96 [EEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 1, JANUARY 1995

Min-Cut Replication in Partitioned Networks

L. James Hwang and Abbas El Gamal, Senior Member, IEEE

Abstract— Logic replication has been shown empirically to
reduce pin count and partition size in partitioned networks.
This paper presents the first theoretical treatment of the min-cut
replication problem, which is to determine replicated logic that
minimizes cut size. A polynomial time algorithm for determining
min-cut replication sets for k-partitioned graphs is derived by
reducing replication to the problem of finding a maximum flow.
The algorithm is extended to hypergraphs and replication heuris-
tics are proposed for the A"P-hard problem with size constraints
on partition components. These heuristics, which reduce the
worst-case running time by a factor of O(k?) over previous
methods, are applied to designs that have been partitioned into
multiple FPGA’s. Experimental results demonstrate that min-
cut replication provides substantial reductions in the numbers
of FPGA’s and pins required.

I. INTRODUCTION

RAPH partitioning permeates integrated circuit layout

and design, arising naturally in placement, floorplanning,
and the mapping of large designs into multiple chips and
multiple printed circuit boards [13]. The problem can be
formulated as follows: Given a graph G = (V,E), find
a partition of V into disjoint components with constrained
sizes such that the number of edges with vertices in distinct
components is minimal. This partitioning problem is known
to be A/P-hard, but fast and effective partitioning heuristics
have been developed and are widely used (e.g., [9], [2]).

A variation of the partitioning problem arises when mapping
large designs into multiple field-programmable gate arrays
(FPGA’s) for rapid hardware prototyping and logic emulation.
In addition to the size constraint imposed by the gate capacity
of an FPGA, there is a pin constraint that limits the number of
cut edges incident on a component. The pin constraint often
leads to pin-limited partitions, in which all of the pins on the
FPGA’s are used, but much of the available gate capacity
remains unused [17].

One approach to reducing the adverse effects of the pin
constraint on partitioning is to use logic replication as demon-
strated in Fig. 1. In the example, it can be seen that replicating
the vertex u into both components reduces the cut size from
2" edges to n edges. We refer to this type of replication as
min-cut replication, since its primary objective is to minimize
cut size after partitioning.

This paper represents the first theoretical treatment of min-
cut replication. The earliest published reference merely alluded
to its usefulness without presenting any details [14]. In 1971,

Manuscript received February 16, 1993; revised August 22, 1994. This
research was supported in part by DARPA under Contract J-FBI-89- 101. This
paper was recommended by Associate Editor G. Zimmerman.

The authors are with Information Systems Laboratory, Stanford University,
Stanford, CA 94305 USA.

IEEE Log Number 9406356.

s
N
a

Fig. 2. Replicating u reduces path delay from v to w.

Russo et al. described an automated partitioning system that
supported replication but required the user to specify the
logic to be replicated [16]. Automated replication was not
seriously considered until the early 1990’s, when several
experimental studies showed that combining replication with
partitioning can reduce both cut size and the number of
partition components. Preliminary experimental results were
presented by the authors in [3], and in independent work,
Kring and Newton proposed a replication heuristic based on
the Fiduccia-Mattheyses partitioning algorithm [10]. Some of
the theoretical results in this paper were stated without proof
in [8].

In addition to reducing cut size, min-cut replication can also
be used to reduce partition size, i.e., the number of partition
components. By reducing the number of pins required in a
partitioned network, min-cut replication effectively relaxes the
pin constraint. We have observed that substantially smaller
partitions can be found by first relaxing the pin constraint and
then using min-cut replication to reduce the number of pins
so that the original pin constraint is satisfied.

Replication has proved essential to partitioning for mini-
mum delay [15]. Although the problem is formulated differ-
ently, min-cut replication can have the side benefit of reducing
delay by eliminating cut edges along signal paths [7]. As
demonstrated in Fig. 2, replicating the vertex u removes two
cut edges along the path from v to w. Such reduction in delay,
however, is not guaranteed in general.

The paper is organized as follows. Section II contains back-
ground material. In Section III, we present a graph-theoretic

0278-0070/95%04.00 © 1995 IEEE

HWANG AND EL GAMAL: MIN-CUT REPLICATION IN PARTITIONED NETWORKS 97

formulation and a solution to the min-cut replication problem,
establishing a connection between replication and classical
network flow theory. In Section V, we extend the solution
from graphs to hypergraphs, and in Section VI indicate that the
replication problem with component size constraints is N P-
hard. In Section VII, we describe new replication heuristics
based on the solution to the min-cut replication problem.
Section VIII contains experimental results demonstrating that
min-cut replication can substantially improve the mapping of
designs into multiple FPGA’s both by reducing the number of
FPGA’s needed and by reducing the number of pins. Section
IX contains concluding remarks.

II. PRELIMINARIES

Let G = (V, E) be a directed graph with vertex set V and
edgeset E C VxV.If § C V is aset of vertices, we denote its
complement by S = {v € V |v & S}. If S, T, are sets, their
relative difference is definedtobe S—T={z € S|z ¢ T}.

Definition 2.1: A k-cutV = {V3, V5, ..., Vi} is a partition
of the vertex set V into k disjoint nonempty subsets or
components. If k£ = 2, we refer to the k-cut as a bipartition.
A k-cut may also be referred to simply as a cut. Indexing
does not imply order; for example, the bipartition {V7, Va} is
identical to {V2,Vi}.

Definition 2.2: A cut edge is an edge (u,v) where u € V;
and v ¢ V;. The cut set is the set of all cut edges in G. We
denote the number of cut edges incident into a component V;
by

in(Vi) = [{(w,v) € E |u ¢ Vi,v € Vi}|.

Definition 2.3: The cut size of a k-cut, denoted |V, is the
number of cut edges in G. As each cut edge is incident into
exactly one component, we observe that

V| = Zin(Vi)- (1

Definition 2.4: A vertex u is a source if it has in-degree
zero or a sink if it has out-degree zero; we assume there are
no isolated vertices. Signals are introduced into the network
via the sources and are externally observable via the sinks.
For this reason, we also refer to sources (sinks) as primary
inputs (outputs). The set of all primary inputs in a partition
component V; is denoted by P;.

Definition 2.5: For vertices « and v, a u-v path is a directed
path from u to v. For any subset S C V and vertex v € V,
we say there is an S-v path in G if there exists a u-v
path for some u € S. If FF C E is a subset of edges,
the set reachable(S,F) consists of all vertices v for which
there exists an S-v path containing only edges in F. When
S = {u}, we write reachable(u, F'). We refer to a vertex v €
reachable(u, E') as a descendant of u.

A. Network Flow

We briefly review standard concepts in network flow theory
that will be used in our solution of the min-cut replication
problem (see e.g., [11]).

Definition 2.6: A flow network G = (V, E) is a directed
graph with a single source s, a single sink ¢, and a nonnegative
capacity function ¢:E — RY defined on the edge set. If
(u,v) € E, we define c(u,v) = 0.

Definition 2.7: A flow in G is a function f: VXV = R
that satisfies three properties.

1) f(u,v) < e(u,v) for all u,v € V (capacity constraint).

2) f(u,v) = —f(v,u) for all u,v € V (skew symmetry

requirement).

3) ey flu,v) = 0 for all w € V — {s,t} (flow

conservation constraint).
If X and Y are disjoint subsets of V, we define f(X,Y) =
Y zex 2yey f(@,y) to be the sum of the flow over all edges
between X and Y.

Definition 2.8: The value of a flow, |f| = > .y f(s,v)
is the total net flow out of the source. A maximum-flow is a
flow that has maximal value.

Definition 2.9: A cut in a flow network G is a bipartition
{S,T} such that s € S and t € T.

As a notational device, we will denote a cut in a flow
network by (S,T) as a reminder of the directionality. We
assume the convention that the source (sink) is contained in
the first (second) coordinate of the ordered pair of sets.

Definition 2.10: The net flow across a cut (S,T) is de-
fined to be f(S,T). The capacity of the cut is ¢(S,T) =
Yozes ZyET c(z,y). I f(S,T) = ¢(S,T), we say that f
saturates the cut. A minimum cut is a cut with minimal
capacity.

Definition 2.11: If f is a flow in G, then for any vertices
u and v, the residual capacity of (u,v) is defined to be
cf(u,v) = c(u,v) = f(u,v). If p is a path in G, then we
define the residual capacity cf(p) = ming vyepics(u,v)}.
The residual graph G; = (V, Ey) is the graph having edge
set By = {(u,v)|cs(u,v) > 0}. A source-sink path in Gy
is called an augmenting path, because the flow f can be
increased (augmented) along the path p by an amount not
exceeding cf(p).

We state without proof several fundamental results due to
Ford and Fulkerson [11].

Theorem 2.1: (max-flow min-cut theorem) The following
statements are equivalent:

1. f is a maximum flow;

2. there exists no augmenting path in the residual graph G'¢;

3. f saturates some (minimum) cut in G.

Theorem 2.2: A maximum flow can be determined by the
augmenting path method as follows. Begin with f(u,v) =0
for all edges, then repeat the following step until obtaining
a flow with no augmenting path: find an augmenting path p
and increase the value of the flow by pushing cg(p) units of
flow along p.

Theorem 2.3: 1f c(u,v) is integral for all v and v, then
the augmenting path method determines an integral maximum
flow f. In addition, f(u,v) is integral for all w and v.

B. Replication

Definition 2.12: LetV = {V1,V,...,Vi} be a k-cut of G.
The replication of a vertex u € V; into a different component

98 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 1, JANUARY 1995

V; is the graph G =V, E) defined as follows. The vertex set
V = V U {u;} is obtained by adding a new vertex u; to the
component V;. The edge set E is the same as E except for
the following modifications to edges incident to u.
« For every incoming edge (w,u), E contains a new edge
(wv Uj)
« Every outgoing cut edge (u,v) where v € Vj, is replaced
by an edge (uj,v) in E.

We refer to the vertices u and u; as clones. If V; = V; or
if there already exists a clone of u in V;, then replication
is defined to be the identity map. It is not hard to see
that replication is commutative and associative. As a result,
any permutation of a sequence of replication steps from a
component V; to V; results in the same partition. We can
therefore extend the definition in the natural way to subsets
of vertices; the actual order of replications need not be
specified, or can be chosen for convenience. We will assumes
this extended definition throughout this paper. It should also
be clear that the transformation is reversible; the inverse
transformation, referred to as unreplication, is defined in a
similar manner.

We denote by V; & S the component V; after replication
of a set S.

Definition 2.13: Let S C V be a vertex set and V; be a
component in a partitioned network. Define

Oj(S):{(u,v)eElueS—Vjandver}

to be the set of all outgoing edges removed from the {V;, Vi)
cut set when S is replicated into V;. Similarly, define

I,-(S):{(w,u)|w€7j—Sandu€S—V}anduj¢V,-}

to be the set of all incoming edges added to the cut set.
The replication gain of S is the change in cut size, given by

gain, () = |0;(9)] - [1;(8)| = in(V;) = in(V; &).

When the component V; is understood, we write O(S), I (S),
and gain(S), and when S = {u}, we write gain(u).

[II. THE MIN-CUT REPLICATION PROBLEM

Formally, the replication problem we consider first is the
following.
Min-Cut Replication Problem (MCRP):

Given a directed graph G = (V, E) and k-cut V = {V1, V2,
..., i}, determine a collection of sets, {V;; :1<4,5 <k},
that minimizes the cut size |V*|, where V* is the partition that
results when V7 is replicated from V; to V; for all ¢ and J.

Although the MCRP abstracts away important practical
capacity constraints, it remains an important and nontrivial
problem, and as we will show, has an elegant solution.
Moreover, the solution is of more than theoretical interest;
it is applicable whenever the size constraints are sufficiently
loose. As we will see, the solution also forms the basis for
heuristic approaches to N'P-complete constrained replication
problems.

A. The Bipartition Replication Problem

We begin our discussion by considering the simplest non-
trivial version of the MCRP, namely finding a min-cut repli-
cation set for one component of a bipartition. In this case, the
MCRP can be restated as follows.

Simple Min-Cut Replication Problem:

Given a directed graph G = (V, E) and bipartition {",Va},
determine a replication set Vi, C Vi,

Vip = arg }szg‘l}l in(V2 ¥ R),

which minimizes the number of cut edges into Va.
Equivalently, find a replication set Vi, €Wy,

Vi, = arg max gain(R),

having maximal gain.

We refer to any subset having maximal gain as a min-cut
replication set. Clearly, since the empty set has zero gain, the
maximal gain is nonnegative. If the maximal gain in fact equals
zero, we will simply assume the empty set as the solution to
the SMCRP.

Our method of solving the SMCRP will be to reduce the
replication problem to a maximum flow problem. We will
construct a flow network G/ = (V', E’) derived from G, for
which a maximum flow will define a cut that separates the
replication set from the network source. The replication set
Vy will be found by breadth-first search in the flow network.
Since efficient algorithms are known for breadth-first search
and computing a maximum flow, we will thereby obtain an
efficient algorithm for the SMCRP. We will refer to this
method of solution as the max-flow replication algorithm.

The flow network G’ is defined as follows.

Definition 3.1: Let I = {v € V2 | Ju € Vi:(u,v) € E}
be the set of vertices in V5 that are incident on a cut edge into
Vs, and let source s and sink ¢ be new vertices. We define the
vertex set V! = V3 UT12U {s,t}. It is easy to see that the sets
V{ = ViU {s} and V; = I12U {t} define a cut (V{,V)in G
that corresponds to the cut edges in G from V; to Vs.

The edge set E’ consists of selected edges in F and new
edges between vertices in V and the new source s and sink £.

Definition 3.2: Let E; = {(s,u)|u € P1} be a set of new
edges from the source s to every primary input in Vj. Let
E. = {(v,t) | v € 12} be a set of new edges from every
vertex in Iy, to the sink £. Letting E12 = EN(V1 x V') be the
set of all edges in G within V; or from V; to I1o, We define
the flow network edge E' = E; U E; U Ea.

Definition 3.3: The edge capacity function ¢ : B/ — Rt is
defined on E’ as follows:

oo if ('U, t) S Et,
c(u,v) = oo if (s,u) € Es and u cannot be replicated,
1 otherwise

This definition allows replication of selected primary inputs to
be enabled and prevented if so desired.

The max-flow replication algorithm proceeds by determin-
ing a maximal s-t flow in the flow network G’ and defining a
replication set based on the flow. Let f be a maximum flow

HWANG AND EL GAMAL: MIN-CUT REPLICATION IN PARTITIONED NETWORKS 99

Fig. 3. Flow network derived from the original graph G.

computed by the augmenting path method of Theorem 2.2. By
Theorem 2.1, we know that there is no augmenting s-¢ path
in the residual graph G’f. We define the replication set V%
to consist of selected vertices that are unreachable from the
source s in G’}.

Definition 3.4: Let T = {u € V{ | t € reachable(u, E")}
be the set of all vertices in V} that lie on a path to ¢ in
the original flow network G’, and let Ty = {u € V{ | u ¢
reachable(s, E;)} be the set of all vertices unreachable from
the source s in the residual graph G}. We define the replication
set

Vip =TnNTy

to be the intersection of T' and Ty, and define My to be set
of edges that separates V5 from Vi — Vi,

It follows from Theorem 2.3 that the flow value |f]| is
integral since all edge capacities are integral. In fact, since the
capacity c(u,v) = 1 for every saturated cut edge, |f| is equal
to the size of the cut set in G'. Identifying the set V7% can be
accomplished using breadth-first search in G and G'y. We note
that the set M is the cut set for the cut (V] — V5, Vi U V),
and by Theorem 2.1, is a minimum cut.

The flow network construction is depicted in Fig. 3. With
this definition of V75, we have the following result.

Theorem 3.1: V7% is a solution to the SMCRP. That is,

. _ .
Vi, = arg max gain(R).

We begin the proof of Theorem 3.1 with several lemmas
concerning two subsets of V;. These subsets characterize the
maximum possible gain of replicating any subset of V) into
the component V.

Definition 3.5: Let C = reachable(s, E N Vi x V}) be the
set of all vertices in V; that are connected to the source s in
the flow network G’.

Definition 3.6: Let D = {u € V; | u € C and reachable
(v, E) N V5 # 0} be the set of all vertices in V; that are
disconnected from the source s in G’, but have descendants
in Vs.

It is intuitively clear that D should be replicated, as doing so
will remove cut edges from the network without introducing
any new cut edges. We state this formally as a lemma.

Lemma 3.1: For any set R C V1, the gain of replicating R
into V;, satisfies the inequality

gain(R) < gain(RU D),
with strict inequality if D € R.

Proof: Tt follows from the definition of the vertex set D
that the edge set I(D) is empty. Therefore, after replicating
R, we have gain(D) = gain(D — R) > |O(D — R)| > 0.
Furthermore, v € D — R implies that after replicating R,
reachable(u, E) N (Vo W R) is not empty, which in turn implies
that O(D — R) is not empty. Hence, if D — R is not empty,
the inequality is strict. 0O

An immediate consequence of Lemma 3.1 is the fact that
D must be contained in any min-cut replication set. The next
lemma states that the replication set V% does contain D.

Lemma 3.2: If D is defined as in Defn. 3.6, then D C V5.

Proof: If D is empty the lemma is trivially true, so
suppose it is not empty. Let v € D be arbitrarily chosen.
With C defined as in Defn. 3.5, we know that v ¢ C. By
construction, this implies that u & reachable(s,E’), which
implies u ¢ reachable(s, E%). Hence u € Ty. Also, u € D
implies that reachable(u, E) NV, is nonempty, which implies
that there exists a u-t path in G’, hence u € T. It follows that
we TNTy =V O

The gain of replicating a vertex set is invariant under
permutation of the elements of the set. Therefore the gain of
replicating a set R containing D is simply the gain of repli-
cating D plus the gain of replicating R — D after replicating
D. The next lemma provides an upper bound on the gain of
replicating any set that contains D.

Lemma 3.3: Let f be the maximum flow computed by the
augmenting path method in the definition of V% and let M, C,
and D be defined as above. Then after replicating D, we have
the following inequality for the gain of replicating any set
R C V.

gain(R) < |0(C)| — | Mj|.

Proof: The disjoint union (O(C)—O(R))UI(R) is an s-t
cut set in G’. Therefore, since M is a minimum cut, we have

|My| < |(O(C) - O(R)) LI(R)|
=10(C) - O(R)| + |I(R)|.

Furthermore, after replicating D, we have O(R) C O(C),
which implies that

|O(C) = O(R)| = |0O(C)| - |O(R)|.
It follows that
gain(R) = |O(R)| - |I(R)| < |O(C)| — | My,

as desired. a

Essentially, all that remains to prove Theorem 3.1 is to prove
that the gain of replicating V)% achieves the bound of Lemma
3.3.

Proof: (of Theorem 3.1) We wish to show that V%, has
maximal gain of any subset of V;. We will first prove that V7%
achieves the bound of Lemma 3.3. By Lemma 3.2, we know
that D C Vj%, and we may assume that in replicating V75,
the subset D is replicated first. It is then easily verified from
the definitions that after replicating D, the set of original cut
edges that remain, O(V5) = O(C) — My, and the set of new
cut edges introduced by replication, I(V73) = My — O(C),

100 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 1, JANUARY 1995

where C is given by Defn. 3.5 and My is given by Defn. 3.4.
Therefore,

gain(Vi3) = lO(Vi3)l - [1(Vi2)l
=10(C) - M;| - My - O(C)|
=10(C) — Ms| + [M; N O(C)]
~|M;nO(C)| - |M; - O(C)|
= |0(C)| - |Mgl.

Now suppose that R C V; is an arbitrary min-cut replication
set. By Lemma 3.1, we know that if D ¢ R, then gain(R U
D) > gain(R), so it must be that R contains D. After
replicating D, by Lemma 3.3 we have that

gain(R) = gain(R — D) < |0(C)| — |My| = gain(V3),

which completes the proof. a

Having established that V7% is a min-cut replication set, we
can determine the running time of the max-flow replication
algorithm to obtain an upper bound on the run-time complexity
of the SMCRP.

Corollary 3.1: Given a directed graph G = (V,E) and
a cut {V1,V,}, a min-cut replication set into Vo can be
determined in time O(nmlog(n?/m)), where n = |V| and
m = |E|.

Proof: By Theorem 3.1, it is sufficient to show that
V7%, computed by the max-flow replication algorithm, can be
determined in O(nm log(n?/m)) time.

Clearly the flow network G’ can be computed in O(m)
time since the vertex set |V’ = O(n) and the edge set
|E'| = O(m). The maximum flow f can be determined in
time O(nmlog(n?/m)) using the algorithm in (5]. The set
V% can be identified by a breadth-first search of G’ and G
in time O(m). Hence, O(nm log(n?/m)) time is sufficient to
determine V5.

We see that the SMCRP can be solved efficiently. Further-
more, since the replication problem can be reduced to a flow
problem, speed-ups in flow computations can lead to speed-ups
of the max-flow replication algorithm. However, we observe
that the max-flow replication algorithm does not guarantee a
min-cut replication set of minimal size. In fact, the difference
in size between V5 and the smallest min-cut replication set
can be unbounded due to the existence of many minimum cut
sets defined by the flow f. Nevertheless, when component size
constraints are sufficiently loose, the solution can be feasible.

IV. THE MIN-CUT REPLICATION ALGORITHM

In the section we will show that the general MCRP can be
solved by solving k independent instances of the SMCRP. We
will refer to this method of solution as the min-cut replication
algorithm.

We begin by making a simple, but important observation
about replication in k-partitioned networks.

Lemma 4.1: If {V1,Va,..., Vi} is a k-cut of Gand R; C
V. is an arbitrary subset of vertices, then replicating R; into the
component V; cannot alter the number of cut edges incident
into a different component V.

Proof: By definition, replicating vertices of V; into V;
removes edges from E or adds edges to E only that are
incident into V;. Hence, in(V;) is unaffected by replicating
R; into V; for all components except Vi.

This innocent looking lemma is really quite powerful; it
implies that the k instances of the SMCRP corresponding to
the cuts {V;,Vi} for i = 1,2,...,k, are independent. Each
instance of the SMCRP minimizes the number of cut edges
into a particular component. Consequently, a general solution
can be obtained by minimizing all of them independently.

We formalize this observation in the following theorem,
which provides a solution to the MCRP.

Theorem 4.1: Let {V* |i=1,2,...,k} bea collection of
vertex sets, where

V* = arg min in(V;W R
(2 —_—
RCV;

is the subset of V; that minimizes the number of cut edges
incident into the component V; when replicated into V;. Then
the collection of vertex sets

(Vi |V =VinVi,1<i#j <k}

is a solution to the min-cut replication problem.

Proof: We first assert that replicating the sets V", for
i=1,2,...,k, results in a minimal cut size over any choice
of replication sets. To see this, observe that replicating any set
R; C V; results in some value for in(V; @ R;), the number
of cut edges incident into V;. We know that by Lemma 4.1,
replicating R; into V; has no effect on in(V; W R;) when ,j
are not equal. But since the cut size after replicating all of the
sets V;* is 3, in(Vi W R;), choosing the sets V;* to be those R;
that minimize each term of the sum minimizes the total sum.

Finally, it is clear that replicating the sets, V;; = vinVvy,
from V; to V;, for all 4 and j, is identical to replicating V" into
V;. Therefore, replicating the collection of vertex sets {V7}
minimizes the total cut size, as we wished to prove. O

By decomposing the MCRP into k instances of the SMCRP
with the additional set intersection operations, we can easily
determined the running time of the min-cut replication algo-
rithm. Simply, the running time is on the order of k times the
running time of each instance of the SMCRP.

Corollary 4.1: Given a directed graph G = (V,E)
and a cut {Vj,Vs,.. .,Vi}, the MCRP can be solved in
O(knmlog(n?/m)) time, where n = |V| and m = |E|.

Proof: 1t is sufficient to show that the min-cut replication
algorithm runs in O(knm log(n?/m)) time. Applying the
max-flow replication algorithm to the k instances of the SM-
CRP corresponding to the cuts {V;, V;} produces replication
sets V¥, for i = 1,2,...,k. By Corollary 3.1, this can be
done in O(knmlog(n®/m)) time. Since computing the set
intersections {V5 | V;j = Vi N Vil<i#g< k} can be
done in O(knlogn) time by sorting the {V;} and {V;*} and
comparing V; with V* for all i and j, and result follows. O

V. REPLICATION IN HYPERGRAPHS

Since a logic network may contain multi-terminal nets in ad-
dition to two-terminal nets, a network is better represented by

HWANG AND EL GAMAL: MIN-CUT REPLICATION IN PARTITIONED NETWORKS 101

a hypergraph than by a graph. Although max-flow techniques
are known for undirected hypergraphs [6], they do not apply
to directed hypergraphs as required for replication. Therefore
it is necessary to extend the min-cut replication algorithm to
determine replication sets in hypergraphs.
Definition 5.1: A directed hypergraph G = (f/, E) con-
sists of a vertex set V and hyperedge set £ C V x (2¥ - 0),
where a hyperedge ¢ = (u,S) consists of a single source
vertex v and a nonempty set of sink vertices (there should
be no confusion between this use of source and sink and the
usage in flow networks). We say that e contains the vertices
in {u} U S, and we assume that u € S (no self loops).
Definition 5.2: A cut V = {V;,Va,...,Vi} is a partition
of V into nonempty components. A cut hyperedge is a
hyperedge containing vertices in two or more components. The
cut size of the cut set, [V| is the number of cut hyperedges
in G.
Definition 5.3: Let V = {V1,Va,...,Vi}, be a partition of
the hypergraph G. Then the replication of a vertex u € Vi
into a different component V] is the hypergraph obtained by
adding a new vertex u; to component f/j, and modifying the
edge set G as follows.
« Every incoming hyperedge (w,S), where u € S is
replaced by the hyperedge (w, S’), where S" = SU {u;}.

 Every outgoing cut hyperedge (u,S) where SNV is
nonempty, is replaced by the hyperedges (u, S;) and
(u, S;), where S; = SN V; and S; =SnV;.

As for graphs, replication in hypergraphs is extended to sets
of vertices.

Because a single hyperedge may have many sinks, replicat-
ing a sink vertex into more than one component does not add a
new cut hyperedge for each clone, as is the case for graphs. In
fact, for hypergraphs we have the inequality, [V| < 3, in(V;),
so minimizing the sum is not equivalent to minimizing the cut
size. Nevertheless, in practice this distinction is not as critical
as it may seem and we will continue to refer to replication
sets that minimize the sum as min-cut replication sets. This
is particularly true for multiple FPGA partitioning, where the
objective is to minimize the number of pins rather than the
number of cut nets. Since the number of pins is |V|+3_, in(V;),
it is reasonable to minimize the sum.

We would like to apply the min-cut replication algorithm
to partitioned hypergraphs, but the max-flow replication al-
gorithm is not directly applicable, since the flow techniques
do not apply to hypergraphs. Our approach is to transform a
hypergraph into a graph and then apply the min-cut replication
algorithm.

Given a hypergraph, G = (V, E), with bipartition {(V1,Va},
the graph G = (V, E) is defined as follows.

Definition 5.4: Let E,, = {e € E | e € (u,85),]S| > 1} be
the set of all hyperedges containing more than two vertices.
The vertex set

V=VU{v|e€E,}U{vs|ecEn}

consists of V aqd two new vertices, v§ and v3, for every
hyperedge e in E,,.

byl

\A v, \A v,

Fig. 4. Replacing a multiple sink hyperedge by a tree.

Definition 5.5: The edge set E contains an edge (u,v)
for every two-vertex hyperedge (u,{v}) € E — E,,. Each
hyperedge in Em is replaced by a tree as shown by examp!e
in Fig. 4. If e = (u, S) is a hyperedge with source » in V}
and sinks S, then E contains edges

* (u,1),

* (v§,vs) between the two new vertices corresponding to e,

o (v%,v) for every v in V; NS and

¢ (v§,v) for every u in V2nS.

To determine a replication set V%, that minimizes the
number of cut hyperedges into Vs, we construct a graph
G = (V,E) as follows, determine a min-cut replication set
V5, and set V% equal to Vi,

The following lemma justifies the use of this tree construc-
tion for transforming a hypergraph into a directed graph. It
states that even though a single hyperedge may be replaced
by many graph edges, at most one edge for a hyperedge will
ever occur in the cut set defined in the max-flow replication
algorithm. Note that this would certainly not be the case if a
hyperedge were replaced by a clique.

Lemma 5.1: If G’ is the flow network constructed from G
in the max-flow replication algorithm, then the minimum cut
set My defined in Def. 3.4 never contains two edges of a tree
corresponding to a single hyperedge.

Proof: Suppose to the contrary that My contains two
such edges corresponding to a hyperedge e € E. Then
replacing these two edges by the edge (u., v{) from the source
vertex for e to the vertex v§ preserves the cut and reduces
| M|, which is impossible. |

This lemma also ensures that applying the max-flow repli-
cation algorithm to find a min-cut replication set in the
transformed graph G also finds a replication set in the hy-
pergraph that minimizes the sum) in(V;) for G as well as
GI

Theorem 5.1: Corresponding to the cut set in G’ computed
by the max-flow replication algorithm is a minimum cut set
in G of the same size.

Proof: Let M; be the minimum cut set in G’ defined in
Def. 3.4. Then by Lemma 5.1, each hyperedge can have at
most one corresponding edge in the cut set. Let My be the
set of hyperedges corresponding to My. We claim that M 7 is
a minimum cut set in G. It is clearly a cut set, since M; is
a cut set in G'. Furthermore, if C is any cut set in G with
|G| < |Mj|, then C = {(ue, %) | e € C}, is a cut set in G
with |C| < | M|, a contradiction. a

Therefore, we can extend the min-cut rephcatlon algo—
rithm in a natural way to hypergraphs Let G = (V,E)
be a hypergraph with cut, V = {Vl,Vz, .. Vk} For each

102 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 1, JANUARY 1995

bipartition, {V@, 171}, construct a bipartitioned graph, G =
(V, E), having the cut {Vi, V;}. When the max-flow replication
algorithm is applied to G, we obtain a set V;* that minimizes,
in(V;), the number of cut edges incident into V;. Theorem 5.1
asserts that V;* also minimizes in(V;) in the hypergraph G.
Therefore, applying in min-cut replication algorithm to obtain
the collection of vertex sets, {V;* | i = 1,2,...,k}, minimizes
> in(V;) in the original hypergraph. The transformation can
be done in time linear in the network size, so, as for graphs,
the min-cut replication algorithm for hypergraphs runs in
O(knmlog(n?/m)) time, where n = |V| and m = |E|.

VI. CONSTRAINED REPLICATION IS NP-HARD

By formulating the MCRP without component size con-
straints, we were able to derive an efficient solution by
reducing the replication problem to a maximum flow problem.
However, if we add size constraints to the problem, unsurpris-
ingly, the problem becomes N P-hard. Formally, consider the
following decision problem:

Constrained Min-Cut Replication Problem:

Given a directed graph G = (V, E), cut {V1,V2}, integers
K and L, and weighting functions wy: V — N and wg: B —
N, determine if there exists a replication set Vi C Vi for
which the resulting cut {Vi,Va,WV;5} has size less than or
equal to K and the resulting sets V; and Vo & V75 have size
less than or equal to L.

Theorem 6.1: The constrained min-cut replication problem
is N"P-complete.

A proof of this result, based on a polynomial time reduction
from the A/P-complete PARTITION problem [4], is contained
in [7]. Although we do not have a proof of it, we conjecture
that the constrained replication problem remains NP-complete
when all vertices and edges have unit weight.

VII. MIN-CUT REPLICATION HEURISTICS

We have observed that the max-flow replication algorithm
may fail to satisfy a component size constraint and that the
replication problem with size constraints is AP-hard. Conse-
quently, in practice, heuristics must be used. The heuristics
presented in this section are based on the solution to the
MCRP, using a partitioning heuristic to approximate the max-
flow replication algorithm.

One of the most widely used partitioning heuristics is a
quasi-linear time algorithm due to Fiduccia and Mattheyses
(FM) [2], which can be modified to reflect the inherent
edge directionality necessary for replication. We denote the
modified FM partitioning heuristic by FM-Dir. The primary
differences between FM-Dir and FM are as follows.

o The gain calculations must be modified to reflect the
directionality of replication. Like FM, FM-Rep’s gain is
defined to the change in the number of pins rather than
the number of cut nets. An example gain calculation is
shown in Fig. 5.

o The size constraint must apply only to V;, the compo-
nent being replicated into, since all vertices in V; are
candidates for replication.

v | gain(v) =-1

[} >

Fig. 5. Gain calculation for directional FM-based replication.

TABLE 1
BENCHMARK DESIGNS AND PARTITIONING CONSTRAINTS

Design Constraints
MCNC gates pins gates pins
c1355 708 T3 750 50
c1908 534 58 750 50
¢3540 1401 72 750 50
51196 827 30 750 50
81238 829 30 750 50
¢2670 999 221 1500 100
c5315 2271 301 1500 100
c6288 3286 64 1500 100
c7552 2719 313 1500 100
- 513207 13440 154 1500 100
$15850 14839 103 1500 100
835932 29313 357 1500 100
538584 33553 292 1500 100
s5378 4525 86 1500 100
$9234 7775 43 1500 100

Industrial modules modules

addresspart 623 91 295 57
biga 1210 95 546 69
cat 719 41 205 &7
control 517 66 295 57
entmisc 1529 72 546 69
gme_a 2013 59 546 69
look1240 619 60 295 57
pdt 453 63 295 57
seq 1824 76 546 69
sgv 569 57 295 57
vrel 544 43 205 57

With these modifications, FM-Dir approximates the
maximum-flow computation in the max-flow replication
algorithm.

FM-Dir forms the basis of a replication heuristic for con-
strained min-cut replication that we denote by FM-BiRep!.
To determine a set of replicate into a component V;, we
consider the cut {Vl,‘—/;} Every vertex u € V; is fixed to

lreferred to as FM-Rep in [8].

HWANG AND EL GAMAL: MIN-CUT REPLICATION IN PARTITIONED NETWORKS 103

prevent it from being moved during any of the partitioning
passes. FM-Dir is then applied to the resulting bipartition,
with the size constraint enforced only for component V;. After
partitioning is completed, any vertex that has been moved into
V; is replicated. Like FM, each pass of FM-Dir runs in time,
O(p), where p is the number of pins in the network.

FM-BiRep forms the basis for two k-way replication
heuristics, both suggested by the min-cut replication algorithm.
The first, denoted by FM-Rep simply applies FM-BiRep
to each bipartition {V;,V;} for i = 1,2,... k. The second,
denoted by MC-Rep?, is similarly simple to describe. First, the
max-flow replication algorithm is applied to each of the cuts
{V;,V;} independently, for ¢ = 1,2,...,k. If the max-flow
solution is feasible, it is replicated. If, however, replicating
this set leads to a violation of the component size constraint,
FM-BiRep is applied to the bipartition, returning a feasible
replication set. If the max-flow solution is empty, then FM-
BiRep is not invoked.

Both FM-Rep and MC-Rep make a single pass over the
partition components. It is shown in [7] that this approach
reduces the worst-case running time by a factor O(k?) over a
naive approach which computes replication pairwise between
all component pairs.

The running times for FM-Rep and MC-Rep are easily
determined. Each call to FM-BiRep takes time O(p), so the
running time of FM-Rep is O(kp). Moreover, in practice the
total number of pins in the network is O(n), and k is bounded
by a constant, so we see that FM-Rep runs in time essentially
linear in the input size.

For MC-Rep, The max-flow step dominates the running
time. If the push-relabel method of [5] is used for the max-flow
replication algorithm, each flow step takes O(nm log(n?/m))
time, where n = |V| and m = |E|. FM-BiRep runs in
time O(p) [2], where p, the total number of pins in the
network, is clearly O(nm). Therefore, MC-Rep runs in time
(knmlog(n?/m)).

VIII. EXPERIMENTAL RESULTS

We have implemented the min-cut replication algorithms
in TAPIR, a tool for automatic partitioning that incorpo-
rates replication [7]. Initial partitions were generated by MW-
Part, an FM-based multiple-way partitioning algorithm that
computes good quality min-cut partitions as described in
the Appendix. We applied FM-Rep and MC-Rep to fifteen
designs from the MCNC Partitioning93 benchmark suite and
ten industrial design implemented in the Actel FPGA library.
As shown in Table I, the designs ranged in size from about
five hundred to over thirty thousand gates.

In the first experiment, each design was partitioned using
MW-Part and the number of cut nets and the total number
of pins in the partition were recorded. FM-Rep and MC-
Rep were each applied to the partitioned designs, and the
corresponding numbers were again recorded. The results are
shown in Table II

2referred to as Flow-FM in [8].

Average Partition Pins

\
\
0.8 \ — partition
A
\ - — —replication
206 N
£o. N\
N ~
0.4 BN
0.2
0 0.5 1
gate capacity

Fig. 6. Average total number of partition pins vs. gate capacity (normalized),
with and without replication.

The relative reduction in the number of pins,

Ap = partition pins — replication pins
p= partition pins '

expresses the change in pin count obtained by applying repli-
cation. Although the reduction Ap varied substantially from
design to design, it is apparent that replication substantially
reduced both the numbers of cut nets and total pins for most
of the designs. The number of total pins was reduced by
15% on average using FM-Rep and by 18% on average
using MC-Rep. The gate utilization was on average, 42%
after partitioning and 54% after replication. The running
times indicate that the flow steps dominate the MC-Rep
computation; FM-Rep runs substantially faster, especially on
the large designs. The running time was measured in CPU
seconds on a Sun4, running C code compiled by gcc without
the optimizer.

The relatively small difference in pin reduction between
FM-Rep and MC-Rep indicates that most of the time, the
max-flow replication solution was infeasible and was ignored
by MC-Rep. Another approach would be to use the infeasible
max-flow solution as the starting point for the replication
heuristic. If the gate capacity constraint is nearly met, this
approach may do better than the current method.

In the second experiment, we partitioned each design D,
with the size constraint varying from 0.1|D| to 0.9]D| and
the pin constraint set to allow feasible partitions. To avoid
excessive running time in partitioning, we considered only
the twenty smallest designs. For each size constraint, the
design was partitioned, MC-Rep was applied, and the total
pin reduction was recorded. Fig. 6 contains the results.

Fig. 6 is a plot of the total numbers of pins in the partition,
before and after replication, as functions of the size constraint.
The gate capacity is normalized to the design size |D|, and
the pin counts are normalized to the values when the size con-
straint is 0.1 | D|. Fig. 7 is a plot of the average pin reduction
Ap as a function of size constraint, where the error bars depict
plus or minus one standard deviation. As can be seen, the
total number of pins after partitioning decreased with increased
capacity and Ap increased on average from about 10% to 20%.
Although for smaller capacities, the results agreed well with
the first experiment, when the capacity exceeded about 0.5|D|,
the variance in Ap increased significantly.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 1, JANUARY 1995

TABLE 1II
CuT Size AND TOTAL PINS, WITH AND WITHOUT REPLICATION

Design M-W-Partition FM-Rep MC-Rep
FPGAs cuts pins cuts pins Ap trime cuts pins Ap tl;llgle
c1355 6 73 232 63 215 .07 .8 63 215 .07 111
c1908 5 59 197 52 181 .08 3 52 181 .08 4.8
¢3540 12 188 542 153 457 .16 3.6 117 420 .23 38.7
$1196 6 84 239 25 130 .46 .8 10 114 .52 8.7
81238 8 119 340 27 150 .56 1.2 0 135 .60 111
¢2670 4 46 321 39 308 .04 8 39 308 .04 8.7
¢5315 8 138 610 115 550 .10 4.4 101 539 .12 47.6
c6288 4 122 335 101 279 .17 3.1 101 279 17 55.0
c7552 5 55 432 53 424 .02 3.6 53 424 .02 35.4
513207 12 268 841 269 813 .03 445 269 813 .03 960.5
515850 13 321 869 285 777 11 464 285 777 .11 1812.0
835932 24 516 1767 487 1552 .12 348.2 487 1552 .12 7695.1
$38584 28 631 1844 609 1739 .06 357.6 609 1739 .06 10849.8
s5378 8 254 663 182 ° 520 .22 6.0 182 520 .22 128.6
59234 7 197 493 166 418 .15 8.5 166 418 .15 233.1
addresspart 6 74 283 56 223 .21 1.0 30 195 .31 8.8
cat 3 31 110 31 110 0.0 4 31 110 0.0 3.7
control 6 94 272 81 245 .10 8 79 243 .11 7.0
look1240 10 150 481 113 395 .18 1.9 67 335 .30 17.6
pdt 4 51 175 37 148 .15 .5 31 141 .19 34
vrel 3 39 130 40 130 0.0 5 40 130 0.0 3.7
biga 10 154 490 143 462 .06 4.1 62 372 .24 35.3
entmisc 10 218 599 115 360 .40 5.0 102 345 .42 45.7
gme.a 7 131 366 116 326 .11 3.2 116 325 .11 41.1
seq 6 73 339 60 313 .08 3.6 23 268 .21 32.6

avg .15 18

Average Replication Gain

0.6

0.4
£
[

© 0.2
£
o

0

-0.2

0 0.5 1
gate capacity

Fig. 7. Average replication gain vs. component gate capacity, with one
standard deviation error bars.

The next experiment demonstrates that min-cut replication
can reduce the number of FPGA’s required to implement a
design. The approach was to first increase the pin constraint
by n pins, apply partitioning, and then apply MC-Rep to the
partition. For each design, binary search was used to determine
the maximal pin constraint relaxation n for which MC-Rep
rendered the partition feasible under the original pin constraint.
Again, to avoid excessive run time we restricted attention to
the twenty smallest designs.

Letting k, and k, be the numbers of FPGA’s in the
partitions with the original and expanded pin constraints
respectively, the relative reduction in the number of FPGA’s
is given by Ap = Z—:’ . The data shown in Table III includes
Ey, kr, Ap, the maximum value of 7 obtained for each design,
and 7 expressed as a fraction of the original pin constraint.
As can be seen, the number of FPGA’s was reduced for 14 of
the 20 designs, with a 23% average reduction in the number

of FPGA’s required.

IX. CONCLUSION

Motivated by the problem of mapping designs into mul-
tiple FPGA’s, we have formulated and solved the min-cut
replication problem. For the NP-hard constrained replication
problem, we proposed FM-Rep, an essentially linear time
replication heuristic, and MC-ReD, a flow-based heuristic. We
applied both algorithms to standard partitioning benchmarks
and demonstrated that combining replication with partitioning
substantially reduces the number of pins as well as the partition
size.

Our formulation of the min-cut replication problem assumed
the existence of an initial partition. A natural question is
whether or not decoupling replication and partitioning limits
the resulting cut size. In theory the answer is no.

HWANG AND EL GAMAL: MIN-CUT REPLICATION IN PARTITIONED NETWORKS 105

TABLE [1I
ToTAL NUMBER OF FPGA’S REQUIRED WITH AND WITHOUT REPLICATION

Partitioning Replication

Design FPGAs FPGAs Ar 9 /%
c1355 6 5 17 7 .14
c1908 5 5 00 0 0
c3540 12 8§ .33 13 .26
51196 6 2 67 59 1.18
51238 8 2 .75 59 1.18
c2670 4 4 00 0O 0
c5315 8 6 .25 15 .15
c6288 4 4 00 O 0
c7552 5 5 00 0 0
s6378 8 6 .25 35 .35
addresspart 6 4 33 18 .26
cat 3 3 00 O 0
control 6 5 17 8 .14
biga 10 8§ .20 13 .19
entmisc 10 6 .40 10 14
gme_a 7 6 .14 19 .28
look1240 10 4 60 22 .32
pdt 4 3 25 29 .42
seq 6 5 .17 18 .26
vrel 3 3 00 O 0

avg .23

Proposition 9.1: Let G = (V,E) be a directed graph and
U = {U1,Us,...,U;} be a partition of V, possibly with
replicated vertices, with minimal cut size. Then there exists a
disjoint partition V to which applying the min-cut replication
algorithm results in a cut of the same minimum size.

Proof: Within the partition U, arbitrarily choose one ver-
tex to be the representative for each set of clones, and consider
the disjoint partition, V = {V4, V5,..., Vj}, obtained from U
by unreplicating every clone to its representative. Obviously
U can be derived from V by a sequence of replication steps.
Hence if V* is the partition obtained from V by the min-cut
replication algorithm, then by Theorem 4.1, |V*| < |U|. As
[U| was assumed minimal, the result follows. O

We observe that in practice, a min-cut partition may not
be the best initial partition. This can be demonstrated by
the simple example shown in Fig. 8. Suppose a partition
component cannot contain more than three vertices. Then,
as indicated by the bold dotted line in Fig. 8(a), the min-
cut partition has cut size equal to three. However, it is easily
verified that the initial partition depicted by the lighter dotted
line, having cut size equal to four, results in the min-cut
replication set of size two, shown in Fig. 8(b). In contrast, min-
cut replication does not improve the original min-cut partition.

Although our approach separates replication from parti-
tioning, we should emphasize that a complete decoupling
is not required. The min-cut replication approach applies
replication at the component-level, performing replication with
respect to a bipartition. It can therefore be applied to a
candidate component at any time during partitioning. Whether

Fig. 8. Min-cut partition (in bold) is not the best initial partition.

a top-down partitioning algorithm or a bottom-up clustering
approach is used, min-cut replication can be applied during
the partitioning process to produce a partition component.
For example, replication can usefully be applied whenever a
component almost satisfies the pin constraint.

There are a number of important open problems related
to min-cut replication. We conclude by listing several such
problems.

1) Find the smallest solution to the MCRP.

2) Prove that the Constrained MCRP remains N P-hard

when all vertex and edge weights are unity.

3) Find an exact minimum cut size solution to the hyper-

graph MCRP.

4) Characterize initial partitions for which min-cut replica-

tion is most effective.

APPENDIX

TAPIR was developed as part of a project to investigate
FPGA-based architectures and CAD for rapid hardware pro-
totyping and logic emulation [3], [7]. It is currently integrated
with a CAD system for field-programmable multi-chip mod-
ules {12]. TAPIR is written in C, with Flow-Rep based on
a modified version of the maxflow module from mislI [1].
The input to TAPIR is a netlist specified in either the Actel
ADL or Xilinx XNF format.

The multiple-way partitioning algorithm used in TAPIR,
MW-Part, is based on the FM bipartitioning heuristic (see
Fig. 9). MW-Part generates partitions that satisfy components
size and pin constraints as follows. In a series of rounds,
MW-Part maintains a set of infeasible components, initially
containing the entire design. In each round, the largest in-
feasible component is selected from this set and bipartitioned
using the FM heuristic, taking the best result from a number
of random initial bipartition (for the experiments described
in Section VIII, ten random bipartitions were computed for
each component splitting step). After splitting this infeasible
component, FM is applied to all component pairs to equalize
their sizes while reducing the cut size. If components can be
merged without violating the size and pin constraints, they are
merged instead of bipartitioned. In the next round, the largest
infeasible component is selected, bipartitioned, and again, all
component pairs are bipartitioned to equalize the component
sizes. The process continues until all components are feasible.

ACKNOWLEDGMENT

We thank D. How, J. Gill, and S. Lan for helpful discussions,
and J. Kouloheris and P. Siegel for assistance in running

106 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF
MW-Part(G) { 4]
Ve {V} 5]
while (3 an infeasible component) {
V; « largest infeasible cmpt; 61
V V- {Vi};
{Vio, Var} « SplitCmpt(Vi);
V= VU {Vio, Va}; g
PartAllCmptPairs(V); (8]
return(V); 19
} [10]
splitCmpt (Vi) {
{Vio, Vaa} + FM(RandomBipartition(V));)
repeat for max iterations [12]
{Uo, U1} «~ FM(RandomBipartition(Vi));
if (cut size ({Up, U1}) < cut size ({Vio, Vi1 1)) (13]
{Vio, Va} < {Uo, U1 };
return({Vio, Vaa}); 14
} 1s]
PartAllCmptPairs (V){ 16}
foreach (component pair (V;,V;))
if (|V; UVj| < size constraint) { (7

Vi ViuVj
VeV -{Vik
}
else
FM ({Vi, V;});
return (V);

Fig. 9. Mw-Part: a multiple-way partitioning algorithm.

the experiments. Dana deserves special thanks for his careful
reading of early versions of this paper. We would also like
to thank the reviewers for comments that helped improve the
readability of this paper.

REFERENCES

[1] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R.
Wang, “MIS: A multiple-level logic optimization system,” [EEE Trans.
Computer-Aided Design, Vol. 6, no. 6, pg. 1062-1081, Nov. 1987.

C. M. Fiduccia and R. M. Mattheyses,
improving network partitions,” in Proc. 19th Design Automation Conf.,
1982, pp. 175-181.

A. El Gamal et al., “Architectures, circuits and computer-aided de-
sign for electrically programmable VLSL” Semi-Annual Tech. Report,
Defense Advanced Research Projects Agency, Mar. 1991.

[2]

{3}

“A linear time heuristic for

INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 1, JANUARY 1995

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York: Freeman, 1979.

A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum
flow problem,” in Proc. 18th ACM Symp. Theory Comput., pp. 136-146,
1986.

T. C. Hu and K. Moerder, “Multiterminal flows in a hypergraph,” in
VLSI Circuit Layout: Theory and Design, T. C. Hu and E. S. Kuh, Eds.,
New York: IEEE Press, pp. 87-93.

L. J. Hwang, “Replication in partitioned networks,” Ph.D. dissertation,
Stanford Univ., 1994.

J. Hwang and A. El Gamal, “Optimal replication for min-cut partition-
ing,” in Dig. Tech. Papers, ICCAD-92, pp. 432435, IEEE and ACM,
1992.

B. W. Kemighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” The Bell Sys. Tech. J., vol. 49, pp. 291-307, 1970.
C. Kring and A. R. Newton, “A cell-replicating approach to mincut-
based circuit partitioning,” in Dig. Tech. Papers, ICCAD-91, pp. 2-5,
1991.

L. R. Ford, Jr. and D. R. Fulkerson, Flows In Networks. Princeton,
NJ: Princeton Univ. Press, 1962.

S. Lan, A. Ziv, and A. El Gamal, “Routing algorithms for field
programmable multi-chip modules,” in Proc. 31st Design Automation
Conf., IEEE and ACM, 1994.

T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout.
Sussex, UK: Wiley, 1990.

W. A. Notz, E. Schischa, J. L. Smith, and M. G. Smith, “Benefitting
the system designer,” Electronics, pp- 130-141, Feb. 1967.

R. Rajaraman and D. F. M. Wong, “Optimal clustering for delay mini-
mization,” in Proc. 30th Design Automation Conf., 1993, pp. 309-314.
R. L. Russo, P. H. Oden, and P. K. Wolff, Sr., “A heuristic procedure for
the partitioning and mapping of computer logic graphs,” IEEE Trans.
Comput., vol. 20, no. 12, pp. 1455-1462, Dec. 1971.

S. Walters, “Computer-aided prototyping for ASIC-based systems,”
IEEE Design Test Comp., pp. 4-10, June 1991.

James Hwang received the B.A. degree in computer
and information sciences from the University of
California, Santa Cruz, in 1986, and the M.S. degree
in electrical engineering from Stanford University,
in 1988. He is currently a doctoral student of
electrical engineering at Stanford, specializing in
design automation for configurable VLSI systems.

His current research interests include algorithms
and CAD for field-programmable multichip sys-
tems, and formal verification

Abbas El Gamal (S’71-M’73-SM’83) received the
Ph.D. degree in electrical engineering from Stanford
University, Stanford, CA, in 1978.

He is currently an Associate Professor of Elec-
trical Engineering at Stanford University and Chief
Technical Officer of SiArc. From 1978 to 1980, he
was an Assistant Professor of Electrical Engineering
at the University of Southern California. From 1981
to 1984, he was an Assistant Professor of Electrical
Engineering at Stanford. He was on leave from
Stanford from 1984 to 1987, first as Director of

LSI Logic Research Lab, then as cofounder and Chief Scientist of Actel
Corporation. His research interests include VLSI circuits, architectures, and
synthesis, FPGA’s and mask programmable gate arrays, smart Sensors, dis-
plays, image compression, error correction, and information theory. He has
written or co-written more than 60 papers and holds 15 patents in these areas.

