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Abstract
A camera network node subset selection methodology for

target localization in the presence of static and moving oc-
cluders is described. It is assumed that the locations of the
static occluders are known, but that only prior statistics for
the positions of the object and the moving occluders are
available. This occluder information is captured in the cam-
era measurement via an indicator random variable that takes
the value 1 if the camera can see the object and 0, otherwise.
The minimum MSE of the best linear estimate of object posi-
tion based on camera measurements is then used as a metric
for selection. It is shown through simulations and experi-
mentally that a greedy selection heuristic performs close to
optimal and outperforms other heuristics.
Keywords

Wireless sensor network, camera network, selection, tar-
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1 Introduction

There is a growing need to develop low cost wireless
networks of cameras with automated detection capabilities,
e.g., [6]. The main challenge in building such networks is
the high data rate of video cameras. On the one hand send-
ing all the data, even after performing standard compression,
is very costly in transmission energy, and on the other, per-
forming sophisticated vision processing at each node to sub-
stantially reduce transmission rate requires high processing
energy. To address these challenges, a task-driven approach,
in which simple local processing is performed at each node
to extract the essential information needed for the network to
collaboratively perform the task, has been proposed, e.g., [5].
Communication and computation cost can also be reduced
by dynamically selecting the best subset of camera nodes to
collaboratively perform the task. Such selection allows for
efficient sensing with little performance degradation relative
to using all the cameras, and makes it possible to scale to the
network to a large numbers of nodes.

The selection problem has been studied in the sensor net-
work literature, where a utility metric of the task is optimized
over subsets of the desired size. Examples of such metrics
include, information theoretic quantities such as Fischer In-
formation Matrix and mutual information, e.g., [3, 4], cover-
age [9], and occupancy map [7, 12]. Other researchers con-
sidered general utility functions and used their properties for
optimal selection [1, 2]. Camera selection has also been a

topic of interest in computer vision and graphics. In view-
point selection scene models and metrics such as the number
of faces or voxels seen have been used [8, 11].

The work in this paper follows the framework in [5],
where the selection for single point target localization in a
camera network is investigated. In that work, noisy camera
measurements and an object prior are assumed and the min-
imum mean squared error (MSE) of the best linear estimate
of the object position in 2-D is used as a metric for selection.
As selection is a combinatorial problem, a semi-definite pro-
gramming approximation is proposed and shown to achieve
close to optimal solutions with low computational burden. A
simple heuristic for dealing with limited camera field of view
(FOV) and static occluders are briefly discussed but are not
tested in simulations or experimentally. More importantly,
no dynamic (moving) occluders are considered in [5].

In this paper, we show how static and dynamic occlusions
and limited FOV can be incorporated in the framework of
[5]. We assume that simple local processing whereby each
image is reduced to a scan-line is performed, and only the
center of the detected object from each camera node is com-
municated to its cluster head. The minimum MSE of the
best linear estimate of the point object position that incorpo-
rates the occlusions and limited FOV is used for selection.
Given the noisy camera measurements, the object prior, the
dynamic occluder priors, the static occluder information and
the FOVs of the cameras, a greedy heuristic is used for se-
lection. We show that this simple heuristic performs close
to optimal and outperforms naive heuristics such as, picking
the closest subset of cameras or a uniformly spaced subset.

The rest of the paper is organized as follows: In Section 2,
we introduce the setup and camera model, define the selec-
tion metric and explain how it can be efficiently computed.
In Section 3, we compare the performance of the greedy se-
lection heuristic to other heuristics and to the optimal solu-
tion, both in simulation and experimentally.

2 Problem Formulation
We consider the setup illustrated in Fig. 1 in which N

cameras are aimed roughly horizontally around a room. Al-
though an overhead camera would have a less occluded view
than a horizontally placed one, it generally has a more lim-
ited view of the scene and is often impractical to deploy. Ad-
ditionally targets may be easier to identify in a horizontal
view. The cameras are assumed to be fixed and their lo-
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Figure 1. Illustration of the setup.

cations and orientations are known to some accuracy. The
camera network’s task is to localize an object in the pres-
ence of static occlusions (such as partitions, tables, etc) and
other moving objects. We assume the object to localize to
be a point object. This is reasonable because the object may
be distinguished from occluders using certain point features.
We assume M other moving objects, each modeled as cylin-
der of diameter D. The position of each object is assumed
to be the center of its cylinder. From now on, we shall refer
to the object to localize as the “object” and the other moving
objects as “dynamic occluders.”

Our focus is on selecting the best subset of nodes of size
k < N to perform the localization. We assume that selection
is performed in a short enough time that all objects can be
considered still during the process. What differentiates a dy-
namic from a static object is the degree of knowledge about
their positions. We assume the positions and the shapes of
the static occluders to be completely known in advance. On
the other hand, we assume that only some statistics of the
object and dynamic occluder positions are known. Such in-
formation can be made available through a higher level appli-
cation such as tracking that is performed by the camera net-
work. Specifically, we assume that the object position x is a
Gaussian random vector with mean µ and covariance matrix
Σx, and the position of dynamic occluder s ∈ {1,2, . . .M}, xs,
to be also Gaussian with mean µs and covariance matrix Σs.
Further, the positions of the object and dynamic occluders
are assumed to be mutually independent.

As in [5], we assume simple background subtraction is
performed locally at each camera node. Since the horizon-
tal position of the object in each camera’s image plane is
the most relevant information to 2-D localization, the back-
ground subtracted images are vertically summed and thresh-
olded to obtain a “scan-line” (see Fig. 2). We assume that
the camera nodes can distinguish between the object and the
occluders. This can be done, for example, through feature
detection, e.g., [10]. Only the center of the object in the
scan-line is sent to the cluster-head. If a camera can “see”
the object, we assume the linear noisy camera model in [5].
On the other hand, if the camera cannot see the object be-
cause of occlusions, it assumes that the object is at its mean,
which provides no new information. Mathematically, we de-
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Figure 2. Local processing at each camera node.

fine for camera i = 1,2, . . . ,N, the random variable

ηi ≡
{

1, if camera i sees the object
0, otherwise.

The camera measurement model including occlusions is then
defined as

zi = ηi
(

aT
i (x−µ)+ vi

)

+aT
i µ, i = 1,2, . . . ,N, (1)

where aT
i = [−sin(θi) cos(θi)], vi is camera i’s measurement

error and is assumed to be Gaussian with zero mean and vari-
ance σ2

vi = σ2
oi +ζi d̄i

2, where d̄i is the distance from camera
i to the mean of the object position µ (see Fig. 1). The vis are
assumed to be mutually independent and also independent of
the object and dynamic occluder positions.

We formulate the problem of camera node selection for
target localization in the framework of linear estimation
(LE) [5]. Given the object and dynamic occluder priors,
the positions and shapes of the static occluders, the camera
FOVs and the camera noise parameters, we use the mini-
mum MSE of the best linear estimate of the object position
as a metric for localization error. The best camera node sub-
set is defined as the subset that minimizes this metric. Note
that we do not propose or assume that the actual localization
is performed using LE. Once the best subset is chosen, the
selected camera nodes are queried for measurements and an
appropriate localization method such as a Bayesian estima-
tor, which can handle a more accurate camera model may be
used.

To compute the MSE, define for cameras i, j ∈
{1,2, . . . ,N}

pi j(x) ≡ Pr{ηi = 1,η j = 1|x}, (2)

Then it can be shown that the MSE of the linear estimator
assuming the camera model in (1) is given by

MSE = Tr
(

Σx −ΣT
zxΣ−1

z Σzx
)

(3)
Σzx(i) = aT

i
[

Ex
(

pii(x)x̃x̃T )]

ρ(i) ≡ aT
i [Ex (pii(x)x̃)]

Σz(i, j) = aT
i Ex

(

pi j(x)x̃x̃T )

a j −ρ(i)ρ( j)

+

{

Ex (pii(x))σ2
vi i = j

0 i 6= j ,



where x̃ ≡ x− µ. The MSE for a subset S ⊂ {1,2, . . . ,N},
MSE(S), is defined as in (3) but with only the camera nodes
in S included.

2.1 Computing MSE(S):
Since selection is envisioned to be performed at each clus-

ter head, it is important that MSE(S) can be efficiently com-
puted and optimized. In order to do this, we need to com-
pute the probabilities pi j(x) and then evaluate the expecta-
tions over x.

First we ignore the static occluders and limited camera
FOV and only consider the dynamic occluders. Now, con-
sider

pii(x) = Pr{ηi = 1|x}
= Pr{cami is not occluded |x}

= Pr
{

M
\

s=1
(object s does not occlude cami)

∣

∣

∣

∣

x
}

(a)
=

M
∏
s=1

Pr{objs does not occlude cami|x}

=
M
∏
s=1

(1−qs
i(x)) , (4)

where step (a) follows by the assumption that the
occluder positions are independent, and qs

i (x) =
Pr{Object s occludes cami|x}.

To compute qs
i (x), refer to Fig. 3. Without loss of gen-

erality we assume that camera i is at the origin. We assume
that the dynamic occluder diameter D is small compared to
the occluder standard deviations. Note that object s occludes
point x at camera i if its center is inside the rectangle Ai(x).
With these assumptions, we can approximate qs

i (x) by

qs
i (x)

=

Z

Ai(x)

1
2π

√

|Σs|
exp

(

−1
2(x′−µs)

T Σ−1
s (x′−µs)

)

dx′

(b)
≈ D

2σs

√

α
2π‖v‖2 exp

(

−α(µsy cos(θsi)−µsx sin(θsi)2

2σ2
s‖v‖2

)

[

erf
(

1√
2σs

‖x‖‖v‖2−µT
s u

‖v‖

)

+ erf
(

1√
2σs

µT
s u
‖v‖

)]

,

where u = [cos(θsi) αsin(θsi)]T , v = [cos(θsi)
√

αsin(θsi)]T ,
σ2

s and σ2
s /α, α ≥ 1, are the eigenvalues of the covariance

matrix Σs of the position of occluder s, and step (b) follows
by the assumption of small dynamic occluders. We integrate
the Gaussian along the long edge of Ai(x) and assume it to be
constant along the short edge. Next, we consider computing
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Figure 3. Computing qs
i (x).

pi j(x), for i 6= j

pi j(x) = Pr
{

M
\

s=1
(object s /∈ Ai(x) and object s /∈ A j(x))

∣

∣

∣

∣

x
}

=
M
∏
s=1

Pr
{

object s /∈ Ai(x) and object s /∈ A j(x)|x
}

=
M
∏
s=1

(

1−Pr
{

object s ∈ Ai(x) or object s ∈ A j(x)|x
})

(c)
≈

M
∏
s=1

(

1−Pr{object s ∈ Ai(x)}−Pr
{

object s ∈ A j(x)|x
})

=
M
∏
s=1

(

1−qs
i(x)−qs

j(x)
)

, (5)

where (c) follows from the assumption of small D and the
reasonable assumption that cameras i and j are not too close
so that the overlap between Ai(x) and A j(x) is negligible.

To compute the expectations in (3), we fit a grid of points
over the 3-σ ellipse of the Gaussian pdf. The pi js are com-
puted over these points as explained above. We then perform
a 2-D numerical integration over the grid.
2.2 Adding Static Occluders and Limited

FOV
The effects of static occluders and limited FOV can be

readily included in computing pii(x) and pi j(x). Let Ii(x) be
the indicator function of the points visible to camera i when
static occluders and the limited FOV are present (see Fig. 4),
then it is easy to show that

pii(x) = Pr
{

(Ii(x) = 1) and
M
\

s=1
(object s /∈ Ai(x))

∣

∣

∣

∣

x
}

= Ii(x)
M
∏
s=1

(1−qs
i(x)) , and similarly (6)

pi j(x) = Ii(x)I j(x)
M
∏
s=1

(

1−qs
i(x)−qs

j(x)
)

. (7)

3 Selection
The selection problem involves minimizing MSE(S) sub-

ject to |S| = k. This is combinatorial and requires O(Nk)
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trials if brute-force search is used. This can be too costly in a
wireless camera network setting. Note that in [5], we found a
closed form expression for MSE(S) and used a semi-definite
programming (SDP) heuristic to perform the selection. As
the occlusions at different cameras (represented by the ηis)
are not independent from each other or from x, we cannot re-
duce the MSE to a simple closed form and use the same SDP
heuristic. Instead, we use the greedy selection algorithm in
Fig. 5. Fortunately, as we shall demonstrate in the follow-
ing subsections, this greedy heuristic yields close to optimal
results.

It can be shown that the computational complexity of the
greedy algorithm is O(k2MNL+ k4N), where k is the subset
size, M is the number of dynamic occluders, N is the num-
ber of cameras, and L is the number of grid points used to
evaluate the expectations in (3).
3.1 Simulation Results

We performed Monte-Carlo simulations to compare the
performance of the greedy approach to the optimal brute-
force enumeration as well as to the heuristics:
• Uniform: Pick uniformly placed cameras.
• Closest: Pick the closest cameras to the object mean.

Fig. 6 compares the RMS localization error of the four se-
lection procedures for a typical simulation run with k = 3 to
9 camera nodes out of 30 cameras uniformly placed around
a circular room with 3 static occluders and 10 dynamic oc-
cluders. We first randomly chose the object and dynamic
occluder prior parameters as follows. We chose the means
randomly and independently. The eigenvalues of Σx are set
equal to 100 and 12.5. The larger eigenvalue of Σs is set
equal to 100 and the smaller one is chosen at random. We
then applied random rotations to all priors. We performed
the selection using the four aforementioned procedures. We
then dropped the object and the dynamic occluders at random
according to the selected priors 5000 times and localized the
object with the selected camera nodes. This procedure was
repeated 20 times. As seen in Fig. 6, the error for the greedy
approach completely overlaps with that of brute-force enu-
meration and outperforms the other heuristics.

Note that, even if a selection algorithm makes bad deci-
sions, e.g., selects cameras that are all occluded, the worst
the central processor (cluster head) can do is predict that the
object position is at its mean. Because of this, the differ-
ence in performance between the above procedures is not
too large. However, in an application such as tracking, these
errors could build up over time and may in fact result in com-

Algorithm: Greedy camera node selection
Inputs: Object’s prior (µ, Σx);
Dynamic occluders’ priors (µs,Σs,s ∈ {1, . . . ,M});
Shapes and positions of static occluders;
Camera positions and orientations (θi, i ∈ {1, . . . ,N});
FOVs of the cameras;
Number of camera nodes to select (k).
Output: Best subset (S).
01. Choose a grid of points xl centered

at µ covering 3-σ ellipse of Σx,
l ∈ {1, . . . ,L}

02. S := /0
03. for c = 1 . . .k
04. E := ∞
05. for i = 1 . . .N
06. if i /∈ S
07. S := S ∪ {i}
08. Compute pi j(xl), j ∈ S
09. e := MSE(S)
10. if e < E
11. E := e, b := i
12. end if
13. S := S\{i}
14. end if
15. end for
16. S := S ∪ {b}
17. end for

Figure 5. The greedy camera node selection algorithm.

pletely losing the object.
Fig. 7 depicts an example selection for k = 3. Note that

even though the selection using the closest heuristic seems to
be quite natural because it avoids occlusions with high prob-
ability, the greedy, which selects the same nodes as the brute
force in this case, better localizes the object along the major
axis of its prior, where the uncertainty about its position is
higher.
3.2 Experimental Results

We tested our selection algorithm in an experimental
setup consisting of 16 web cameras placed around a 22′×19′
room. The horizontal FOV of the cameras used is 47◦, and
they all look toward the center of the room. The relative po-
sitions and orientations of the cameras in the room can be
seen in Fig. 8(a). The cameras are hooked up to a PC via
an IEEE 1394 (FireWire) interface and can provide 8-bit 3-
channel (RGB) raw video at 15 Frames/s. The PC connected
to a camera models a camera node with processing and com-
munication capabilities. Each PC is connected to 2 cameras,
but the data from each camera is processed independently.
The data is then sent to a central PC (cluster head), where
further processing is performed.

The simple processing described in Section 2 is per-
formed by the selected nodes and the scan-lines are sent to
the cluster head where localization is performed. The object
was randomly placed 100 times according to the prior shown
in Fig. 8(a). The object to localize is the tip of the tripod as
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Figure 7. An example selection for k = 3. The prior with
multiple contours is for the object. The priors with single
contour are for the dynamic occluders. The black rectan-
gles are static occluders. Closest heuristic selects cameras
marked with squares. Greedy and brute-force select the
cameras marked with triangles.

shown in Fig. 8(b). We added 2 static and 10 dynamic “vir-
tual” occluders to the experimental data. We randomly se-
lected priors for the dynamic occluders as before. For each
placement of the object, we randomly placed the dynamic
occluders, according to these priors. After the camera nodes
are selected and queried for measurements, we threw away
the measurements from the cameras that would have been
occluded, had there been real occluders. The selection proce-
dures were applied with k = 2 to 7 camera nodes and the ob-
ject was localized with the selected nodes for 100 placements
using linear estimation. This procedure was repeated 100
times using different random priors for the dynamic occlud-
ers. The virtual static occluders have fixed locations through-
out. Fig. 9 compares the RMS localization error of the
four selection procedures averaged over 100×100 = 10,000
runs. As can be seen from the figure, the greedy approach
again outperforms the other 2 heuristics and performs very
close to brute-force enumeration. The experiments confirm
that our selection algorithm is useful using real cameras with

highly non-linear measurements.
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Figure 8. Experimental setup. (a) The prior with multi-
ple contours is for the object. The priors with single con-
tour are for the dynamic occluders. The black rectangles
are static occluders. Cones show FOVs of cameras. (b)
The object to be localized.
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Figure 9. Experimental Results. µ = [163.8,111.4]T

inches (origin is the lower left corner of the room in
Fig. 8(a)), Σx = (35.5,−43.5; −43.5,126.5) square inches,
D = 12 inches. The measured noise parameters for the
cameras are ζi = 0.0012 and σoi = 1 inch.

4 Conclusion
The paper develops a camera network node selection

methodology for target localization in the presence of static
and moving occluders. The minimum MSE of the best linear
estimate of object position based on camera measurements
is used as a metric for selection. It is shown through simu-
lations and experimentally that a greedy selection heuristic
performs close to optimal.
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