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Katalin Marton’s Lasting Legacy

Abstract—This article highlights some of Katalin Mar-
ton’s main contributions to rate distortion theory, proba-
bility theory, and multiuser information theory and their
lasting impact on the work of many other researchers.

Introduction
Katalin Marton (December 9, 1941–December 13, 2019) was a
Hungarian mathematician who made important and lasting con-
tributions to information theory and its applications in probabil-
ity theory. In 2013, she became the first woman to win the
Claude E. ShannonAward, the IEEE Information Theory Society’s
highest honor, established in 1972 to recognize profound and
consistent contributions to the field. We describe some of her
contributions and their lasting impact on the field and on the
work ofmany researchers, including the authors.

The topics covered in this article represent a substantial part of
Marton’s work but are not comprehensive. We refer the readers
to the obituary by Csisz�ar and K€orner [16], her closest collabora-
tors, for additional information about herwork and her life.

Marton began her career during a revival in the late 1960s and
early 1970s of Shannon’s original 1948 and 1959 and Kolmo-
gorov’s 1956 work on rate distortion theory. She made several
generalizations to Shannon’s rate distortion and related results.
A decade later and using similar tools, she was a co-founder of
the field of distance–divergence inequalities, which played a
fundamental role in the study of concentration of measure,
bringing information theory tools to new audiences. Marton
was a pioneer and a major contributor to multiuser informa-
tion theory, especially the broadcast channel (BC). Her contri-
butions to this problem ranged from defining new classes of BC
to her namesake region, which remains as the tightest known
inner bound on the capacity region of this channel. Another
notable contribution ofMarton tomultiuser information theory
is her result together with K€orner on distributed computation
of the modulo two sum of two sources. This result was the first

to show that structured codes can outperform random codes in
multiuser communication and has had significant recent fol-
low-onwork.

Rate Distortion Theory
Marton’s earliest work, including her first publication [53],
dealt with rate distortion theory, a branch of information the-
ory first introduced by Shannon in his classic 1948 paper [83]
in which he put forth the general model of a point-to-point
communication system depicted in Figure 1. The source X is
a random object, which may be a random vector Xn ¼
ðX1; X2; . . . ; XnÞ, a discrete time random process fXn : n 2
Zg, or a continuous time random process. To reliably com-
municate the source over the channel, an encoder maps the
source outcome into a codeword U , which is then transmit-
ted over the channel. To reproduce the source X, a decoder
maps the corresponding channel output V into an estimate
X̂. Shannon established necessary and sufficient conditions
for reliable recovery of the source and showed for several
classes of sources and channels the existence of ensembles
of codes that can achieve these conditions.

When the channel is noiseless, i.e., U ¼ V , with capacity
C bits/transmission, the communication model reduces to
source coding or compression. Shannon showed that for a dis-
crete time stationary process drawn from a discrete alpha-
bet, the entropy rate H < C is necessary and sufficient for
asymptotically lossless reproduction of the source. Motivated
by a desire to extend this result to continuous alphabet sour-
ces, in Part V of [83] Shannon introduced the notion of fidel-
ity in reproducing the source, which he quantified as the
average “generalized distance” or “cost”—later called a dis-
tortion measure—between the source vector xn 2 Xn and its
reproduction vector x̂n 2 X̂n . His primary example was a
scalar or per-letter distortion measure dðx1; x̂1Þ, which
implied an additive distortion between the vectors of

dnðxn; x̂nÞ ¼
Xn
i¼1

dðxi; x̂iÞ

with the sum replaced by an integral for continuous time
sources. Shannon defined a fidelity evaluation of a family of
distributions fPXn;X̂

n : n ¼ 1; 2; . . .g by the expected distor-
tion EP

Xn;X̂
n ðdnðXn; X̂

nÞÞ;n ¼ 1; 2; . . . and the rate for a

2692-4080 � 2023 IEEE
Digital Object Identifier 10.1109/MBITS.2023.3237514
Date of publication 16 January 2023; date of current version 14
March 2023.

Feature

THE INFORMATION THEORY MAGAZINE NOVEMBER 2022 5
Authorized licensed use limited to: Stanford University. Downloaded on August 09,2023 at 23:05:58 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-0853-0415
https://orcid.org/0000-0002-0853-0415
https://orcid.org/0000-0002-0853-0415
https://orcid.org/0000-0002-0853-0415
https://orcid.org/0000-0002-0853-0415
mailto:abbas@ee.stanford.edu
https://orcid.org/0000-0002-6947-3637
https://orcid.org/0000-0002-6947-3637
https://orcid.org/0000-0002-6947-3637
https://orcid.org/0000-0002-6947-3637
https://orcid.org/0000-0002-6947-3637
mailto:rmgray@stanford.edu


source relative to a fidelity criterion, the rate distortion func-
tion of a stationary source, by

RXðDÞ ¼ inf
n

1

n
RXnðDÞ ¼ lim

n!1

1

n
RXnðDÞ (1)

RXnðDÞ ¼ inf
P
Xn;X̂

n2PnðDÞ
IðXn; X̂

nÞ (2)

where, IðXn; X̂
nÞ is the mutual information between Xn and

X̂
n
, and PnðDÞ is the collection of all joint distributions on

ðXn; X̂
nÞ for which the marginal distribution on Xn is PXn ,

which can be abbreviated as PXn;X̂
n ) PXn , and

1

n
EP

Xn;X̂
n ðdnðXn; X̂

nÞÞ � D:

In [83, Th. 21], Shannon showed that when the source is iid,
the abovementioned expression of RXðDÞ reduces to the sin-
gle-letter (n ¼ 1) and RXðDÞ < C is necessary and suffi-
cient to reproduce the source with the specified distortion,
and RXðDÞ naturally extends entropy to sources with contin-
uous alphabets. Shannon established the achievability of
RXðDÞ via random codebook generation using the the distri-
bution resulting from the optimization defining RXðDÞ and
limiting theorems relating sample distortion dn=n and infor-
mation density in=n to their expectations, where for discrete
alphabets

inðxn; ynÞ ¼ log
pXn;Y nðxn; ynÞ
pXnðxnÞpY nðynÞ

and in general via the Radon–Nikodym derivative [39], [78]

inðxn; ynÞ ¼ log
dPXn;Y nðxn; ynÞ

dðPXnðxnÞ � PY nðynÞÞ :

In both cases EPXn;Y n ðinðXn;Y nÞÞ ¼ IðXn;Y nÞ.

When Marton entered the field, Shannon’s rate distortion
theorem had recently been generalized to stationary and
ergodic sources with discrete and abstract alphabets in 1968
by Gallager [23] and in 1971 by Berger [4]. The heart of
their general proofs remained the same as Shannon’s, but
the limiting results were more complicated. The convergence
of information density to its expectation generated a new
branch of information theory and ergodic theory—com-
monly called information stability or information ergodic
theorems.

Marton likely learned of Shannon’s rate distortion the-
ory [83], [84] and contributions by Kolmogorov and his col-
leagues [39] during her 1969 visit to the Institute of

Problems of Information Transmission in Moscow, where
Dobrushin and Pinsker both worked. Marton had met the
two famous Russian information theorists in Hungary in
1967.

SmallD Asymptotics of RXðDÞ
In her 1971 paper [53], Marton followed Kolmogorov’s [39]
“very significant interest ...in the investigations of the asymp-
totic behavior of the � entropy as � ! 0” and developed
upper and lower bounds on the rate distortion function for
finite alphabet stationary sources as D approaches zero. Kol-
mogorov proposed renaming RXðDÞ as �-entropy H�ðXÞ,
where � ¼ D, to better capture the notion of a generalization
of entropy. Her general results are complicated, but in the
case of Markov sources they take the simple form

HðXÞ �RXðDÞ ¼ 1

mr0

Dlog
1

D
�OðDÞ

where mr0 > 0 is a constant determined by the source and
the fidelity criterion.

Process Definitions of Rate Distortion
Functions
Hidden in [53, Lemma 1] was an elaboration on a suggestion
of Kolmogorov [39]—replacing the limits over finite dimen-
sional optimizations of mutual information versus distortion
in (1) and (2) by direct optimization over stationary pro-
cesses In [56], Marton further developed this notion, demon-
strating that for stationary sources with complete, separable
metric space alphabets and an additive distortion measure,
the rate distortion function is

RXðDÞ ¼ inf
P
X;X̂

2P
IðX; X̂Þ

where P ¼ fPX;X̂ : PX;X̂ ) PX;EP
X;X̂

ðdðX1; X̂1ÞÞ � Dg and

IðX; X̂Þ ¼ lim
n!1

1

n
IðXn; X̂

nÞ

is the mutual information rate of the stationary process
ðX; X̂Þ. Marton also demonstrated that under some mild
additional conditions on the distortion measure, the infimum
is a minimum, so there is a stationary pair process that
achieves the minimum. Reversing the order of limits and
optimization in the definition of the rate distortion function
has multiple benefits, primarily adding insight into the mean-
ing of the rate distortion function from a process viewpoint

Figure 1
Shannon’s communication system model.

6 THE INFORMATION THEORY MAGAZINE NOVEMBER 2022

Authorized licensed use limited to: Stanford University. Downloaded on August 09,2023 at 23:05:58 UTC from IEEE Xplore.  Restrictions apply. 



and simplifying previous proofs of Shannon’s rate distortion
theorem for general sources.

Finding such an optimal stationary pair process provides an
alternative approach to the traditional extensions of Shan-
non’s rate distortion theorem beyond iid processes. These
traditional proofs require an information stability property
for the mutual information densities that yield RXnðDÞ. In
Shannon’s original iid case, this property followed easily by
the classic ergodic theorem. Subsequent generalizations
were developed by proving such a property for more general
sources. A major difficulty with the general stationary ergo-
dic case was that an ergodic source need not produce ergodic
sequences of n-dimensional vectors. Gallager [23] resolved
this difficulty using a complicated source decomposition due
to Nedoma. Berger [4] used the same technique to further
generalize the result to abstract alphabet sources.

Marton’s stationary process characterization of the rate dis-
tortion function provided an approach to creating a station-
ary pair process directly with the necessary properties to
circumvent the Nedoma decomposition. Others eventually
showed that one could also restrict the optimization to ergo-
dic pair processes and that Shannon’s approach could result
in a generalization of the original iid theorem to stationary
and ergodic sources with general alphabets. Marton’s result
was the catalyst to these simpler and more intuitive results;
see, e.g., Gray and Saadat’s work [34]. Process optimization
also played a fundamental role in the development of
Orstein’s d distance [73], which was an important tool in his
proof of the isomorphism theorem of ergodic theory estab-
lishing the role of equal Shannon entropy rate as necessary
and, under additional assumptions, sufficient condition for
isomorphism of two random processes. It is also a topic
important to Marton’s subsequent work.

Information Stability of Stationary
and Ergodic Processes
Marton’s 1972 paper [54] extended to stationary ergodic
processes a 1963 result of Pinsker [80] that stationary totally
ergodic processes possessed the information stability prop-
erty. This extension provided the key step in generalizing the
proof of rate distortion theorem from totally ergodic sources
to ergodic sources. Similar results were published in 1971
by Berger [4] in his generalization of his 1968 paper on the
rate distortion theorem for totally ergodic sources. Both Mar-
ton and Berger followed Gallager [23] in their use of Nedo-
ma’s decomposition.

Error Exponent for Rate Distortion
for Discrete Iid Sources
In her 1974 paper [55], Marton derived the error exponent
for rate distortion coding for discrete iid sources, a result
analogous to the behavior of the error probability for

discrete memoryless channels (DMC) studied by Gallager,
Shannon, and others. Given an iid source X, an additive dis-
tortion, R > 0; D > 0; d > 0, and a reproduction codebook
Cn of size kCnk, let

dnðxn; CnÞ ¼ min
x̂n2Cn

dnðxn; x̂nÞ

and define the set of “bad” source sequences Bn with respect
to Cn by

Bn ¼ xn :
1

n
dnðxn; CnÞ > Dþ d

� �
:

Finally, define

PnðR;DÞ ¼ min
Cn :kCnk�2nR

PXnðBnÞ:

Gallager’s proof of the source coding theorem shows that for
R > RXnðDÞ, limn!1 PnðR;DÞ ¼ 0. Marton sharpened this
result to show that for iid sources the convergence to zero is
exponential for a range of R > RXnðDÞ, and that PnðR;DÞ
is otherwise bounded away from zero.

Transportation and Measure
Concentration
In 1986, Marton [57] introduced a simple inequality compar-
ing a special case of the transportation cost and the infor-
mational divergence between two distributions. Optimal
transport and the transportation cost date back over two
centuries to Monge with its modern revival by Kantorovich.
Its rich history and numerous applications in many fields are
widely surveyed, see Villani’s work [91], which provides
more than 800 references as well as a chapter on concentra-
tion of measure that describes Marton’s contributions to
both topics of this section’s title.

Transportation cost has appeared under many names, includ-
ing Monge (1878), Kantorovich (1942), Ornstein’s d (d-bar)
(1970), Mallows (1972), and Vasershtein/Wasserstein (1969).
Informational divergence, also known as relative entropy and
Kullback–Leibler divergence, was introduced in 1951 by Kull-
back and Leibler [46] as a generalization of Shannon’s entropy
and developed as arguably the most fundamental of the
Shannon-style information measures; see, e.g., Pinsker [78]
and Kullback’s work [47]. Both notions began with finite-
dimensional distributions and were later extended to process
distributions.

According to Ledoux [49], the investigation of distance–
divergence inequalities, also known as transportation cost-
information and transport-entropy inequalities, began in the
1990s with works by Marton [58], [59], and Talagrand [87]
in connection with the concentration of measure phenome-
non for product measures. The key result by Marton in her
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1996 papers in its original finite-dimensional form for dis-
crete sources and Hamming distance appeared a decade ear-
lier [57] in her simple information theoretic proof of the
blowing-up lemma, which is discussed later.

Transportation and Marton’s
Inequality
Marton’s setup in [57, Lemma 1] strongly resembles Shan-
non’s. Given a joint distribution PXn;X̂

n describing a pair of
random vectors ðXn; X̂

nÞ, Shannon optimized mutual infor-
mation for two cases: fixing a conditional distribution and
maximizing over all source distributions PXn (channel capac-
ity) or fixing the source distribution and minimizing over
all conditional distributions satisfying a fidelity criterion
EP

Xn;X̂
n ðdnðXn; X̂

nÞÞ � nD (rate distortion). In transporta-

tion theory or optimal transportation, the marginal distribu-
tions PXn and PX̂

n are fixed and the average distortion
between them is minimized over the collection Pn of all joint
distributions PXn;X̂

n (or couplings) consistent with the given
marginals. This defines a transportation cost between finite-
dimensional distributions

T nðPXn ;PX̂
nÞ ¼ inf

P
Xn;X̂

n2Pn

EðdnðXn; X̂
nÞÞ: (3)

Sometimes with limits in mind, a normalization 1=n is
included on the right-hand side. The resemblance between
the transportation problem and Shannon information optimi-
zations has been exploited in the rate distortion literature,
e.g., Gray et al.’s work [33].

The name optimal transportation was coined by Kantorovich
in 1948 when he realized his cost function introduced in
1942 [37] was equivalent to a 1781 problem of Monge
regarding the best way of transporting a pile of dirt of one
shape into another. Two special cases are important here:
1) the case of Hamming distance, where (3) becomes Orn-
stein’s dn distance [73], [74]

T nðPXn ;PX̂
nÞ ¼ dnðPXn ;PX̂

nÞ

¼ inf
P
Xn;X̂

n2Pn

1

n

Xn
i¼1

PfXi 6¼ X̂ig (4)

and 2) the case of squared-error distortion, where (3)
becomes

T nðPXn ;PX̂
nÞ ¼ W 2

2 ðPXn ;PX̂
nÞ

¼ inf
P
Xn;X̂

n2Pn

EP
Xn;X̂

n kXn � X̂
nk22: (5)

The square rootW2 of this cost is a metric, commonly known
as the Wasserstein distance. It is worth noting here that Was-
serstein is the German spelling of the Russian mathematician
Leonid Vasershtein, who developed properties of the dis-
tance in 1969, which were popularized by Dobrushin [18].

In Lemma 1 of [57], Marton proved the following inequality
for random variables with complete separable metric space
alphabet and Hamming distance.

Lemma 1. Let Xn �
Qn

i¼1 PXi
and X̂

n � PX̂
n . Then, there

exists a joint probability measure PXn;X̂
n with these

given marginals such that

1

n
EðdnðXn; X̂

nÞÞ ¼ 1

n

Xn
i¼1

PfXi 6¼ X̂ig

�
 
1

n
D PX̂

n

������Yn
i¼1

PXi

 !!1=2

where, DðPjjQÞ ¼ EPðlog ðP=QÞÞ is the relative entropy
between the distributions P and Q.

Hence from (4)

dnðPXn ;PX̂
nÞ �

 
1

n
D PX̂

n

������Yn
i¼1

PXi

 !!1=2

: (6)

Marton later showed [58], [60] that better constants were
possible, but that in general if for some r > 0 and for all
PX̂

n , a distribution PXn on n-dimensional Euclidean space
satisfies the “distance-divergence inequality”

T nðPXn ;PX̂
nÞ �

�
2

r
D PX̂

n

������PXn

� ��1=2

(7)

then, PXn has the measure concentration property.

Ornstein [73] developed the process version of the d distance
as a key tool for proving his isomorphism theorem of ergodic
theory: For stationary processesX and X̂

dðPX;PX̂Þ ¼ sup
n

dnðPXn ;PX̂
nÞ ¼ lim

n!1
dnðPXn ;PX̂

nÞ:

A key property of d is that it could also be defined directly as
the single-letter optimization problem

dðPX;PX̂Þ ¼ d1ðPX1
;PX̂1

Þ: (8)

Marton [58] used the information stability of informational
divergence to relate the d distance to the relative entropy
rate between an arbitrary stationary process X̂ and an iid
processX

DðPX̂kPXÞ lim
n!1

1

n
DðPX̂

nkPXnÞ

to obtain

dðPX;PX̂Þ � DðPX̂kPXÞ
	 
1=2

: (9)
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This is the process version of her inequality and was the first
inequality to relate limiting transportation cost and relative
entropy rate.

Follow-on work: Talagrand [88] extended Marton’s inequality
in the finite-dimensional case from Hamming distortion to
squared-error distortion and Gaussian product measures.
This led to his follow-on work on measure concentration
from Marton’s for Hamming distortion to Gaussian iid pro-
cesses and squared error.

Asymptotically optimal source codes resemble fair coin flips:
The process version of Marton’s inequality (9) easily yields a
rigorous proof of a variation on a common intuition of rate
distortion theory—if a source coding system has nearly opti-
mal performance, then the bits produced by the encoder
should resemble fair coin flips; see, e.g., Problem 10.9 for iid
sources in Cover and Thomas’s work [15]. Gray and
Linder [32] established a rigorous result in this direction,
with Marton’s inequality providing the key step.

Shannon and the bulk of the literature consider block codes.
Block codes applied to a stationary ergodic source, however,
do not in general produce either a stationary or ergodic chan-
nel sequences or reproduction sequence or a combination of
the three processes. This complicates drawing conclusions
about the properties of the channel process. In his proof of the
isomorphism theorem of ergodic theory [74], Ornstein devel-
oped techniques for converting block codes into stationary
codes (sliding-block or sliding window codes), which inherit
useful statistical properties of the block codes they are built
upon, such as average distortion and information, and also
produce jointly stationary source/encoded source processes,
which are also ergodic if the source is. Shannon’s rate distor-
tion theorem holds for such stationary codes; see, e.g., [31]
and the references therein. Pursuing a 1-bit per source sample
noiseless channel example, consider the dual Shannon source
coding problem of distortion rate theory. The inverse of Shan-
non’s rate distortion function from Marton’s process defini-
tion [56] is

DXðRÞ ¼ inf
P
X;X̂

:P
X;X̂

)PX;IðX;X̂Þ�R
EðdðX1; X̂1ÞÞ:

The stationary codes version of Shannon’s source coding the-
orem implies there exists a sequence of stationary encoder/
decoder pairs f ðmÞ; gðmÞ resulting in a channel process U ðmÞ

and reproduction process X̂
ðmÞ

for which

lim
m!1

EPX
ðdðX1; X̂

mÞ
1 ÞÞ ¼ DXð1Þ:

If a sequence of encoder–decoder pairs satisfies the Shannon
limit, it is said to be asymptotically optimal. The original ver-
sion of Marton’s inequality (9) combined with standard
information theoretic inequalities easily yields the following.

Theorem [32], [51]. Let X be a stationary ergodic source with
Shannon distortion-rate functionDXðRÞ. LetZ denote the pro-
cess of independent fair coin flips, that is, a Bernoulli process
with parameter 1=2. If sliding-block source codes f ðmÞ; gðmÞ

are asymptotically optimal, then lim
m!1

�dðPUðmÞ ;PZÞ ¼ 0; that is,

the encoder output bits converge to iid coin flips in �d.

Bounds on the capacity of multiuser channels: Marton and
Talagrand’s distance–divergence inequalities have played a
crucial role in the work of Polyanskiy and Wu [81] on the
interference channel. They used Talagrand’s inequality to
resolve the missing corner point problem of Costa for the
Gaussian interference channel; see Costa [11] and Sason’s
work [82], and to obtain an outer bound on its capacity
region, and Marton’s inequality (6) to establish an outer
bound for the discrete memoryless case. Both inequalities
provided a critical step in quantifying an approximation
error in the output entropy when an input distribution
induced by a codebook is replaced by its iid approximation.
More recently, Bai et al. [3] incorporated an information con-
straint into the optimization defining the transportation cost
for the squared-error distortion and generalized Talagrand’s
distance–divergence inequality for squared error to this con-
strained case. This led to further follow-on work to Marton’s
applications of her inequality, including blowing-up, measure
concentration, and Cover’s relay channel problem.

Blowing-Up Lemma
Marton’s initial version of her distance–divergence inequality
was developed as part of her simple proof for the blowing-up
lemma, which was first introduced by Margulis [52] in the
study of probabilistic properties of large random graphs. His
result was later improved by Ahlswede et al. [1] who used it to
establish a strong converse for the degraded BC by enhancing
the known weak converse. Later, Zhang [100] and Xue [98]
used it to show that the capacity of the relay channel can be
strictly smaller than the cutset bound in Cover and El Gamal
work [14]. Using simpler and more refined arguments
together with the blowing-up lemma, Wu et al. [97] obtained
tighter bounds than in Xue [98] and Zhang’s work [100].

Marton [57] provided a significantly simpler information theo-
retic proof of the blowing-up lemma, which we outline here as
a demonstration of her knack for simple and elegant proofs.
Let X be a finite alphabet, xn; yn 2 Xn, and dnðxn; ynÞ be
the Hamming distance between xn and yn. LetA � Xn and for
l � n, let GlðAÞ ¼ fxn : minyn2Adnðxn; ynÞ � lg, as shown in
Figure 2. Blowing-up Lemma: Let Xn � PXn ¼

Qn
i¼1 PXi

and
�n ! 0 as n ! 1. There exist dn; hn ! 0 as n ! 1 such that
ifPXnðAÞ � 2�n�n , thenPXnðGndnðAÞÞ � 1� hn .

To prove this lemma, define

PX̂
nðxnÞ ¼ PXn jAðxnÞ ¼ PXnðxnÞPXnðAÞ if xn 2 A

0 if xn =2 A:

�
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Then

D PX̂
n

������Yn
i¼1

PXi

 !
¼ �logPXnðAÞ � n�n:

By Lemma 1, there exists PXn;X̂
n with the given marginals

such that

EðdnðXn; X̂
nÞÞ � n

ffiffiffiffiffi
�n

p
:

By the Markov inequality, it follows that:

PXn;X̂
nfdnðXn; X̂

nÞ � ndng � 1�
ffiffiffiffiffi
�n

p

dn
¼ 1� hn

where, we choose dn ! 0 such that hn ! 0 as n ! 1. We
therefore have

PXnðGndnðAÞÞ ¼ PXn;X̂
nðGndnðAÞ � AÞ

þ PXn;X̂
nðGndnðAÞ � AcÞ

¼ðaÞ PXn;X̂
nðGndnðAÞ � AÞ

� PXn;X̂
nfdnðXn; X̂

nÞ � ndng � 1� hn

where, ðaÞ follows since PXn;X̂
nðxn; x̂nÞ ¼ 0 if x̂n =2 A.

Follow-on work: In a series of papers Paul Shields with Mar-
ton developed applications of the blowing up and related
properties to a variety of stationary random processes
studied by Ornstein and his colleagues, including weak and
very weak Bernoulli processes, and B processes. See,
e.g., Shields’s work [85] and the references therein.

Concentration of Measure
Although Marton’s initial version of her distance–divergence
inequality was developed as part of her simple proof of the
blowing-up lemma, which had its original applications in ran-
dom graph theory and strong converse proofs in multiuser
information theory, its major impact came later as a new and
powerful tool in the field of concentration of measure. It
worth noting, however, that while not originally developed
with measure concentration in mind, the blowing-up lemma
can be viewed as a concentration inequality.

The theory of concentration of measure arose in the 1970s as
a branch of analysis and probability emphasizing the study of
asymptotic properties of certain measures and probability

distributions, specifically conditions under which a set of
positive probability can be expanded very slightly to asymp-
totically contain most of the probability. At its heart are
inequalities that bound, as n grows, the probability of a func-
tion of n samples differing from its expectation by more than
� as n grows. In Marton’s words, “measure concentration is
an important property, since it implies sub-Gaussian behav-
ior of the Laplace transforms of Lipschitz functions and
thereby is an important tool for proving strong forms of the
law of large numbers” [60].

In 1996, Marton [58] used her inequality relating the d
distance on processes and the relative entropy rate to
develop a new approach to proving and extending concentra-
tion inequalities, beginning with product distributions (e.g.,
iid processes) and later extending her results to a class of
Markov processes [58], [59], [60].

Follow-on work: Concentration inequalities have proven to
be important in analysis, probability, and related areas,
such as information theory and signal processing. A good
survey including history and the contributions of Marton
can be found in Ledoux’s work [49]. As stated earlier, Tala-
grand [88] extended Marton’s inequality to squared error
and used her method to extend the measure conservation
property to iid Gaussian processes; see also Marton’s
work [60]. In 1997, Dembo [17] used Marton’s approach to
develop new proofs and sharper versions of many of Tala-
grand’s results on transportation information inequalities.
See also Ledoux [49] and Villani [91], who lists several sub-
sequent works following Marton’s approach. In his biblio-
graphic notes to Chapter 22, Villani [91] stated that “It is
also Marton who introduced the simple argument by which
[transportation] inequalities lead to concentration inequal-
ities...which has since then been reproduced in nearly all
introductions to the subject.” Boucheron et al. [7] also
included both a history of concentration inequalities and
Marton’s role in it along with many applications of her
methods by them and others.

Broadcast Channel
In a pioneering paper in multiuser information theory, which
aims to extend Shannon’s point-to-point information theory
to communication networks, Cover [12] introduced the BC
model depicted in Figure 3. The sender X wishes to reliably
communicate a private message Mi 2 ½1 : 2nRi � to receiver
Yi, i ¼ 1; 2, and a common message M0 2 ½1 : 2nR0 � to both
receivers. A rate triple ðR0; R1; R2Þ is said to be achievable if
there exists a sequence of codes with this rate triple such
that the probability of decoding error can be made as small
as desired. The capacity region of this channel is the closure
of the set of achievable rate triples; see, e.g., El Gamal and
Kim’s work [21] for more details. The capacity region of the
BC is not known in general and is considered one of the most
important open problems in the field. Marton jointly with

Figure 2
Two sets in the blowing-up lemma.
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K€orner and Csisz�ar made some of the key early contributions
toward solving this problem.

Less Noisy and More Capable
Cover [12] introduced the technique of superposition coding
and illustrated it via the binary symmetric BC and Gaussian
BC with average transmission power constraint. He then
noted that these two example BCs are instances of the class
of degraded BC.

Degraded BC: Given a BC pðy1; y2jxÞ, Y2 is said to be a
degraded version of Y1 if there exists a channel pðy01jxÞ ¼
pðy1jxÞ such thatX ! Y 0

1 ! Y2 form a Markov chain.

Cover conjectured that the capacity region of the degraded
BC coincides with the superposition coding region, which we
express in the form in Wang et al.’s work [94] that naturally
extends to the more general inner bounds discussed later.

Superposition coding inner bound: A rate triple ðR0; R1; R2Þ is
achievable for the BC pðy1; y2jxÞ if it satisfies the conditions

R2 þR0 < IðU ;Y2Þ
R1 < IðV ; Y1jUÞ

R1 þR2 þR0 < IðU; V ;Y1Þ (10)

for some probability mass function (pmf) pðuÞpðvÞ and func-
tion xðu; vÞ, where U and V are auxiliary random variables,
that is, random variables that are not defined by the channel
itself.

It is not difficult to see that IðV ; Y1jUÞ ¼ IðX;Y1jUÞ and
IðU; V ;Y1Þ ¼ IðX;Y Þ, which yields an equivalent descrip-
tion of the region in (10) for which achievability was settled
by Bergmans [5] and the converse was established by Gall-
ager [24] via an ingenious identification of the auxiliary ran-
dom variable U . Gallager also established a bound on the
cardinality of U , which renders the region “computable.”

The achievability of the superposition region uses random
codebook generation. Fix pðuÞpðvÞ and a function xðu; vÞ. We
use pðuÞ and pðvÞ to randomly and independently generate
codebooks funðm0;m2Þ : ðm0;m2Þ 2 ½1 : 2nR0 � � ½1 : 2nR2 �g
and fvnðm1Þ m1 2 ½1 : 2nðR1Þ�g, respectively. To send
ðm0;m1; m2Þ, the encoder sends xðuiðm0;m2Þ; viðm1ÞÞ in
transmission i 2 ½1 : n�. Receiver Y1 uses joint typicality

decoding to recover ðm0;m1;m2Þ and receiver Y2 similarly
recovers ðm0;m2Þ. It can be shown that the decoding error
can be made as small as desired if the conditions in (10) are
satisfied. One of Marton and K€orner’s early contributions to
the BC problem [40] was to extend the notion of degraded-
ness to define the following more general classes of BCs for
which any message that can be recovered by Y2 can be
(essentially) recovered by Y1.

Less noisy BC: Given a BC pðy1; y2jxÞ, Y1 is said to be less noisy
than receiver Y2 if IðU ;Y1Þ � IðU ; Y2Þ for every pðu; xÞ.

More capable BC: Given a BC pðy1; y2jxÞ, Y1 is said to be more
capable than Y2 if IðX;Y1Þ � IðX; Y2Þ for every pðxÞ.

It is not difficult to see that the degraded condition implies
less noisy, which in turn implies more capable. K€orner and
Marton showed through examples that these relations are
strict. They also showed that superposition coding is optimal
for the less noisy BC.

Follow-on work: One of El Gamal’s earliest results was to
show that superposition coding is optimal for the more capa-
ble BC [19]. Van Dijk [90] introduced the following alternate
form of the less noisy condition which proved to be easier to
compute and has helped lead to several of the follow-on
results discussed later.

Less noisy via concave envelope: Y1 is less noisy than Y2 if
ðIðX;Y1Þ � IðX;Y2ÞÞ is concave in pðxÞ.

Essentially and effectively less noisy: The definitions of less
noisy and more capable BC classes require the mutual infor-
mation conditions in each case to hold for all distributions.
By judiciously restricting the set of distributions over which
these conditions apply, extensions of less noisy and more
capable for which superposition coding continues to be opti-
mal were introduced.

Motivated by a BC example in which the channel from X to
Y1 is a binary symmetric channel with parameter p and the
channel from X to Y2 is a binary erasure channel with
parameter �, Nair [67] introduced the notion of essentially
less noisy BC. As the parameters of this BC example are var-
ied, it is not difficult to show that: 1) for 0 < � � 2p, Y1 is a
degraded version of Y2, 2) for 2p < � � 4pð1� pÞ, Y2 is less

Figure 3
Two-receiver BC model.
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noisy than Y1 but Y1 is not a degraded version of Y2, and
3) for 4pð1� pÞ < � � HðpÞ, Y2 is more capable than Y1 but
not less noisy. For the remaining range, HðpÞ < � < 1, Nair
showed that Y2 is essentially less noisy than Y1. Nair also
showed that less noisy implies essentially less noisy, but that
the reverse does not always hold. He also showed that essen-
tially less noisy does not necessarily imply more capable.

Kim et al. [38] introduced the notion of effectively less noisy
and showed that it implies essentially less noisy while being
more straightforward to verify computationally. They used
this notion along with degraded, less noisy, and more capable
to show that superposition coding is almost always optimal
for the Poisson BC.

More than two receivers: The notions of degraded, less noisy,
and more capable can be readily extended to BCs with more
than two receivers. It is straightforward to show that super-
position coding is optimal for degraded BC with an arbitrary
number of receivers. Nair and Wang [64] showed that super-
position coding is also optimal for three-receiver less noisy
BCs. However, Nair and Xia [65] showed via an example that
superposition coding is not necessarily optimal for three-
receiver more capable BCs.

Degraded Message Sets
Consider the BC in Figure 3 with M2 ¼ ; or equivalently
R2 ¼ 0. In this setting referred to as BC with degraded mes-
sage sets, the sender wishes to communicate a private mes-
sage M1 to receiver Y1 and a common message M0 to both
receivers. K€orner and Marton [41] showed that the capacity
region for this setting coincides with the superposition cod-
ing region in (10) with R2 ¼ 0. They established a strong
converse using the technique of images of a set [42], which is
in itself an important contribution by Marton.

Images of a set: Let pðyjxÞ be a DMC and let pðxÞ be a pmf
over its input alphabet X . For 0 < � < 1, let An, n ¼
1; 2; . . . , be a subset of the set of �-typical sequences
T ðnÞ

� ðpðxÞÞ. The set Bn 	 Yn such that PðBnjxnÞ � 1� � for
every xn 2 An is called the ð1� �Þ-image of An under the
channel pðyjxÞ. Let gnðAn; 1� �Þ be the cardinality of the
smallest such set. K€orner and Marton [42] showed that gn
plays an important role in constructing codes for the DMC.

Maximal code lemma: For sufficiently large n, there exists a
codebook for the DMC pðyjxÞ, which is a subset of An , with
maximal probability of decoding error no greater than � and
rate

R � 1

n
log gnðAn; 1� �Þ �HðY jXÞ � �:

While results of this nature had origins in works as early as
1954 by Feinstein, the main contribution of K€orner and Mar-
ton was to develop a similar theory for images of a set over

two channels with the same input, which involved extensions
of the maximal code lemma and new ideas for identification
of auxiliary random variables in converse proofs. This
enabled them to establish the capacity region of the BC with
degraded message sets and played a central role in their defi-
nitions of the classes of less noisy and more capable BCs dis-
cussed earlier.

Follow-on work: The notion of degraded message sets can be
extended in many ways to more than two receivers. Borade
et al. [6] considered a multilevel BC which for the three-
receiver case is defined by pðy1; y3jxÞpðy2jy1Þ, i.e., Y2 is a
degraded version of Y1, where M0 is to be communicated to
all receivers and M1 is to be communicated only to receiver
Y1. Nair and El Gamal [68] showed that superposition coding
is not in general optimal for this BC and established the
capacity region using the technique of indirect coding.

Nair and Wang [69] considered the three-receiver BC in
which M0 is to be reliably communicated to all receivers and
M1 is to be communicated only to receivers Y1 and Y2 and
showed that superposition is optimal for several special
cases. Nair and Yazdanpanah [66] then showed that superpo-
sition coding is not in general optimal for this setting.

Marton Region
Marton is most famous in multiuser information theory for
establishing the tightest known inner bound on the capacity
region of the BC in Marton’s work [61]. We describe the jour-
ney that culminated into the establishment of her inner
bound.

In 1975, Cover [13] and van der Meulen [89] independently
established the following inner bound on the capacity region
of the BC.

Cover–van der Meulen region: A rate triple ðR0; R1; R2Þ is
achievable for the BC pðy1; y2jxÞ if it satisfies the following
conditions:

R0 þR1 < IðW;V ;Y1Þ
R0 þR2 < IðW;U ;Y2Þ

R0 þR1 þR2 < IðW;V ;Y1Þ þ IðU ;Y2jWÞ
R0 þR1 þR2 < IðV ;Y1jWÞ þ IðW;U ;Y2Þ (11)

for some pmf pðwÞpðujwÞpðvjwÞ and function xðw; u; vÞ.

It is straightforward to see that by setting W ¼ U and V ¼ ;
and with some simple manipulations, we obtain the superpo-
sition coding region in (10).

The achievability of the Cover–van der Meulen inner bound
involves a new idea beyond the proof for the superposition
coding inner bound, which is rate splitting. We split
Mj, j ¼ 1; 2, into two independent parts, a common part
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Mj0 2 ½1 : 2nRj0�� and a private part Mjj 2 ½1 : 2nRjj �, hence
Rj ¼ Rj0 þRjj. Fix pðwÞpðujwÞpðvjwÞ and a function
xðw;u; vÞ according to pðwÞ. Randomly and independently gen-
erate a codebook fwnðm0;m01;m02Þg, and conditioned on
wnðm0; m01;m02Þ, randomly and conditionally independently
generate codebooks funðm0;m01;m02;m22Þg, fvnðm0;m01;
m02;m11Þg according to pðujwÞ and pðvjwÞ, respectively. To
send ðm0;m1;m2Þ, the encoder sends xðwiðm0;m01;m02Þ;
uiðm0; mo1;m02;m11Þ; viðm0;mo1;m02;m11ÞÞ at transmission
i 2 ½1 : n�. Receiver Y1 recovers ðm0;m01;m02;m11Þ and
receiver Y2 recovers ðm0;m01;m02;m22Þ. Using standard argu-
ments and Fourier–Motzkin elimination completes the proof;
see El Gamal and Kim’s work [21].

The search for a tighter inner bound began with a paper in
1977 by Gelfand [25] in which he established the capacity
region of the Blackwell deterministic BC with input X 2
f0; 1; 2g and outputs Y1; Y2 2 f0; 1g, where for X ¼ 0, Y1 ¼
Y2 ¼ 0, for X ¼ 1, Y1 ¼ Y2 ¼ 1, and X ¼ 2, Y1 ¼ 0; Y2 ¼ 1. In
1978, Pinsker [79] generalized Gelfand’s result to establish
the capacity region of the deterministic BC. This result was
further generalized to the semideterministic BC indepen-
dently by Marton [61] and Gelfand and Pinsker [26]. These
efforts culminated in the following inner bound on the capac-
ity region of the general BC [61].

Marton region: A rate triple ðR0; R1; R2Þ is achievable for the
BC pðy1; y2jxÞ if it satisfies the following conditions:

R0 þR1 < IðW;V ;Y1Þ
R0 þR2 < IðW;U ; Y2Þ

R0 þR1 þR2 < IðW;V ;Y1Þ þ IðU ;Y2jWÞ � IðU ;V jWÞ
R0 þR1 þR2 < IðV ;Y1jWÞ þ IðW;U ;Y2Þ � IðU ;V jWÞ
2R0 þR1 þR2 < IðW;V ;Y1Þ þ IðW;U ; Y2Þ � IðU ; V jWÞ

(12)
for some pmf pðw; u; vÞ and function xðw; u; vÞ.

Note that, Marton’s region can be larger than the Cover–van
der Meulen inner bound since the set of distribution on
ðW;U; V Þ is larger and the negative term IðU ;V jWÞ drops
out of the second and third bounds in (11) if we restrict the
set of distributions to the form pðwÞpðujwÞpðvjwÞ.

The achievability of the Marton inner bound involves a
new key idea beyond the proof of the Cover–van der
Meulen bound, which is multicoding: Instead of assigning
a single codeword to each message, we assign a subcode-
book to it from which a codeword is selected for trans-
mission depending on a certain joint typicality condition.
This idea was first introduced in 1974 by Kuznetsov and
Tsybakov in their paper on computer memory with
defects [48]. Multicoding was later used by Gelfand and
Pinker [27] and Heegard and El Gamal [36] to generalize
the Kuznetsov–Tsybakov result to establish the capacity
of the DMC with state known noncausally at the sender.

Using this result, Costa in [10] showed that the capacity
of the Gaussian channel with additive Gaussian state
known noncausally is the same as for the case with no
state at all!

Follow-on work: Marton’s original proof established achiev-
ability for each corner point of the region, then used time
sharing to establish achievability for the entire region.
Shortly after Marton’s result, El Gamal and van der
Meulen [22] provided a simple proof that directly establishes
achievability for any point in the inner bound without
the need for time sharing that we sketch here. Randomly
generate a codebook fwnðm0;m01;m02Þg, and for each
wnðm0;m01; m02Þ, randomly and conditionally independently
generate subcodebooks funðm0;m01;m02; l22Þ : l22 2 ½1 :
r22�g and fvnðm0;m01;m02; l11Þ : l11 2 ½1 : r11�g according
to pðujwÞ and pðvjwÞ, respectively. To send ðm0;m1;m2Þ,
find a jointly typical triple ðwnðm0;m01;m02Þ; unðm0;m01;
m02; l22Þ; vnðm0;m01;m02; l11ÞÞ with respect to to pðw; u; vÞ.
The conditions for the existence of such a triple are provided
by the mutual covering lemma [21]. Note that, although the
messages ðM0;M1;M2Þ are independent of each other, their
codewords are generated according to the given pðw; u; vÞ.
The details of the proof use standard arguments [22].

El Gamal and Cover [20] subsequently used this mutual cov-
ering lemma to establish an inner bound on the rate region
of the multiple description coding setting.

Multi-input multi-output (MIMO) BC: One of the most impor-
tant follow-on results to Marton’s inner bound is proving
that it is tight for the MIMO (or vector Gaussian) BC
depicted in Figure 4 with average power transmission
constraint

Pn
i¼1 x

Tðm0;m1;m2; iÞxðm0;m1;m2; iÞ � nP for
ðm0;m1;m2Þ 2 ½1 : 2nR0 � � ½1 : 2nR1 � � ½1 : 2nR2 �. The impor-
tance of this result stems from its practical significance as a
performance limit on communication over a multiple
antenna wireless downlink system.

Figure 4
MIMO BC. The sender X is a t-dimensional vector, the receivers
Y1 and Y2 are r-dimensional vectors, G1; G2 are r� t channel

gain matrices, and Z1 � Nð0; IrÞ and Z2 � Nð0; IrÞ are the
additive noise vectors.
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The first step toward establishing the capacity region of the
MIMO BC was by Caire and Shamai [9] who exploited the
aforementioned connection between Marton coding and Cos-
ta’s writing on dirty paper to show that Marton coding is opti-
mal for the sum capacity of the channel with r ¼ 2 and t ¼ 1
antennas. The sum capacity for arbitrary numbers of antennas
was independently established by Vishwanath et al. [92] and
Viswanath and Tse [93] using an interesting duality result
between a Gaussian BC and a corresponding Gaussian multi-
ple access channel (MAC)with average sum-power constraint,
and later by Yu and Cioffi [99] using a minimax argument. The
capacity region for the MIMO BC with only private messages,
i.e., with R0 ¼ 0, was then established by Weingarten et al.
[95] using the idea of channel enhancement. An alternative
and somewhat simpler proof was given by Mohseni [62]. The
capacity region with private and common messages was
finally established by Geng and Nair [28] using new powerful
techniques for establishing converses for Gaussian channels
in general. It is worth pointing out here that the Weingarten–
Steinberg–Shamai and the Geng–Nair papers both won the IT
Society paper award, a testament to the importance of the
Marton region and the exceptional efforts it took to establish
these converses.

Evaluation of the Marton region: The Marton region as
described in (12) is not in general computable since the aux-
iliary random variables can have arbitrary cardinalities. The
standard method for bounding cardinalities relies on the
convexity of the information quantities that are functions of
the distributions of the auxiliary random variables; see
El Gamal and Kim’s work [21]. The negative term in the
description of the Marton region, however, violates this con-
vexity requirement. Gohari and Ananthram [29] recognized
that the cardinality bounds need to hold only at the bound-
ary of the Marton region and devised a perturbation method
to show that it suffices to consider cardinalities of sizes
jUj; jVj � jXj, jWj � jXj þ 4. Using a concave envelope
representation of the Marton region, the perturbation
method, and a minimax theorem for rate regions, Ananthram
et al. [2] obtained the tighter bound jUj þ jVj � jXj þ 1 for
the computation of the optimal weighted sum rate. This
enabled them to show that for binary input BCs, the Marton
region reduces to the Cover–van der Meulen region and is
achieved using the randomized time division strategy devel-
oped by Hajek and Pursely in [35].

Optimality of the Marton region: Marton’s region is the tight-
est known inner bound on the capacity of the BC and is tight
for all classes of BCs with known capacity regions. But is it in
general tight? There are some indications that it might be.
First, efforts to improve upon Marton’s inner bound by many
researchers over 40 years have failed. These efforts include
using simulations to show that the two-letter version of the
Marton region improves upon the single-letter in (12). Such
simulations have been limited, however, because evaluating
the region for a BC with input cardinality jXj � 5 is

computationally intractable. For the very few cases in which
simulations were feasible, the two-letter region did not
improve upon the single-letter. Second, there is no known
single outer bound that subsumes all existing outer bounds
on the capacity region of the BC; see, e.g., Gohari and Nair’s
work [30], which suggests that none of them is tight, and per-
haps Marton is tight. One of the few general optimality
results of the region is by Nair et al. [63] who showed that in
general, the slope of the region at each corner point is tight.

On the negative side, Padakandla and Pradhan [75] showed
using a structured coding scheme that a natural extension of
Marton’s inner bound to three-receiver BC is not tight. This
suggests that perhaps structured coding, which was pio-
neered by Marton as discussed in the following section, could
improve upon Marton’s inner bound even for two receivers.

Distributed Coding for Computing
Consider the distributed source coding for computing setup
in Figure 5. Let ðX;Y Þ � pðx; yÞ be two discrete memoryless
sources (2-DMS) and zðx; yÞ be a function of ðx; yÞ. The
source sequencesXn and Y n are separately encoded into the
indices Mj 2 ½1 : 2nRj �, j ¼ 1; 2, respectively. Upon receiving
ðM1;M2Þ the decoder finds the estimate Ẑn of ZðXi; YiÞ, i ¼
1; . . . ; n. The problem is to find the rate region, which is the
closure of the set of rate pairs ðR1; R2Þ such that the proba-
bility of decoding error can be made as small as desired.

For zðx; yÞ ¼ ðx; yÞ, this setting reduces to the distributed
source coding problem for which the rate region was estab-
lished in a pioneering paper on multiuser information theory
by Slepian and Wolf [86].

Slepian–Wolf region: The rate region for the distributed
source coding of the 2-DMS ðX;Y Þ is the set of rate pairs
ðR1; R2Þ such that

R1 � HðXjY Þ
R2 � HðY jXÞ

R1 þR2 � HðX; Y Þ: (13)

This result was quite surprising as it showed that the sum
rate for optimal distributed source coding is the same as for
the centralized case in which ðX;Y Þ are encoded together.
In [43], K€orner and Marton considered a coding for

Figure 5
Distributed source coding for computing setup.
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distributed computing example in which X � Bernð0:5Þ, and
Y ¼ X þ Zmod 2, where Z � BernðpÞ, 0 < p < 0:5; hence,
the function is Z ¼ X þ Y mod 2. The Slepian–Wolf region
yields the following inner bound on the rate region for this
distributed computing example:

R1 > HðpÞ
R2 > HðpÞ

R1 þR2 > 1þHðpÞ: (14)

It can also be shown that the following is an outer bound on
the rate region for this example:

R1 � HðpÞ; R2 � HðpÞ: (15)

Note that this region can be much larger than (14). K€orner
and Marton showed using random linear codes that this
outer bound is optimal. The idea is to randomly generate a
nR� n binary matrix A and use it to encode Xn and Y n into
the binary nR-sequencesM1 ¼ AXn andM2 ¼ AY n , respec-
tively. The decoder then adds these two sequences modulo
two to obtain AZn . By Shannon’s asymptotically lossless
source coding theorem for a binary iid source via linear
codes [21], it can be readily shown that this scheme succeeds
provided R > HðpÞ þ �, which yields the region in (15).

Follow-on work: Orlitsky and Roche [72] provided the follow-
ing refined outer bound on the rate region of the distributed
computing setting:

R1 � HG1ðXjY Þ; R2 � HG2ðY jXÞ

where, HG refers to the graph entropy, G1 and G2 are the
characteristic graphs for ðX;Y; zÞ and ðY;X; zÞ, respectively,
as defined in Orlitsky and Roche’s work [72], and
HG1ðXjY Þ � HðXjY Þ andHG2ðY jXÞ � HðY jXÞ.

The realization that higher rates can be achieved in multiuser
communication settings using structured rather than
“unstructured” random codes led to several follow-on works
to K€orner and Marton [43]. Krithivasan and Pradhan estab-
lished a rate region for distributed compression of linear
functions of correlated Gaussian sources [45] and of
DMS [44]. In channel coding settings, the usefulness of struc-
tured codes is apparent through the lens of linear network
coding in which intermediate nodes forward linear combina-
tions of messages. Nazer and Gastpar showed that noisy
MAC could be used for distributed, reliable computation of
linear functions first for the modulo-adder case via linear
codes [70] and later for the Gaussian case via nested lattice
codes [71]. In addition, Wilson et al. [96] utilized structured
codes for bidirectional relaying, Bresler et al. [8] used them
to approximate the capacity region of the many-to-one
Gaussian interference channel to within a constant gap, and
Philosof et al. used them to enable distributed dirty paper
coding [77].

While the abovementioned efforts focused on particular
source and channel models for which structured codes are
especially well suited, a series of recent papers by Pada-
kandla and Pradhan [75], [76] as well as Lim et al. [50]
showed how multicoding can extend these results to more
general settings.
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