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Segmented Channel Routing

Vwani P. Roychowdhury, Jonathan W. Greene, Member, IEEE, and Abbas El Gamal, Senior Member, IEEE

Abstract—Novel problems concerning routing in a segmented
routing channel are introduced. These problems are funda-
mental to routing and design automation for field program-
mable gate arrays (FPGA’s), a new type of electrically pro-
grammable VLSI. The first known theoretical results on the
combinatorial complexity and algorithm design for segmented
channel routing are presented. It is shown that the segmented
channel routing problem is in general NP-complete. Efficient
polynomial time algorithms for a number of important special
cases are presented.

I. INTRODUCTION

ONVENTIONAL channel routing [1] concerns the

assignment of a set of connections to tracks within a
rectangular region. The tracks are freely customized by
the appropriate mask layers. Even though the channel
routing problem is in general NP-complete [4], efficient
heuristic algorithms exist and are in common use in many
placement and routing systems.

In this paper we investigate the more restricted channel
routing problem (see Fig. 3), where the routing is con-
strained to use fixed wiring segments of predetermined
lengths and positions within the channel. Such segmented
channels are incorporated in channeled field programma-
ble gate arrays (FPGA’s) [3]. In [10], [11] we demon-
strated that a well-designed segmented channel needs only
a few tracks more than a freely customized channel. This
leads us to believe that segmented channel routing is fun-
damental to routing for FPGA’s.

The architecture of channeled FPGA’s [3] is similar to
that of conventional (mask programmed) gate arrays,
comprising rows of logic cells separated by segmented
routing channels (Fig. 1). The inputs and outputs of the
cells each connect to a dedicated vertical segment. Pro-
grammable switches are located at each crossing of ver-
tical and horizontal segments and also between pairs of
adjacent horizontal segments in the same track. By pro-
gramming a switch, a low-resistance path is created be-
tween the two crossing or adjoining segments.

A typical example of routing in a channeled FPGA is
shown in Fig. 1. The vertical segment connected to the
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Fig. 1. FPGA routing architecture. ® denotes a programmed switch: un-

programmed switches are omitted for clarity.

output of cell 3 is connected by a programmed switch to
a horizontal segment, which, in turn, is connected to the
input of cell 4 through another programmed switch. In
order to reach the inputs of cells 1 and 2, two adjacent
horizontal segments are connected to form a longer one.

The choice of the wiring segment lengths in a seg-
mented channel is driven by tradeoffs involving the num-
ber of tracks, the resistance of the switches, and the ca-
pacitances of the segments. These tradeoffs are illustrated
in Fig. 2.

Fig. 2(a) shows a set of connections to be routed. With
the complete freedom to configure the wiring afforded by
mask programming, the left edge algorithm [5] will al-
ways find a routing using a number of tracks equal to the
density of the connections (Fig. 2(b)). This is the case
since there are no ‘‘vertical constraints’’ in the problems
we consider.

In an FPGA, achieving this complete freedom would
require switches at every cross point. Furthermore,
switches would be needed between each two cross points
along a wiring track so that the track could be subdivided
into segments of arbitrary length (Fig. 2(c)). Since all
present technologies offer switches with significant re-
sistance and capacitance, this would cause unacceptable
delays through the routing. Another alternative would be
to provide a number of continuous tracks large enough to
accommodate all nets (Fig. 2(d)). Though the resistance
is limited, the capacitance problem is only compounded,
and the area is excessive.

A segmented routing channel! offers an intermediate ap-
proach. The tracks are divided into segments of varying
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Fig. 2. Examples of channel routing. denotes open switch: @ closed
switch. (a) Set of connections to be routed. (h) Routing in unconstrained
channels. (¢) Routing in fully segmented channels. (d) Routing in an un
segmented channel. (e) Segmented tor l-segment routing. (') Segmented
for 2-segment routing.

lengths (Fig. 2(e)). allowing each connection to be routed
using a single segment of the appropriate size. Greater
routing flexibility is obtained by allowing limited num-
bers of adjacent segments in the same track to be joined
end-to-end by switches (Fig. 2(f)). Enforcement of sim-
ple limits on the number of segments joined. or their total
length, guarantees that the delay will not be unduly in-
creased. Our results apply to the models of Fig. 2(e) and
2(f).

In Section II we formally define segmented channel
routing and summarize the key results in the paper. De-
tails of the algorithms and the proofs for theorems are
given in Sections IT11-V and in the Appendix.

II. DEFINITIONS AND SUMMARY OF RESULTS

The input to a segmented channel routing problem. as
depicted in Fig. 3. is a segmented channel consisting of
a set 3 of T tracks, and a set © of M connections. The
tracks are numbered from 1 to 7. Each track extends from
column 1 to column N, and is divided into a set of con-
tiguous segments separated by switches. The switches are
placed between two consecutive columns.

For each segment s. we define lefi(s) and right(s) to be

JANUARY 1993

the lettmost and rightmost columns in which the segment
is present. | < lefi(s) < right(s) < N. Each connection
¢, | =i < M. is characterized by its leftmost and right-
most columns: left(c;) and righi(c;). Without loss of gen-
erality. we assume throughout that the connections have
been sorted so that lefi(c)) < lefi(c;) fori < j.

A connection ¢ may be assigned to a track . in which
casc the segments in track r that are present in the columns
spanned by the connection are considered occupied. More
precisely. a segment s in track ¢ is occupied by the con-
nection ¢ if right(s) = lefr(cy and left(s) < right(c). In
Fig. 3 for example. connection ¢; would occupy segments
3y and sa, in track 2 or segment sy, in track 3.

Definition 1—Routing: A routing, R, of a set of con-
nections is an assignment of each connection to a track
such that no segment is occupied by more than one con-
nection.

A K-segment routing is a routing that satisfies the ad-
ditional requirement that each connection occupies at most
K segments.

We can now define the following segmented channel
routing problems:

Problem 1—Unlimited Segment Routing: Given a set
of connections and a segmented channel, find a routing.

To reduce the delay through assigned connections. it
may be desirable to limit the number of segments used for
cach connection.

Problem 2—K-Segment Rowring: Given a set of con-
nections and a segmented channel. find a K-segment rout-
ing.

If is often desirable to determine a routing that is opti-
mal with respect to some criterion. We may thus specity
a weight w(c. 1) for the assignment of connection c¢ to track
1. and define:

Problem 3—Optimal Routing: Given a set of connec-
tions and a segmented channel. find a routing which as-
signs each connection ¢, to a track ¢ such that o
wic;. ). is minimized.

For example, a reasonable choice for w(c, 1) would be
the sum of the lengths of the segments occupied when
connection ¢ is assigned to track r. Note also that with
appropriate choice of yw(c. 7). Problem 3 subsumes Prob-
lem 2.

The problems defined above consider segmented chan-
nel routing with the restriction that each connection may
be assigned only to a single track. It is easy to see that
the routing capacity of a segmented channel may be in-
creased it a connection is assigned to segments in different
tracks. For example. consider the segmented channel
routing problem in Fig. 4. It can be casily shown that if
the assignment of each connection is constrained to a sin-
gle track. successtul routing does not exist. However. by
assigning connection ¢, to segments s,, and S33, Which are
located in tracks 7; and 7y, successful routing may be
achieved. We refer to such a routing as generalized rout-
ing.

Definition  2—Generalized  Routing: A generalized
routing R;. of a ser of connections consists of an assign-
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Fig. 4. An example where generalized routing is necessary for successful assignment.

ment of each connection to one or more tracks such that
no segment is occupied by more than one connection.

Thus a generalized routing allows each connection ¢ =
(left(c), right(c)) to be split into p(p = 1) parts: (left(c),
), 4+ L), (o + 1,0, -,y + 1, right(c)),
such that each part can be assigned to different tracks. A
column /;, where a connection is split, is referred to as a
column where the connection ¢ changes tracks.

Detailed hardware implementations may be developed
to support generalized routing. For example, vertical wire
segments may be added to facilitate track changing. In
this case if a connection changes tracks, two switches must
be programmed compared to only one if the connection is
assigned to two contiguous segments in the same track.
Thus allowing connections to occupy multiple tracks
might lead to increase in area and to greater delays.

Motivated by such penalties, constraints may be im-
posed on the generalized segmented channel routing prob-
lem, leading to the following potentially important special
cases.

1) Determine a generalized routing that uses at most k
segments for routing any particular connection.

2) Determine a generalized routing that uses at most /
different tracks for routing any connection.

3) Determine a generalized routing where connections
can switch tracks only at predetermined columns.

We present preliminary results on the unconstrained
version of generalized segmented channel routing prob-
lem.

Problem 4—Generalized Segmented Channel Routing:
Given a set of connections and a segmented channel, find
a generalized routing.

In this paper we establish the following results.

Theorem 1: Determining a solution to Problem 1 is
strongly NP-complete.

Theorem 2: Determining a solution to Problem 2 is
strongly NP-complete even when K = 2.

The reductions used to prove these theorems are rather
tricky, and may have applications to problems in the area
of task-scheduling on nonuniform processors. A proof of
Theorem 1 is presented in Section III, and a proof of
Theorem 2 is given in the Appendix.

We should note here that proving a given problem as
NP-complete might not be enough to indicate its intrac-
tability. For example, many NP-complete problems such
as Knap Sack have polynomial time solutions if all the
input parameters are polynomially bounded in the input
size. Strongly NP-complete problems however, remain
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NP-complete even if input parameters are polynomially
bounded; examples include TSP, Hamiltonian circuit. etc.
(see [6] for detailed discussion on such issues). For Prob-
lems | and 2, the input parameters are indeed polynomi-
ally bounded in the number of columns (N) and tracks
(T ). for example, M < T N and the lengths of the con-
nections and the segments are bounded above by MN.
Hence, a proper approach would be to show that these
problems are strongly NP-complete, which is what Theo-
rems ] and 2 establish.

Although Theorems | and 2 show that segmented chan-
nel routing is in general NP-complete. several special
cases of the problem are tractable. We have developed
polynomial-time algorithms for the following special
cases:

Identically Segmented Tracks: Two tracks will be de-
fined to be identically segmented if they have switches at
the same locations. and hence, segments of the same
length. The left edge algorithm used for conventional
channel routing can be applied to solve Problems 1. 2,
and 3.

1-Segment Routing: A routing can be determined by a
linear time (O(MT)) greedy algorithm that exploits the
geometry of the problem. The corresponding optimization
problem can be also solved in polynomial time by reduc-
ing it to a weighted maximum bipartite matching prob-
lem.

At Most 2-Segments Per Track: If each track is seg-
mented into at most two segments then also a greedy lin-
ear time algorithm (similar to the one for 1-Segment rout-
ing) can be designed to determine a routing.

We have also developed a general O(T!M )-time algo-
rithm using dynamic programming for solving Problems
1. 2, and 3. This general algorithm can be adapted to yield
more efficient algorithms for the following cases:

Fixed Number of Tracks: 1f the number of tracks is
fixed. then the general algorithm directly yields a poly-
nomial time algorithm.

K-Segment Routing: The general algorithm can be
modified to yield an O(K + 1)"M )-time algorithm. Note
that for small values of K the modified algorithm performs
better than the general one.

Fixed Tvpes of Tracks: If the number of tracks is
unbounded but the tracks are chosen from a fixed set
where 7, is the number of tracks of type i. then an
O, TX "M ) time (hence. a polynomial-time) algo-
rithm can be designed.

Furthermore. we have developed a heuristic algorithm
based on linear programming for solving Problems | and
2 that appears to work suiprisingly well in practice.

The general algorithm and the above-mentioned special
cases are described in Section IV.

In Section V we present preliminary results on the gen-
eralized segmented channel routing problem. In particular
we show that Problem 4 admits a polynomial time algo-
rithm if the number of tracks is bounded. Determining the
exact complexity of the generalized segmented channel
routing problem remains an open problem.
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[II. COMPLEXITY OF THE SEGMENTED ROUTING
PROBLEM

In this section we prove Theorem 1. i.e., determining
a solution to Problem 1 is strongly NP-complete. The
proof of Theorem 2. i.e., determining a solution to Prob-
lem 2 is strongly NP-complete even when K = 2. is pre-
sented in the Appendix. The NP-completeness reductions
for both the theorems is from the Numerical Matching
Problem with Target Sums, which has been shown to be
strongly NP-complete {7].

Numerical Marching with Target Sums [7]: Given a set

S = {1.-+- _n}.and positive integers x;, * * * ., X,. V.
Voo Jia T s Ta with

2x, +v) = 2

s e

do there exist permutations « and 3 of S such that x,,;, +
Vo = 5. forall7eS§?

We assume without loss ot generality that x; < x, <

S,y < wm <<y iand < <0 <

z,. Furthermore. we assume that for any instance of the
problem, we have x, ., —x; = nand x; + ¥, = x, + n.
If these conditions are not met for an instance of the prob-
lem then one can define an equivalent problem (i.e.. the
modified problem has a solution if and only if the original
problem has a solution) for which the conditions are met
by performing the following transformations:

1) Scaling: Define m = [n/min(x; — x;,_ )] . If m
> | then set x; < mx;. v; < my,. and Z; < mz,.

2) Translation: Define p = x, + n — (v, + x)). If p
> Othensety, < v, + p,and z;, < 2, + p.

Given an instance of the Numerical matching problem
M. we now show how (o construct an instance of Problem
| in (pscudo)-polynomial time: we shall refer to the seg-
mented channel and the set of connections generated by
the reduction procedure as Q.

The set of conncections € is defined as follows.

1) For each x; we define a connection «; such that
left(a;) = 4. right(a;) = x;, + 3. Thus. each connection a;
is of length x, — 1. and starts at column number 4.

2) For each v;. we define n connections by,. =« - . by,
(one for each x;) such that left(b,) = x; + 4 + (n — k)
and right(b;;) = (¥, + x,) + 4. Note that right(b;;) —
left(a,) = x; + ¥

3) n connections dy. * - *
= 1. and right(d;)) = 3.

4) n® — n connections ¢;. -+ -
left(e,) = 1, and right(e;) = 5.

5) n° connections f,. * * - . f,» are defined with left( )
=x, + v, + 5and right( f) = x, + v, + 7.

Set the number of columns in the construction to N =
X, + v, + 7.

The set 3 of n” tracks are then defined as follows.

1) For the first n tracks ;. - - - . 1, each track 1; begins
with a segment (1. 3). followed by unit-length segments
that span the region from column 4 to column z; + 4 (i.e..
there is a switch between every two columns between col-

. d, are defined with left(d))

. e, , are defined with
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umn 4 and column z; + 4), followed by a single segment
of the form (z; + 5, N).

2) The rest of the n> — n tracks are best described by
dividing them into n blocks, each consisting of n — 1
tracks. Each such track comprises 3 segments.

The first block of n — 1 tracks, i.e., tracks t, .y, I, + 2,

-, b, _, are constructed using the definitions of the
connections by;, 1 < j < n. The segments in the track
t,+ are (1, left(b,) — 1), (left(by)), right(b;»)), and
(right(b;) + 1, N). That is, the middle segment in the
track 17, . is defined such that the connections b, or b,
can be assigned to it. In general, the segments in each
track ,.;, 1 = j < n — 1, are defined as (1, left(d;) —
1), (eft(by;), right(b; ;. ))), and (right(b, ;) + 1, N).
That is, the middle segment in the track 7, ;. | < j < n
— 1, is designed such that the connections b; or by ;.
can be assigned to it.

The ith block of n — 1 tracks (i.e., tracks
Ly G-Dim—D+1s " ° " »bhsim—1y) 18 constructed using the
definitions of the connections by, 1 < j < n. The seg-
ments in the track £, 4 ;- 1) -1y +; (1.€., the jth track in
the ith block) are (1, left(b;) — 1), (left(dy),

right(b;(;+ 1)), and (right(b;;+,,) + 1. N). That is, the
middle segment in the track 7, 4, - 1) -1y +; 1S designed
such that the connections b;; or b;; . |, can be assigned to
1t.

The following example illustrates this construction.

Example 1: Consider the unlimited segment routing
problem (see Fig. 5) corresponding to the instance of the
Numerical matching problem with Target Sums:

X, =2, 0=5x3=8, yy=9,y, =11, y; = 12,

7= 11,20 =17, z3 = 19. U

We might note here that our proof of the NP-complete
reduction is geometric in nature and it is helpful to use
the above example in understanding the statement and the
proof of each of the following propositions and lemmas.
Before we proceed, however, let us define the following.

Two connections ¢, and ¢, will be said to overlap if
they are present in the same column(s), i.e., left(c;) <
left(c,) = right(c,) or lefi(c)) = lefi(c;) =< right(c)).

A connection ¢, is said to fir in a segment S if left(c,)
> left(S)) and right(c,) < right(S)).

A segment is said to be available for a set of connec-
tions if it is unoccupied by the rest of the connections in
C.

Proposition 1: In any routing R of Q the foilowing pre-
vail.

a) The connections f;, 1
different tracks.

b) The connections d;, 1 < i <n,anda;, 1 <i <n,
are assigned to tracks ¢, * * * , t,, and connections e;, 1
< i < n* — n, are assigned to tracks t, . | through 1,..

Proof: Claim a) follows directly from the construc-
tion; i.e., the connections f;, 1 < i < n? are all identical
and overlapping.

Claim b) follows from the following observations that
are based on the above reduction.

. . 2
i < n’, are assigned to n’

IA
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1) Each connectione;, 1 <i < (n* — n), overlaps with
every other ¢;. Each ¢; also overlaps with every connec-
tiond;, 1 < j < n and every connection a;, 1 < k < n.

2) In tracks 1, through 1, a d; and g; can be assigned to
the same track; such assignment is not possible for tracks
t;, where i > n.

3) Finally, it follows from 1), 2) and from the pigeon-
hole principle that if any e, is assigned to a track 7;, j <
n, then there would not be a sufficient number of tracks
so as to assign all the connections d;, 1 =i <n,a;, 1 =
jsn,andek,lskSnz—n.

Proposition 2: In any routing R of Q, the segments
available for assigning the connections a;, 1 = i =< n,
and by, 1 < i, j < nare as follows.

a) Inany track #;, 1| < i < n, the segments in columns
4 through z; + 4 (i.e., the portion that is fully segmented)
are available.

b) Inany track r;, n + 1 < i < n*, only the middle
segment is available.

Proof: Follows from Proposition 1: a) in any track
t, 1 < i < n, the first segment is always occupied by a
d; (for some 1 < j < n), and the last segment is occupied
by an f;, hence the only available portion is the fully seg-
mented part of the track; b) every track t;, n + 1 =i <
n°, has only three segments, and from Proposition 1 we
know that the left segment is occupied by a connection ¢,
(for some 1 < j < n® — n) and the right segment by
another connection f,, 1 < k < n’. 0

The following proposition shows that in any routing R
of Q. every track has exactly one b;; assigned to it.

Proposition 3: All connections b;, | < i, j < n, over-
lap; hence, they have to be assigned to different tracks.

Proof: Given the geometry of our construction, it
suffices to show that b, and b;, overlap. Now right(b,,)
=ux, +y + 4, and left(h),) =x, +4 + (n - 1) =x,
+ n + 3. Hence, right(b;) —left(b,,) = x; + y; — (x,
+ n — 1), which is strictly greater than 0 by our
assumptions. O

We can now show one direction of the reduction pro-
cedure.

Lemma 1: If the given Numerical Matching problem
with target sums has a solution, then there exists a routing
R for Q.

Proof: Suppose there exist permutations « and 3
such that x,;, + ys;, = z; forall 1 < i < n. Then we
can define a routing R for Q as follows.

1) Connections d;, 1 <i <n,e, 1 =i < n® — n,
and f., | < i < n?, are assigned according to Proposition
1.

2) For every i, | = i =< n, connections a,(;, and
bg(iya(i) are assigned to track ;. Since x,;y + Ygiy = s
one can easily show that the connections can be appro-
priately assigned in the available segments (see also Prop-
osition 2).

At this stage, for every i, 1 < i < n, all except one
connection among the connections b;, 1 < j < n, need
to be routed.

3) Consider the connections by;, 1 < j < n. Let by, be
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the connection that has been assigned to one of the tracks
i, 1 < i < n. Recall that the tracks ¢, . —t, ., -, were
designed using the definitions of b;;, | < j < n. and that
the middle segment in track 7, ., can accommodate either
connection by, or connection b;>. So assign b, to track
1, +1 and repeat this procedure by assigning connections
byy=by 1y, to tracks 1, . >=t, . 4 _1,- Now by, has already
been assigned. hence one has to assign connections
by x +1,~by,. By construction, however. b, ., can be as-
signed to track f, ., and this assignment procedure can
be continued by assigning b, . », to track 7, . 4 . ,. and
SO On.

In general, for any i the unassigned n — 1 connections
among b;, 1 < j < n can be assigned to the ith block of
tracks (i.e.. tracks 7, ., — 1yin—1) s 1- 0 by
following the same procedure as above.

Next we show that if Q has a valid routing then there
is a solution for the numerical matching problem 1. The
following definitions that capture the geometry of the
routing problem @ will be helpful:

It is clear from Propositions 1, 2, and 3
f;, 1 < 1 < nhas one connection from ¢, I </ < nand
one connection from by, 1 < k. j < n assigned to it
Also, note that since the parts of the first n tracks that are
available for the connections a¢;, | <7 < nand by, 1 <
k,j < nare fully segmented, two connections, a; and b,,.
can be assigned to the same track only if they do not over-
lap.

We define the length or space occupied by the connec-
tions a; and by; assigned to some track 1, (1 < [ = n)as
equal to right(b;;)-left(a;). That is, the length (or space)
occupied by the two connections is the geometrical length
from the left end of the connection q, to the right end of
the connection by;.

Claim 1: Tt follows from Proposition 2 that the total
length (or space) available in the first n tracks for assign-
ing the connections ;. | =i <nandb,. 1 =i j=n
is l 3

The above claim follows immediately from the obscr-
vation that the only portion of each track ¢, to which «;
and b;; can be assigned is of length ;.

Proposition 4: Connections a; and b;; cannot be as-
signed to the same track it j < i.

Proof: left(b;;) = x; + 4 + (n — k) and right(¢;) =
x; + 3. Thus right(a,) —left(by) = x;, — (x; + n) + k —
1. However. (k — 1) = 0. and by our assumptions x; —
(x; + n) = 0 forall j < i. Hence. g; and b, overlap for
J<i cl

Proposition 5: It a; and by; (j = i) are assigned to the
same track 7, (I < [ < n) then the lcng(h occupied in the
track 7,18 x; + v (= x; + ).

Pmoff Left(a;) = 4. and right(h)) = x; + v + 4.
Hence. right(by) — left(a) = x; + v, = x; + ¥, (because
by our assumption j = 7 implics that v, = ). L

The next two propositions use the definitions of the
tracks 7, .4, * * + . 1,2, and determine the restrictions on
possible assignments of the connections b;, to these tracks.

T rnJ—r(u

that each track
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Proposition 6: None of the connections by; for k > 1
can be assigned to tracks ¢, . (—t, -, -1,

Proof: Recall that the tracks 1,,,-1,.,,_(, were
constructed using the connections b;;, | < j < n. Now
consider any track 7, . ;. From Proposition 1 we know that
its end segments are dlready occupied. Hence, for any by;
to be assigned to this track. it must fit within the middle
segment (left(by)). right (by ;. ).

First, consider the case where A > 1 and j < /. Recall
that left(b;;) = x; + (n — k) + 4:since j < /. we have x;
< x;and since k& > 1, we can write left(by;) = x; + (n —
ky +4 <x;+ (n— 1)+ 4 = lefub,). Hence, b;; cannot
be assigned to track 1, ;.

Next, consider the case where K > 1 and j > /. Recall
that right(b,) = x, + v + 4:since j = (I + 1), we have
X, = furthermore. k > 1 implies that v, > v,.
Hence. right(h)) = x, + vy + 4 > x. + ¥y + 4 =
right(b, ;. ). Therefore. by; cannot be assigned to track

Xyt

[/( - y’ . —

Proposition 7: In general. none of the connections by,
for k > i can be assigned to tracks 7, -1, i—1)-1-
1y~ n—1,; Hence. none of the connections by; for k > i
can be assigned to tracks 7, . (—1, =, _ 1)

Proof: Recall that the tracks under consideration
were constructed using the definitions of b, 1 = j < n.
The proof then follows along the lines of the prevmus
proposition. =

Let R be any routing of Q.. then we define m; as follows:

;= {b; 1 = j < n. and b, is assigned to some track
.1 </ <n inR}.

In other words. m; is the number of connections from the
set {biy. bi, -+, b,,} that are assigned to the first n
tracks (i.e.. 7|, 1>, -+ - .t,). Propositions 8-10, following
show that in any valid routing Rof Q m; = 1, forall 1 <
[ < n.
Proposition 8: $hm, < k. v 1 < k < nand Z{m; = n.
Proof: Each track has cxactly one connection b; (for
some i and j) assigned to it. Hence. by definition & ,_,lm =
n.

To show that Lim. < & for every 1 < k < n, first
consider k = 1. Suppose that m, > 1. then exactly n —
my connections from among the connections by, I < j <
n are assigned to tracks 7, . 1,.. Even if all of them
were assigned to tracks in the first block (i.e.. among ¢, .

© .ty o, ). there would be (m; — 1) = 1 tracks in
the block that are left unassigned. However, by Proposi-
tion 6. no connection b, when 7 > 1 can be assigned to
any track among 1, .. ey -y Thus, at least (m,
— 1) tracks among ¢, .. * - , have no connec-
tion b;; assigned to them. This leads to a contradiction
(because every track has exactly one b;; assigned to it).

Using Proposition 7, the same arguments can be ap-
plied for any & > 1. That is for Kk = 2, one can show
(using Proposition 7) that if m; + m, > 2, then some

N [u b
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tracks among ¢, , | through ¢, . ,, - |, do not have any con-
nection b;; assigned to them. L

Proposition 9: Let w; < w, < * - w, be a sequence
of positive integers and let non-negative integers m;, 1 <
i < n, satisfy the following relations: m <k, v1 <
k < n, and Z{m; = n. Then Lim;w; > L}w; if and only if
some of the m; are 0.

Proof: First we observe that if there exists an m; >
1, then there exists / = m; — 1 distinct variables m;, - - -,
m;, such that all of them are 0 and j; < j. If not,
then one can easily show that ©jm; > j, which is a con-
tradiction. Thus, if any of the variables m; > 1, then it
always forces some m, to equal O such that k¥ < i. Hence,
Lim;w; > Elw; if and only if some of the m; are 0. [

Proposition 10: In any routing R, m; = 1v1 <i <
n, i.e., in every routing only one connection from the set
{b;1, * * -, by} is assigned to one of the first » tracks.

Proof: 1f a; and by; are assigned to the same track
then from Proposition 5 we know that the length occupied
is = x; + y.. Now, by definition m; connections from
among by, | < j < n appear in the first n tracks. Hence,
the total length occupied by the connections @;, 1 < i <
n, and the connections b,:/, 1 < i,j < nthat are assigned
in the first n tracks is = Zix; + Zimy y;.

If at least one m; is O, then Proposition 9 implies I}
mpy, > L] w (because y; < y, < - - - y,). Hence, the
total length occupied by the connections a; and b;; in the
first n tracks is > Iix; + Ly, = Liz. This leads to a
contradiction because Proposition 2 and Claim 1 show that
the total space available is equal to Z7z;. Hence, m; = 1
vi=sis<n U

Lemma 2: If there is a routing for Q.. then there exists
a solution to JT.

Proof: Proposition 10 shows that v i only one con-
nection among {b;;, - - - . b;,} is assigned to one of the
first n tracks. By Proposition 5, if @; and by; (j = i) are
assigned to the same track then the length occupied is x;
+ v (= x; + yu). Hence, the total length occupied by the
connections is = Xix; + Ly, = Eiz;.

Claim a: A connection ag; can only be assigned to the
same track with some by;.

Proposition 4 shows that if a; and by, are assigned to the
same track, then j = i. Now if g; is matched with some
by and j > i, then the length occupied is x; + y; > x; +
y.. Hence, the total length occupied by all the connections
in the first n tracks is greater than Ljx; + Ly, =
L1z;. However, this leads to a contradiction since the total
space available in the first n tracks is Ijz; (Claim 1).
Hence, a; can be assigned only to the same track as some
by;.

It follows then that if we define the connections as-
signed to track t;,, | < i < n, as a,; and bg(;),(;), then
o and f3 are permutations of the set {1, - - -, n}. Also,
by our convention the total length occupied in track f; by
Aoeiy a0 bg i)y 18 = Xy + Yaoiy

Claim b: X,y + Ygiy = %-

Suppose this is not the case for some i, | < i < n.
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Then it implies that in the track 7;, the length occupied by
the connections a, ;, and bg ;4 is < z;. Now by Prop-
osition 2, in any track 1, (1 < j < n) the space available
for assigning the connections a; and b; is z;. Hence, the
length occupied by the connections a; and the connections
b;; in the first n tracks is < Ljz;. However, this leads to a
contradiction because we showed that the length occupied
is = Xiz,.

Thus, the assignment of connections to the first n tracks
defines permutations « and 8 such that V i, x,;, + Ys(;)
= Zl'

Theorem 1: Determining a solution to Problem 1 is
strongly NP-complete.

Proof: Follows from Lemmas 1 and 2: J

IV. ALGORITHMS FOR SEGMENTED ROUTING

In this section we present algorithms for various special
cases of Problems 1-3. We first discuss algorithms that
exploit the geometry of the segmented channels. We then
discuss a general algorithm based on dynamic program-
ming. Finally, we discuss a heuristic algorithm (based on
linear programming) that appears to work surprisingly
well in practice.

A. Geometrical Algorithms

Identically Segmented Tracks: If all tracks are identi-
cally segmented (i.e., the locations of the switches are the
same in every track), then Problems 1 and 2 can be solved
by the left-edge algorithm [5] in time O(MT). Assign the
connections in order of increasing left ends as follows:
assign each connection to the first track in which none of
the segments it would occupy are yet occupied.

Note that the density of the connections does not pro-
vide an upper bound on the number of tracks required for
routing (as is the case for conventional routing when the
left-edge algorithm is used in the absence of vertical con-
straints). However, if prior to computing the density the
ends of each connection are extended until a column ad-
jacent to a switch is reached, then the density would be a
valid upper bound.

1-Segment Routing: If we restrict consideration to
1-segment routings, Problem 2 can be solved by the fol-
lowing greedy algorithm.

The connections are assigned in order of increasing left
ends as follows. For each connection, find the set of tracks
in which the connection would occupy one segment.
Eliminate any tracks where this segment is already occu-
pied. From among the remaining tracks, choose one where
the unoccupied segment’s right end is closest to the left
(i.e., the right end coordinate of the segment in the cho-
sen track is the smallest), and assign the connection to it.
If there is a tie, then it is broken arbitrarily. In the ex-
ample of Fig. 3, the algorithm assigns ¢ to s,;, ¢, to 53,
c3 t0 $3;, ¢4 tO §35, and c¢5 to s,3. The time required is
OMT).
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Fig. s

Next. we show that if some connection cannot be assigned
to any track, then no complete routing is possible.

Theorem 3: The above algorithm solves Problem 2 if
K=1.

Proof: 1t suffices to show that if there is a routing
for Problem 2 with K = 1. then it can always be modified
to obtain an assignment that the above algorithm would
generate.

Let R be a routing with K = 1. Consider the leftmost
connection ¢;. Let F| be the set of segments that ¢, can
be assigned to, and let S| be the set of segments in F|, with
the minimum right edge. There now are three possible
cases.

1) In R, ¢, has been assigned to one of the segments in
S;. In such a case. no modification is necessary: the as-
signment of ¢, is according to the above algorithm.

2) In R, ¢, has been assigned to some s ¢ S|, and that
there is at least one unoccupied segment in S,. Then as-
sign ¢, to one of the unoccupied segments in S,.

3) In R, ¢, has been ass’gned to some s € S|, and every
segment in S, is occupied. In that case choose some ¢, that
occupies a segment 5, € S;. We can now always inter-
change the assignments, i.e.. assign ¢, to s and assign ¢,
to s; € §;. Thus a new assignment is obtained where ¢ is
assigned according to the above algorithm.

The justification for swapping is as follows (see Fig.
6). Since s, € §;. ¢, can always be assigned to it. More-

The segmented channel and connections for Example |

over. the left edge of s is at or to the left of ¢; (because
left edge of ¢; is at or to the right of ¢;) and the right edge
of s is to the right of ¢; (because by definition of S, the
right edge of s is to the right of s;). Hence, ¢; can be
assigned to s.

The above procedure can be continued for ¢, and other
connections until a modified routing R’ is obtained that
satisfies the conditions of the above algorithm. —

For I-segment routing, Problem 3 may be solved effi-
ciently by reducing it to a bipartite matching problem.
Fig. 7 shows the graph corresponding to the routing prob-
lem in Fig. 3. The left side has a node for each connection
and the right side a node for each segment. An edge is
present between a connection and a segment if the con-
nection can be assigned to the segment’s track. The weight
wic. 1) is assigned to the edge between connection ¢ and
a segment in track . A minimum-weight matching indi-
cates an optimal routing. The time required using the best
known matching algorithm (see [6]) is O(V *), where V <
M + NT is the number of nodes.

At Most 2-Segments Per Track: In a track with two-
segments. the first segment from the left will be referred
to as the initial segment and the next one will be referred
to as the end segment. If the track is unsegmented. i.e..
it has only one segment. then for our purposes we will
refer to the only segment as an end segment.

The following greedy algorithm, which is similar to the
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Fig. 6. An example of assignment modification in a |-segment routing. If
connection ¢, is assigned to s and ¢, to s, such that right (s) > righi(s;).
then the assignment can always be swapped.

one for l-segment routing, can be used to determine a
solution to Problem 1:

The connections are assigned in order of increasing left
ends (ties are resolved arbitrarily). During the execution
of the algorithm a track will be considered unoccupied if
no connection has been assigned to it.

Now for each connection, determine the set of tracks
in which the connection would occupy a single segment.
Eliminate any track where this segment is already occu-
pied. Now consider the following two cases:

Case 1: If no track is available (i.e., after the above-
mentioned elimination of tracks), then append the con-
nection to the pool, P, of unassigned (but already exam-
ined) connections.

Case2: If tracks are available, then assign the con-
nection to a track where the unoccupied segment’s right
end is closest to the left (i.e., the right-end coordinate of
the segment in the chosen track is the smallest). If more
than one track qualifies, then the tie is broken arbitrarily.

Next, if |P| (i.e., the number of unassigned, but al-
ready examined, connections) equals the number of tracks
unoccupied by any connection, then assign the connec-
tions in P to these unoccupied tracks in any order; mark
these tracks as occupied, and remove the assigned con-
nections from P. Else, if |P| is greater than the number
of such unoccupied tracks, then stop and signal that no
valid routing is possible.

Continue with the next connection.

When all the connections are examined and pool P is
nonempty, then assign the connections in P to unoccupied
tracks.

In the example shown in Fig. 8, the above algorithm
would assign ¢, to track f; and append ¢, to the pool P.
For ¢, both tracks #, and #; are eligible, and let the tie be
broken by assigning c; to track ;. At this point, there is
one unoccupied track (i.e., f,) and there is one connection
(i.e., ¢;) in pool P. Hence, the number of unoccupied
tracks equals the number of connections in P, and the al-
gorithm would assign connection ¢, to the unoccupied
track 1,. Next, the algorithm assigns ¢, to track ¢,.
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Fig. 7. Bipartite graph for 1-segment routing of the problem in Fig. 3.

Theorem 4: The above-mentioned algorithm deter-
mines a routing, if one exists, for the case where every
track has at most two segments.

Proof: We shall provide an outline of the proof.
Since every track has at most two segments, it follows
that if a connection cannot be assigned to a single seg-
ment, then it has to occupy a whole track. Note also that
the above-mentioned algorithm follows the greedy algo-
rithm developed for 1-segment routing, and if a connec-
tion cannot be assigned to a single segment (by following
the 1-segment routing algorithm) only then it is appended
to the pool P.

The basic idea of the proof relies on the following ob-
servations. Since the algorithm developed for 1-segment
routing was proved to be optimal, the connections in the
pool P represent each of those connections that require a
whole track. Moreover, these connections (i.e., which re-
quire whole tracks) are not assigned until a) all other con-
nections are assigned to single segments and there are
enough unoccupied tracks left to accommodate the con-
nections in P; or b) during execution there are exactly as
many unoccupied tracks as the number of connections in
P (i.e., since, the connections in P must require whole
tracks, these unoccupied tracks must be assigned to these
connections). Thus the routing algorithm maximizes the
connections that can be assigned to single segments and
minimizes the connections that have to be assigned whole
tracks.

A more rigorous proof, similar to the one for Theorem
3, can also be developed. More precisely, we can show
that given any routing, one can always modify it such that
the modified routing will be the same as one that the
above-mentioned algorithm would generate. The details.
however, get more involved; moreover, one may lose the
intuitive appeal of the above explanations. ]

B. A General Algorithm for Determining Routing

Although the problem of determining a routing for a
given segmented channel and a set of connections is in
general NP-complete, we describe below an algorithm that
finds a routing in time linear in M (the number of connec-
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tions) when T (the number of tracks) is fixed. This is of
interest since T is often substantially less than M. The
algorithm may also be quite efficient when there are many
tracks. but they are segmented in a limited number of ways
(see Theorem 7). The algorithm first constructs a data
structure called an assignment graph and then reads a valid
routing from it. The same algorithm applies to both Prob-
lems 1 and 2. though with different time and memory
bounds. It can also be extended to Problem 3.

Frontiers and the assignment graph: Given a valid
routing for connections ¢, through ¢,. it is possible to de-
fine a frontier which constitutes sufficient information to
determine how the routing of ¢; - - - ¢, may be extended
to include an assignment of ¢; ., to a track such that no
segment occupied by any of ¢, through ¢; will also be oc-
cupied by ¢; . Fig. 9 shows an example of a frontier. It
will be apparent that ¢, . | may be assigned to any track ¢
in which the frontier has not advanced past the left end of
¢;+1. For example. in Fig. 9 connection ¢, can be as-
signed to track 7, but not to track 1.

More precisely. given a valid routing of ¢, - -+ . ¢, |
i < M. define the frontier x to be a T-tuple (x[1]. x[2].

.- x|T]) where x[j]| is the leftmost unoccupied col-
umn in track 7; at or to the right of column lefi(c,_ ). (A
column in traak 1; is considered unoccupied if the segment
present in the column is not occupied.) The frontier is
thus a function x = F;(r.,. - 1) of the tracks 1. .

<

Connections ¢,. ¢.. and ¢,
respectively. The frontier

1., to which ¢, ¢; are. respectively. assigned.
Fori = 0. letx = F,, where F,|t] = left(c,) for all 1. For
=M. letx = Fy, where Fy[t] = N + 1 forall

Next. we describe a graph called the assignment graph,
which is used to keep track of partial routings and the
corresponding frontiers. A node at level i, 1 < i < M,
of the assignment graph corresponds to a frontier resulting
from some valid routing of ¢,-¢;; see Fig. 10 for an illus-
tration of the structure of an assignment graph. Level 0
of the graph contains the root node. which corresponds to
Fy. If a complete valid routing for ¢, ., Cy EXIStS,
then level M of the graph contains a single node corre-
sponding to Fy,. Otherwise. level M is empty.

The assignment graph is constructed inductively. Given
level i = 0 of the graph. construct level i + 1 as follows.
(For convenience. we identify the node by the corre-
sponding frontier.)

For each node x, in level 7 {

Foreach track 1, 1 = j = T {
x, ] = lefi(c;. ) {

/* ¢,y can be assigned to track 7,.%/

Let x, ., be the new frontier after c;

signed to track 1.

It x, . is notyetinlevel i + 1 {
Add node x; ., to level i + 1.
Add an edge from node x, to node x; , . Label
it with r,.

1s as-
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Edges represent valid assignment of
connection ¢;4) to some track ¢;
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connections ¢y, -, ¢; connections €1, *, Ci41

Fig. 10. An illustration of the structure of an assignment graph.

}
}
Else {
/* x;[j1 > left(c;+,) so ¢; + cannot be assigned

to track ¢;. */
Continue to next track 7, ;.

}
}
}

If there are no nodes added at level i + 1, then there is
not valid assignment of ¢,-¢; . ;.

Searching for the node x; ., in level i + 1 can be done
in O(T) time, using a hash table. Insertion of a new node
in the table likewise requires time O(T).

If there is a maximum of L nodes at each level, then
construction of the entire assignment graph requires time
O(MLT?). Once the assignment graph has been con-
structed, a valid routing may be found by tracing a path
from the node at level M back to the root, reading the
track assignment from the edge labels. (If there is no node
at level M, then no complete valid assignment exists.) This
takes only O(M) time, so the overall time for the algo-
rithm is O(MLT?). The memory required to store the as-
signment graph is O (MLT).

A minor change allows us to solve the optimization
problem as well. Each edge is labeled with the weight
w(c, t.) of the corresponding assignment. Each node is
labeled with the weight of its parent node plus the weight
of the incoming edge. The algorithm is modified as fol-
lows. If a search in level i + 1 finds that the new node
x; .+ already exists, we examine its weight relative to the
weight of node x; plus w(c; .y, f,.,). If the latter is
smaller, we replace the edge entering x; .| with one from
x; and update the weights accordingly. Thus the path
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traced back from the node at level M will correspond to a
minimal weight routing. The order of growth of the al-
gorithm’s time remains the same, as does that of its mem-
ory.

Analysis for unlimited segment routing: The following
theorem shows that for unlimited segment routing, L =
27!, so that the time to construct the assignment graph
and find an optimal routing is O (MT?T!) and the memory
required is O(MTT!).

Theorem 5: For unlimited segment routing, the num-
ber of distinct frontiers that may occur for some valid as-
signment of ¢,—¢; is at most 27"!.

Proof: Let | = left(c;, ). Let d be the number of
connections among ¢, through ¢; that are present in col-
umn [. Since the assignment of ¢, through ¢; determining
the frontier must be a valid one, we know that d =< T.
The d connections can be assigned to d of the T tracks in
T! /(T — d)! ways. Once we have assigned a connection
1o a track 7;, the value of x [ j] in that track is determined.
For each of the remaining (T — d) tracks, there are only
two alternatives.

1) the track f; may be unoccupied in column /, in which
case, x[j] = L.

2) the track 1, may be occupied in column ! by some
connection ¢ with right(c) < I, up to the first switch to
the right of column /. In this case, x[j] is the column just
to the right of this switch, regardless of which such con-
nection c¢ is involved.

Thus the number of possible frontiers is at most
27D /(T — d)! < 2T!. O

Analysis for K-segment routing: The following theo-
rem shows that for K-segment routing, L < (K + D7, so
that the time to construct the assignment graph and find
an optimal routing is O(MT*(K + 1)7) and the memory
required is O(MT(K + nh.

Theorem 6: For K-segment routing, the number of dis-
tinct frontiers that may occur for some valid routing of
¢—¢; is at most (K + Hl.

Proof: Letl = left(c; . ;) and consider track 7;. Since
the connections are sorted by increasing left edge, at most
one connection from among ¢, + * - ¢; may occupy track
#; in columns at or to the right of column /. Such a con-
nection may occupy track ¢ rightward through the segment
appearing in column /, or through that segment plus the
next one, or possibly as far as the Kth segment at or to
the right of column /. Of course it is also possible that no
connection from among ¢,—c; occupies the segment in col-
umn ! of track #. Thus there are only K + 1 possible
locations for the frontier x[i] in track ¢;, and at most (K
+ 1) possible values for the frontier x overall. O

Case of many tracks of a few types: Suppose the T tracks
fall into two types, with all tracks of each type segmented
identically. Then two frontiers that differ only by a per-
mutation among the tracks of each type may be consid-
ered equivalent for our purposes in that one frontier can
be a precursor of a complete routing if and only if the
other can. Thus we can restrict consideration to only one



90 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. VOL. 12, NO. [,

of each set of equivalent frontiers and strengthen the re-
sult of Theorem 6 as follows.

Theorem 7: Suppose there are T, tracks segmented in
one way and T, = T — T, segmented another way. The
number of distinct frontiers x that may occur for some
valid K-segment routing of ¢,-¢;, and that satisfy x[i] <

x[j] for a 17 < j with tracks #; and 1, of the same type. is
OUT, T»)").

Proof: As in Theorem 6, there are at most K + |
possible values for x[i]. Due to the inequality restriction
(which eliminates all but one member of each set of
equivalent frontiers). the number of possible frontiers is

at most
<Tl + K) <T3 + 1(>
X
T, T,

which for large T, and T, is O (T, T»)*). -

[t follows that a K—segmem routmg may be tound in
time O (M (T, T’s ) and memory O(M(T, Tq) “T).

The result of Theorem 7 may casily be generalized to
the case of [ types of tracks, in which case the time is
O(MIT, T¥)). and the memory is O (M (II\ T%) T).

C. A Linear Programming Approach

Problems 1 and 2 can be reduced to O — 1 linear pro-
gramming (LP) problems via a straightforward reduction
procedure. The O — 1 LP is in general NP-complete. For
our purposes. however. such a reduction is interesting be-
cause our simulations showed (see [12]) that for almost
all cases the corresponding 0 — 1 LP problems could be
solved by viewing them as ordinary LP problems for
which efficient algorithms are known. In particular, our
simulation results indicated that whenever a randomly
generated instance of Problem | had a feasible solution.
one could always find 0 — 1 feasible solutions for the
corresponding integer LP problem by solving it as an or-
dinary LP. The simulations were carried out for fairly
large-sized instances, e.g., M = 60 and T = 25.

We now describe briefly the reduction procedure for
Problem 1. The corresponding reduction for Problem 2
follows after minor modifications. Let us define binary
variables x;;, for 1 </ < M. and 1 = j < Tas follows:
if x; = 1. then connection ¢; is assigned to track 7,. else
if x; = 0, then connection ¢; is not assigned to track 7;.
Since in a routing each connection is assigned to at most
one track, one has the following constraints:

vi<i<sM

One also has to make sure that in any routing two con-
nections assigned to the same track must not share a seg-
ment. Consider a track f;: one can then easily determine
sets of connections P;, . Py, (not necessarily dis-
Joint) such that at most one from each set can be assigned
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to the track 1;. Hence for each such set Py, one must sat-

isty
> Xy =< 1.
GE Py
Finally. one must make sure that all the connections are

routed: this can be ensured by maximizing the following
objective function:
11

!
L X,

One can now ecasily verify the following facts about the
above O — 1 LP.

1) The objective function achieves the maximum value
of M if there is a solution to Problem 1. This is because
in a feasible routing each ¢; is assigned to some track (thus
there exists only one j such that x; = 1 for every /) and
the constraints are never violated.

2) If the objective function achieves the value of M.
then there is a solution to Problem 1. This follows directly
from our construction of the 0 — 1 LP.

Note that one can derive a 0 — 1 LP for solving Prob-
lem 2 if one assigns v, = 0 whenever a connection ¢;
cannot be assigned to track 7, because it would require
more than K segments.

V. AN ALGORITHM FOR DETERMINING GENERALIZED
RouTiNg

We present here an algorithm for solving Problem 4.
The algorithm has a time complexity of O(T7"*M), and
is derived by modifying the construction of assignment
graphs introduced in the last section. Thus, for a constant
number of tracks the generalized segmented routing prob-
lem can be solved in time linear in M (the number of con-
nections). We should note here that efficient algorithms
for various special cases of the generalized segmented
routing problem and results on their computational com-
plexity remain as open problems.

Given an instance of the generalized segmented routing
problem with a set of connections C (with M connections)
and a set of tracks 3. the first step in our algorithm in-
volves defining a new set of connections €' as follows:

For every connection ¢, = (lefr(c;). right(c;)) in C we

will define p = right(¢;) — left(c;) + 1 connections in

Q. each spanning a single column. That is, the cor-

responding p connections in €' are: (left (c;). left (¢;)).

(left(c;) + 1. left(c;) + 1y, - - - | (right(c;), right(c,)).
Note that every connection in € ' spans only a single col-
umn and the total number of connections in €’ is at most
MN (because each connection in C can generate at most
N connections in C ).

Proposition 11: A generalized segmented routing (as
defined in Definition 2) for a set of connections € and a
set of tracks J can be determined by finding a usual seg-
mented routing (as defined in Definition 1) for the set of
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connections €' and the set of tracks 3 if two connections
in €’ that are derived from the same parent connection in
@ are allowed to share the same segment.

Proof: The proof follows directly from the above
construction. 0

In order to determine a routing where certain connec-
tions from C' are allowed to occupy the same segment,
we shall modify the construction of the assignment graph
that was introduced in the previous section. As before,
given a valid routing for connections ¢y, * * * , ¢; (in C’),
it is possible to define a frontier which constitutes suffi-
cient information to determine how the routing of ¢y,

-, ¢; may be extended to include an assignment of
¢;+,. However, since connections in G’ that originate
from the same connection in € are allowed to occupy the
same segment, it is not sufficient to just keep track of the
occupancy of the segments (this is what is done in Section
IV-B). In other words, one has to keep the additional in-
formation that would indicate whether connection ¢; , ; can
be assigned to an already occupied segment. This can be
done by storing the information that if a scgment at a fron-
tier is occupied, then which connection from € occupies
it; a segment will be said to be occupied by a connection
c;in Cifa connection in €' that is derived from ¢; oc-
cupies the given segment.

More precisely, given a valid routing of ¢1, * = -, ¢ in
@', define the frontier x to be a T-tuple (x[1], x 2y, -,
x[T]) where x[j] = (x,1j), 2 [jD. x, [j] is defined as
before, i.c., it is the leftmost unoccupied column in track
1; at or to the right of column left (c; ;). (Recall that a
column in track ; is considered unoccupied if the segment
present in the column is not occupied.) On the other hand,
x,[j] indicates that if the column left (c; ) is occupied
G.e., x;[j]1 > left(c; ) then which connection in C oc-
cupies it. x,[ j] can take two types of values:

)1 < x,[j] = M: In this case the value of x, [ j] gives
the connection in € that occupies the segment of the fron-
tier (i.e., the segment present in column left (¢; 4 1)) In
track ;. Thus, if ¢; 4y is derived from connection c,,; in
@ then ¢, | can be assigned to track ; irrespective of the
value of x;[j].

2) x5[j] = ¢: This case would imply that whether ¢; ,
can be assigned to track ¢, is determined only by the value
of x;[j}. Thus if x,[j] = ¢ then ¢;., can be assigned to
track #; only if x,[j] = left(c;.1).

Thus a frontier is a function x = F;(¢,,, - - * . ;) of the
tracks 7., * * * , f, to which ¢;, - - -, ¢ are respectively
assigned. Fori = 0, let x = F,, where Folf] = (left(cy),
¢) forall 1. Fori = M, let x = F,;, where Fyltl = (N +
1, ¢) forall 7.

As in Section IV-B, an assignment graph can now be
used to keep track of the partial routings and the corre-
sponding frontiers. A node at level i, 1 =i < M, of the
assignment graph corresponds to a frontier resulting from
some valid routing of ¢, through c¢;. Level 0 of the graph
contains the root node, which corresponds to Fy. If a com-
plete valid routing for ¢y, * -+, ¢y exists, then level M
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of the graph contains a single node corresponding to Fy.
Otherwise, level M is empty.

As in Section IV-B, the assignment graph is con-
structed inductively, and a modified algorithm for its con-
struction can be stated as described below.

Given level i = 0 of the graph, construct level 7 + 1
as follows. (For convenience, we identify the node by the
corresponding frontier.)

For each node x' in level i {

For each track ¢;, 1| = j = T {
If (x\[j] = left(ci.1)) or (¢;.y is derived from
ey in €) {
/* ¢; ., can be assigned to track f;. */
Let x' *! be the new frontier after ¢;., is as-
signed to track 1.
If x'*'is not yet in level i + 1 {
Add note x' “ ' to level i + 1.
Add an edge from node x'tonode x'*'. Label
it with ;.

}

Else {

/* ¢, cannot be assigned to track . */
Continue to next track f ;.
}

If there are no nodes added at level i + 1, then there is
no valid assignment of ¢, through ¢; . .

Theorem 8: There is an O(T' ** M) time algorithm for
solving Problem 4.

Proof: Recall from Section [V-B that if L is the max-
imum number of nodes at any level of the assignment
graph then the time complexity of the above algorithm is
O(MLT?). We will show here that L = O(T"" ).

Let [ = left(c; ), and consider a frontier x = (x[1],
x[2], - - -, x[T)) after a valid routing for connections ¢,
-+, ¢;. Recall that every connection in C’ spans a sin-
gle column. Hence in any track f;, only the segment pres-
ent in column / can either be occupied or unoccupied by
connections ¢;, * - * , ¢;; in other words, any segment to
the right of the segment present in column [ cannot be
occupied by ¢, * - -, ¢;. Hence, x,[j] can assume only
two values, namely, x,[j] = [orx; [ j] equals the column
where the segment present in column / ends.

Let us next consider the possible values of x;[j]. We
claim that, given a frontier, in order to correctly assign
connection ¢, 4, it is sufficient to know whether a seg-
ment at column / is occupied by connections (in €) pres-
ent only in column / — 1. This claim follows easily from
the geometry of our segmented routing problem. In other
words, connections in € were broken up into disjoint but
contiguous units to generate connections of €'. Hence, if
¢;+ shares a segment with another connection then that
connection must be derived from a connection in € that
occupies column / — 1. Thus, in the frontier if a segment
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in ¢ (spanning column /) is occupied by a connection
present in column / — 1, then the value of this connection
is stored in x> [ j]: otherwise, x,[ /] is set 1o ¢.

Let d be the connections present in column / — 1, then
X>[j] can take at most d + 1 values. We have already
shown that x, [ j] can take at most two values. Hence. the
maximum number of distinct frontiers possible is 27747 "
However, since connections present at the same column
has to be assigned to different tracks. ¢ < T. Hence. L
=< 277" in other words, L = O(T" " "). .

The above algorithm could be easily modified to solve
the following restricted versions of the generalized seg-
mented routing problem.

1) Each connection can switch tracks only at prespeci-
fied columns.

2) If a connection ¢ switches from track ¢, to track 1 at
column / then the segments in the two different tracks (to
which parts of ¢ are assigned to) must be include /. It is
easy to see that the algorithm described in this section
might assign connections such that the segments in r, and
1; to which parts of c. are assigned are separated by one
column; this might not be desirable in certain hardware
models.

We will not go into the details of the modifications.
however, the general idea is as follows: the assignment
graph as described above enumerates all possible rout-
ings, and restricted routings can be easily obtained by dis-
allowing assignments that violate the premises.

VI. CONCLUDING REMARKS

We have introduced novel problems concerning the de-
sign and routing for segmented channels. We also have
presented the first known theoretical results on the algo-
rithm design. and combinatorial complexity of the routing
problem for segmented channels. In particular, we showed
that 1} the problem of determining a routing for a given
segmented channels and connections is in general NP-
complete; 2) cfficient polynomial time algorithms can be
designed for several special cases: and 3) efficient algo-
rithms can be designed for some cases of a generalized
segmented routing problem. where connections can oc-
cupy segments in different tracks.

There are several open issues in this new area of rout-
ing. For example, although we have developed efficient
algorithms for many special cases of the routing problem
(as listed in Section II). several other interesting cases are
yet to be solved: following are some relevant ones: 1)
channel length (N) is bounded, 2) connection lengths are
bounded. and 3) connections are nonoverlapping. Also.
efficient algorithms for the generalized routing problems
are not known.

The routing scheme using segmented channels may also
be considered as a model for a communication network in
a multiprocessor architecture. The logic modules in Fig.
I can be replaced by processing elements (PE’s): the seg-
mented routing network can then be used for dynamically
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reconfiguring interconnections among the PE’s (by pro-
gramming the appropriate switches as described for the
FPGA's). In [8] a preliminary network model that uses
specially segmented channels (referred to as express
channels) has already been proposed. Tradeofts similar to
those discussed in Section | also appear to hold for such
multiprocessor communication networks; however, this
area nceds further investigation.

APPENDIX

We showed in Section III that the unlimited segment
routing problem is strongly NP-complete. We shall now
use the instance of the unlimited segment routing problem
that was used in proving Theorem 1 and reduce it to a
2-segment routing problem. thereby showing that the lat-
ter problem is also strongly NP-complete.

Let us briefly recall the construction of the unlimited
segment routing problem Q.

Given: Integers x| < x, < Ly <y < e <
veeand 3 < 5 < < Z,.such that 1) I, ¢(x; + v))
=Lesyand 2)x, .| —x, = nforevery 1 <i<n— |

and x; + v, = v, + n. For this section, without loss of
generality. we shall further assume that z; = x, + n.

The set of connections. €. is then defined as follows.

1) For each x;, we defined a connection @; such that
left(a;) = 4, right(g¢;) = x, + 3.

2) For each y;. we defined n connections by, + * + . by,
(one for each x;) such that lefi(b;;) = x; + 4 + (n — k)
and right(by,) = (y, + x;) + 4.

3) n connections . - - - . d, are defined with left(d,)
= 1, and right(d;) = 3.

4) n° — n connections I
left (¢,) = 1, and right(¢;) = 5.

5)yn° connections fi. - - - . f,» are defined with left( f;)
=x, +yv,+5and right(f) = x, + v, + 7.

The number of columns is set to N = x, + v, + 7.

The set 3 of n~ tracks is then defined as follows:

1) For the first n tracks 1. - - - | 1, each track ¢, begins
with a segment (1, 3) followed by unit length segments
that span the region tfrom column 4 to column z; + 4,
followed by a single segment of the form (z;, + 5. N).

2) The rest of the n° — # tracks are best described by
dividing them into n blocks. cach consisting of n — 1
tracks. Each such track comprises three segments.

The first block of n — 1 tracks. i.e., tracks 1, , 1. 1, - 1,

. 1y, _ . are constructed using the definitions of the
connections by,. | < j = n. The segments in each track
Lo L= = n — L. are defined as (1. left(b;) — 1),
(lefut(by;). right(hy ;.\ )). and (right(h, .y) + 1. N).
That 1s. the middle segment in the track 7, ., ; is defined
such that the connections b, or b, ., can be assigned to
it.

The

Iu +u

. ¢, _, are defined with

ith block of n — 1 tracks (i.e.. tracks
<Ly i - 1) 1s constructed using the
1 =/ < n. The seg-
(i.e., the jth track in

bin—1y- 1+ " 77
definitions of the connections b,,.
ments in the track 7, ., -1, 1, -
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the ith block) are (I, left(b;) — 1),
right (b;; 4 1)), and (right(b;; +1,) + 1, N).

Given the above instance Q of unlimited segment rout-
ing, one can generate an instance Q, of a 2-segment rout-
ing problem as described below.

The number of columns is set to the same value as in
Q,i.e., N =x, +y, + 7. The set of connections in the
2-segment problem Q, is defined as follows:

1) The connections @;, | < i <n,e, 1 =i < n’ -
n, and by, 1 < i, j < n are defined as in the unlimited
segment routing problem Q.

The connections f; are again defined as in Q, except that
there are now 2n°> — n of them, i.e., 1 < i < 2n®> — n.

The connections d;, defined in problem instance Q, are
omitted in Q,.

2) n’* — n new connections gj» where 1 < i < n, and
1 = j = (n — 1), are added such that left( g;) = 4 and
right( g;) = z; + 4. Note that for a fixed value of i, all
the n — 1 connections, g;, where 1 < j < (n — 1), are
identical and have the same left and right end points.

The set of tracks (comprising 2n’ — n tracks) is defined
as follows:

1) Each track 1;, 1 < i < n in the construction of the
unlimited segment routing problem Q,, is replaced by a set
of n tracks that we label as ;;, | < j < n. Each such track
comprises five segments. Let us first describe the five seg-
ments in the tracks, ¢;, 1 < j < n: they are (1, 2), (3,
3), (4, right(q;)), (right(a;) + 1, z; + 4), and (2, + 5,
N).

In general, for any i(1 < i < n), the segments in the
tracks, t;, 1 = j < n, are defined as follows: (1, 2), (3,
3), (4, right(q;)), (right(q;) + 1, z; + 4), and (z; + 5,
N).

2) The last n* — n tracks, i.e., tm+1) " " » Iy, in the
unlimited segment routing is kept the same in the 2-seg-
ment routing problem, Q,.

Before we proceed, let us review the properties that
routings must satisfy in the unlimited segment problem,
which we proved in Section III.

1) In every track, 7;, | < i < n, a connection a; can
only be assigned to the same track with some by, (see
Lemma 2).

2) In every track, 1;,, 1 < i < n, the length occupied
by connections a,, and b, g that are assigned to it is
z;. Note that the length occupied is defined as
right (b)) — left(a,)); (see Lemma 2).

Proposition 12: In any routing of Q,:

a) the connections ¢;, | < i < n> — n, are assigned to
tracks t, .1, * * * , tp, 1.e., the last n? — n tracks.

b) the connections f;, 1 < i < 2n® — n, occupy the last
segment in every track.

¢) the connections a;, 1 < i < n, are assigned to tracks
i, 1 =4,j=n.

d) the connections g;, 1 =i =n, 1 =j=n—1
cannot be assigned to tracks #, ., * * * , I

e) only n connections from by, 1 < i, j < n, can be
assigned to tracks 7;;, 1 < i, j < n, and the rest of the n’

(left(b;),
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— n connections are assigned to tracks 7,4, * ", I
Thus, each track among 1, ., * * * , f,2, has one connec-
tion from by, | < i,j < n, assigned to it.

Proof: In Proposition 12, a) follows directly from
the construction: if an e; is assigned to any track among
tj, 1 < i, j < n, then it would occupy three segments:
this is not permitted in 2-segment routings. Hence, the
first segment in each of the last n* — n tracks must be
occupied by an e; connection.

b) follows again from the construction: all the connec-
tions f; are overlapping and there are as many of these
connections as the total number of tracks. Hence, they
occupy the last segment in each track.

¢) follows from a): the connections a; and e; overlap for
every i and j; hence, none of the a; connections can be
assigned to tracks ¢, , © * L

d) again follows from a): every connection g; overlaps
with every connection ¢;. Since the connections e, are as-
signed to the last n® — n tracks, the connections g; must
be assigned to the tracks 1, | < i,j = n.

e) follows from d): every b;; overlaps with every g; (7be-
cause by assumption z; = x, + n); since all the g;; (n” —
n of them) are assigned to the top #;, 1 < i, j < n tracks,
there are only n tracks left that connections b; can be as-
signed to. This also implies that each track among 7, .1,

-, 1,2, has one connection from b;, 1 < i, j < n as-
signed to it. O

Proposition 13: The total length required by the con-
nections among a; and b; that are assigned to n tracks
among r;, 1 < i,j < n,is =L]_,z.

Proof: Since the connections a;, b; and the tracks
ty+1» © b are defined identically in problems Q and
Q., Propositions 4, 5, 6, and 7 (proved in Section III) are
also true for Q,.

If R, is any routing for Q,, then we can define a quan-
tity /; (similar to m; defined in Section III) as follows:

1 < n, and b; is assigned to some track
Ik[» 1 < y < n, n Rz}‘

In other words, /; is the number of connections from the
set {b;1, b;s, - - -, b;,} that are assigned to tracks 7, We
can now exactly follow the arguments of Propositions 8-
10 and show that a) £%_,1, < kforall 1 < k < n, and
L7_,l; = n; b) the total length occupied by the connec-
tions a; and b;; in the tracks 75, 1 < i,j < n,is >L{x; +
L1l i, and c) finally, (using Proposition 9 and the argu-
ments in Proposition 10)

n n n n n
Zx,-+ Zlkykz Zx,+ Zyk= 2 Zi
1 1 1 1 i=1

where equality is met if and only if [, = | forall k. O

The next proposition shows that among »n tracks #;, 1
< j = n (i is fixed), there is exactly one track that can
be occupied by connections a; and b,,,; the rest are occu-
pied by n = | connections g;, | <j <n — 1.
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Proposition 14: In any routing of Q.. for any fixed i.
the (n — 1) connections g1 =j = (n—1). can only
be assigned to tracks in the set of .l <=k <n.

Proof: Let us define h, to be the number of tracks
among 7,. 1 < j < n. that are unoccupied by the connec-
tions gy, 1 <k =n. 1 <! < (n— 1) These are also
the tracks available for connections «, and b, hence.
LV 1h = n. Morcover, the total space available in these
tracks (for connections 4, and b;,) is L | 4,2, (because the
total length provided by any track r, for connections a,
and b, is z;).

Next, let us observe that any connections &;; can never
be assigned to a track 7,,. where k < . This is because
the connection g, is defined as (4, 2, + 4). and one can
easily verify that if it is assigned to track r,,. k < /. then
1t would occupy three segments which is not permitted in
a 2-segment routing. Using the above property we can
show that

i

2y, =i Yl =i<n
|

For example. for i = 1 the above relationship follows
casily: none of the connections &y can be assigned to
tracks 1y where k < n, hence. all of them have to be as-
signed to tracks 1,, (sec Proposition 12): thus. the maxi-
mum number of tracks unoccupied by g,. | < < n -
I, among 1., | < k < n, is at most 1. or equivalently,
h, < 1. For other values of i, the above relationship can
be showed by induction.

Now. we know thatz, >z, .| > > Z;: using this
property and the fact that )X}k, .\, |, < i, vl <
i=nb)Ii  h, ., _;=n. wecan casily derive (apply-
ing arguments analogous to those in Propositions 9 and
10) that 7. 2k, < T |z, and the equality results if and
only it hy = 1 forall 1 </ < n.

Thus if 2, # 1 for all i then it leads to a contradiction
with Proposition 13.

Note that we already showed that all the connections
8y 1 =Jj = n — 1, have 1o be assigned to tracks Lo |
= k = n. Now. h, = 1, hence, for connections Lo 1y
I <=7 = n ~ 1, the only available tracks are tn we 1 <
k = n.Since h,_, = 1. the same arguments can be con-
tinued to show that the (n — 1) connections gl =j=<
(n — 1). can only be assigned to tracks in the set of [N
<k <n. [

Theorem 2: Determining a solution to Problem 2 is
strongly NP-complete even when K = 2.

Proof: First let us show that if there is a solution to
the unlimited segment routing problem for Q. then there
is a solution to the 2-segment routing problem for Q. The
assignments for Q, are as follows:

1) The connections ¢,. 1 < i < n° — 5 are assigned o
tracks 1, ., . 4. Since, the last #° — 1 tracks are
identical in both instances and ¢; gets assigned to single
segments in every track, this is a valid step.
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The connections fi.. | < i < 2n° are assigned the last
segment in every track.

2) Since. the last n° — »n tracks are identical in both Q
and Q» (and so are the connections b;;). the connections
b, assigned to the these tracks in Q are also assigned to
the same tracks in Q.. This leaves n connections among
b 1 = i.j = ntobe routed (precisely those which are
assigned to tracks 7, -+ - - . 1, in the routing for Q).

3) Next consider the connections a; and b;; that are as-
signed to the first n tracks £;. + - - .1, in Q. First consider.
7. and let the connections assigned to it be A1, and
by, (recall from Section 111 that a connection a; can
only be assigned o the same track with some b,,). Now
consider the track 7,1, in Q.. it has a segment (4. right
(a,1,)) to which the connection «,,,), can be assigned and
asegment (right(«,,,,) + 1.z + 4) to which the connec-
tion b, can be assigned. Next, the n — | connections
g+ I = < n — 1 can be assigned to the n — 1 tracks
among r;. 1 < j =< n that are not occupied by the con-
nections a,, .y, and by,

This procedure can be continued. i.e., consider track 1
in Q and let «,,, and b, ., be the connections assigned
to it. Then for a routing of Q. assign the connections
Wy and by, 10 track 1. To the rest of the (n — 1)
tracks among r; assign the connections gl =j=n-—-
I.

One can easily verify that after following the above
three steps. all the connections of Q, are appropriately
routed.

We now state how to get a routing for @ given a routing
for Q.

DAssignd. l <=i<n fi.l<i<nande.l <
<~ according to Proposition 1.

2) The n” — n connections among b;, 1 < i,j < nthat
are assigned to tracks 1, . . . 42 in Q, are assigned
to the identical tracks in §.

3) After the above steps. one is left with the connec-
tons a,. | < i < n, and n connections among b;; (pre-
cisely those that are assigned to tracks 1;; in Q,) that need
to be assigned.

Consider the particular track among t,, ] =j < nin
Q. (note that by Proposition 14 there always exists such
a track). that has one connection cach from a, and b;; as-
signed to it and fet these connections be Ay and b0,
Then in Q assign a,.y, and b, ., to track ¢, (the validity
of this assignment follows immediately from the con-
struction of the track 7,).

In general. let «,,, and b, ,;, be the connections as-
signed to one track among the n tracks t;1 < j < n. Then
assign a,,;, and b,,,;, 5, to track 7, in Q. Cl
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