence for k = 1, . . . ,
√

n, we obtain

P (Ei = 1|V = v,X1(αi) = (k − 1, 0)) ≥ p∆(1 − p∆)vk+1

vk + 1
. (6.8)

Define a real valued function f : R → R where f(x) = p∆(1−p∆)x+1

x+1 . It is easy to check

that f(·) is a convex function. Hence, by Jensen’s inequality,

E[f(Z)] ≥ f(E[Z]). (6.9)
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Using (6.7), (6.8) and (6.9), for any configuration V with corresponding v, we obtain

P (Ei = 1|V = v)

=

√
n

∑

k=1

P (Ei = 1|V = v,X1(αi) = (k − 1, 0))

P (X1(αi) = (k − 1, 0)|V = v)

=
1√
n

√
n

∑

k=1

P (Ei = 1|V = v,X1(αi) = (k − 1, 0))

≥ 1√
n

√
n

∑

k=1

p∆(1 − p∆)vk+1

vk + 1

=E[f(Z)]

≥f(E[Z])

=f

(

c9(m − 2)√
n

)

4
= c8 > 0. (6.10)

Combining (6.6) and (6.10) completes the proof of the lemma.

Recall that the process {Si} is generated from {τi} and {Ei}. Consider an i.i.d. Bernoulli

process {Ẽi} with P{Ẽ1 = 1} = c8. Now we can construct a process {S̃i, i ≥ 1} similar

to the process {Si} using {τi} and {Ẽi} instead of {Ei}. From Lemma 6.3 and from the

construction of the processes {Si} and {S̃i}, it is easy to verify that S̃i|S̃i−1, . . . stochastically

dominates Si|Xi−1, . . .. Now consider queue, Q2, with the same arrival process as Q1 but

with potential-departure process {S̃i}. Depending on the value of c8, the value of α can be

chosen so that the arrival rate is strictly smaller than the potential departure rate in Q2 so

as to ensure stability. The distribution of S̃1 is the same as τ1 + . . . + τG, where G is an

independent Geometric random variable with parameter c8. As a result, for any r ∈ N,

E[S̃r
1 ] = Θ(E[τ r

1 ]). (6.11)

In light of (6.11), it is easy to see that the delay scaling of queue Q2 is the same as the delay

scaling of a queue in which an arrival happens each time S and R meet with probability 0.5

and a potential departure occurs each time R and D meet. Since we are interested only in

the delay scaling, henceforth we assume that in Q2, an arrival happens when S and R meet

with probability 0.5 and a potential departure occurs whenever R and D meet.

At this stage we have upper bounded the delay in the relay-queue by the delay in Q2.
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The inter-arrival times and the inter-potential departure times in Q2 are i.i.d. processes.

However these two processes are not independent for the following simple reason: if the

S-D pair intersects the great circle of R, k > 0 vertices apart then R has to travel at least

distance k on the discrete torus after an arrival for a potential departure to occur.

The following theorem easily follows by upper bounding the delay in Q2 as in the proof

of Theorem 5.4 in Chapter 5. See [36] for details.

Theorem 6.2. The delay of Scheme Π is Θ(n log n).

6.4 Discussion

In this chapter, we studied the maximum throughput scaling and the corresponding delay

scaling in a random mobile network with restricted node mobility. In [10], it was shown that

a particular mobility restriction does not affect the throughput scaling. In this chapter, we

showed that it does not affect delay scaling either. In particular, we showed that constant

throughput scaling with a delay of order n log n is achievable. This is the same as the delay

scaling without any mobility restriction, which was studied in Chapter 5. This is understood

to be a consequence of the fact that in spite of an apparent restriction, essentially the node

mobility remains unchanged in the sense that (i) each node meets every other node for

Θ(1/n) fraction of the time with only Θ(1) other neighboring nodes, and (ii) the inter-

meeting time of nodes has mean of Θ(n) and variance of O(n2 log n).
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Chapter 7

Conclusion

Throughput, delay, and energy consumption are the main metrics of performance in a

communication network and the network is characterized by the trade-offs between these

metrics. We studied how these trade-offs scale with the number of nodes in an ad hoc

wireless network. We used a probabilistic framework in which our results hold with high

probability, as the number of nodes increases. Thus our results characterize the performance

of large wireless networks.

Our work results in a more complete understanding of the random network framework for

static and mobile networks, initiated in [23] and [21], respectively. In addition to through-

put, which was studied in previous work, our study includes delay and energy consumption,

and the trade-offs between them.

An important implication of our work for static networks is that simple schemes are

optimal in terms of the trade-off between throughput, delay, and energy. These simple

schemes involve dividing the network into cells, using time division multiplexing between

cells to mitigate interference, and routing packets by hops along adjacent cells on the shortest

path. Thus cooperation between nodes, by relaying data for each other, results in the best

possible performance, although performance inevitably degrades as the number of nodes

in the network increase. As shown in Chapter 4, the size of the cells, or equivalently the

amount of hopping, depends on the area covered by the network and the trade-off point at

which the network is to be operated. Our work also suggests that infrastructure may be

necessary for some applications.

An important insight provided by our work for mobile networks is that mobility is a

hindrance in the low throughput range, in the sense that it increases the complexity of

data communication schemes. Another surprising insight is that attempting to achieve any

throughput higher than that achievable in static networks, by using node mobility, incurs

123
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a significantly higher delay.

In order to analytically determine the fundamental trade-offs, we implicitly assumed

that centralized knowledge of the location of nodes is available. In static networks, one can

have an initialization phase in which the location of nodes, the cellular structure, and the

shortest paths are determined. However, in mobile networks, this involves a lot of overhead

since nodes are moving. This suggests using algorithms that require only local informa-

tion. Investigation of such low-overhead algorithms for initialization and maintenance, with

performance guarantees, would be very useful.

Our study was based on treating the wireless network as a data communication network.

In several applications, data communication, although a critical aspect, is not the main goal.

For example, a wireless network of cameras for surveillance would need to process the data

from all cameras and detect and flag suspicious events. In several interesting applications,

the goal is information processing in networks so that the computing and communication

capabilities at all nodes can be effectively used for performing the desired task. This calls

for the investigation of fast and energy-efficient algorithms with performance guarantees for

information processing in networks. See [41], [39], [25] for representative samples of recent

work in this direction.
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