394

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 24, NO. 2, APRIL 1989

An Architecture for Electrically
Configurable Gate Arrays

ABBAS EL GAMAL, SENIOR MEMBER, IEEE, JONATHAN GREENE, JUSTIN REYNERI,
ERIC ROGOYSKI, KHALED A. EL-AYAT, AND AMR MOHSEN, SENIOR MEMBER, IEEE

Abstract — An architecture for electrically configurable gate arrays using
a two-terminal anti-fuse element is described. The architecture is extensi-
ble, and can provide a level of integration comparable to mask-programma-
ble gate arrays. This is accomplished by using a conventional gate array
organization with rows of logic modules separated by wiring channels.
Each channel contains segmented wiring tracks. The overhead needed to
program the anti-fuses is minimized by an addressing scheme that utilizes
the wiring segments, pass transistors between adjacent segments, shared
control lines, and serial addressing circuitry at the periphery of the array.
This circuitry can also be used to test the device prior to programming and
observe internal nodes after programming. By providing sufficient wiring
tracks segmented into carefully chosen lengths and a logic module with a
high degree of symmetry, fully automated placement and routing is facili-
tated.

1. INTRODUCTION

ASK-programmable gate arrays offer the architec-

tural flexibility and efficiency to integrate thou-
sands of gates, but require long development time and high
nonrecurring engineering costs. On the other hand, the
convenience of field programming is available with pro-
grammable logic device (PLD) technologies, but their ar-
chitectures have not allowed integration of a wide variety
of applications exceeding a few hundred gates [1], [2].

We describe a novel gate array architecture [3] which
combines the flexibility of mask-programmable arrays with
the convenience of field programmability. Its implementa-
tion is made possible by a two-terminal electrically pro-
grammable anti-fuse offering low resistance in its conduct-
ing state and small area.

The architecture supports a design style similar to con-
ventional gate arrays, including fully automatic placement
and routing algorithms attaining 85-95-percent utilization.
This required considerable emphasis on symmetry and
routability, which we touch on below.

The anti-fuse is so called because it irreversibly changes
from high to low resistance when “blown” by applying a
programming voltage across it. The anti-fuse, or fuse for
short, has an ON-state resistance of approximately 500 €.
The layout area of the fuse cell is generally limited by the

Manuscript received August 22, 1988; revised December 2, 1988.
The authors are with Actel Corporation, Sunnyvale, CA 94086.
IEEE Log Number 8826132.

. b 1! Y9 Y b Y%
vertical = ot = It o
control
vertical >
track o
segment
b, mo o6& Iy
ol b ol by
N o
cross I
T T
ol
-
vertical L D H—&-
pa;s mlt Tl 3 s F U 4
transistor i =) At ar T
logic * » >
module
i b by
o iy
g [:.1 j’ \) P
horizontal :
track horizontal horizontal horizontal
segment control pass transistor fuse
Fig. 1. Interconnect architecture.

pitch of the first- and second-level metal lines that connect
to it; it is about the same size as a via.

This paper focuses on the architecture itself, which is
fairly independent of the exact details of the particular
CMOS technology and the anti-fuse. Other papers describe
more fully the anti-fuse [4], a CMOS circuit implementing
the architecture [5], and a study comparing the architec-
ture’s logic density to that of conventional gate arrays [6].

II. PROGRAMMABLE INTERCONNECT ARCHITECTURE

The general architecture, shown in Fig. 1, exhibits the
familiar gate array organization: rows of logic cells inter-
spersed with routing channels. There are, of course, several
key differences.

The tracks in the channels are not simply empty areas in
which metal lines can be arranged for a specific design.
Rather, they contain predefined wiring ““segments” of vari-
ous lengths. Other wiring segments pass through the chan-
nels vertically. Each input and output of a logic module is
connected to a dedicated vertical segment. Other vertical
segments just pass through the modules, serving as
feedthroughs between channels. (The number and lengths
of segments in Fig. 1 are only suggestive.)

0018-9200,/89,/0400-0394$01.00 ©1989 IEEE

EL GAMAL et al.: ARCHITECTURE FOR ELECTRICALLY CONFIGURABLE GATE ARRAYS 395

VPP

GND F Vo
RS
.
Vpp .- GND

Fig. 2. Horizontal fuse programming.

GND v,

pp

[
||
|

- GND

F

Fig. 3. Cross-fuse programming.

A fuse is located at each crossing of a horizontal and
vertical segment. Programming one of these “cross fuses”
provides a low-resistance bidirectional connection between
the segments. Other fuses are located between adjacent
horizontal segments within a track. When blown, these
“horizontal fuses” connect the two segments to form a
longer one. (Although not shown in the diagram, fuses
may also be provided to connect adjacent vertical seg-
ments.)

In order to program a fuse, we need to apply high
voltage across it. This is accomplished by an efficient
addressing scheme that uses the wiring segments them-
selves, pass transistors connecting adjacent segments, and
control logic at the periphery of the array. Fuse addresses
are shifted into the chip serially.

As shown in Fig. 1, each column of “horizontal pass
transistors” connecting horizontal tracks is controlled by a
shared “horizontal control” line running across the array.
Each row of “vertical pass transistors” is controlled by a
“vertical control” line. The peripheral circuitry can drive
the control lines and the segments at the end of each track.

Horizontal fuse programming is quite simple. In the
example of Fig. 2, we apply programming voltage V,p
across the fuse F. All horizontal control lines except the
one in the column containing F, are turned on by connect-
ing them to Vpp, and the appropriate track segments are
driven to GND and Vp, as shown. (Vertical fuses, if
present, are programmed similarly.) Cross-fuse program-
ming uses both horizontal and vertical control lines as
shown in Fig. 3. Segments not driven to either GND or V;,
are left precharged to V,, /2. Thus the voltage across fuses
not being programmed is either zero or V,, /2.

Some care is required to assure that a unique fuse is
addressed. Fig. 4 shows how previously blown fuses can
divert current along a “sneak path,” in this case program-
ming fuse F; through previously blown fuses F, and F,
instead of programming F,. Fortunately, we are not inter-
ested in blowing an arbitrary pattern of fuses (this is not a
PROM?!). For example, we are not concerned with pro-
gramming a pattern that connects two outputs together
since this does not form a useful net. If we consider only
relevant patterns, it can be shown that programming the

GND Vfr Vpp o Voo
. | . Vop
B & gl & - GND
N 8
B Fs
S * * iyl
FS Fy
Fig. 4. A sneak path.
TABLE I
macro 4 transistor cells | modules
3 input NOR 2 1
4:1 mux, non-inverting 6 1
D latch with clear 4 1
D flip-flop with clear/set 7 2
full adder 10 2

fuses in a carefully chosen order eliminates sneak paths. In
general, fuses must be programmed starting from the cen-
ter of the chip and moving outward, channel by channel.
Determining the proper order is a bin sort operation, and
can be done by software in linear time.

The pass transistors and peripheral control logic are also
used to test the chip; this is discussed in detail later.

11I. CHOICE OF THE LoGIC MODULE

As outlined so far, the programmable interconnection
architecture could be used with a variety of logic modules.
Which would be best? This turned out to be a very
difficult question, involving subtle trade-offs among
routability, the logical capability of the module as per-
ceived by the user, and delays due to capacitive loading in
the routing segments.

The complexity of the module must be balanced with
the routing overhead. Mask-programmed gate arrays pro-
vide very flexible and efficient routing. They therefore use
a simple four-transistor cell. On the other hand. routing is
very expensive in both area and delay with present pro-
grammable logic arrays. These generally use a module
capable of implementing more complex functions [2]. The
architecture outlined here has a cost of routing closer to a
conventional gate array, suggesting a logic module of inter-
mediate size. Because this is about the same complexity as
conventional gate array hard macros, the designer can use
a library like the familiar gate array cell libraries; there is
no need to map logic into a more complex module. Table 1
lists several typical gate array macros and the numbers of
four-transistor cells and logic modules required to imple-
ment them.

396

A0—0

A1—1

SA—I

Z— out

Fig. 5. Module function.

Our chosen module, shown in Fig. 5, has eight inputs
and a single output. It is composed of three two-to-one
multiplexors, with an OR gate on the last stage’s select
input. Various macros, such as those in the table, are
implemented by using an appropriate subset of the inputs
and tying the remaining inputs high or low. Thus the
module can implement all macros with two inputs, most
with three inputs, many with four inputs, etc.

The module’s output is connected to a vertical segment
spanning several channels. Each input is connected to a
short vertical segment spanning one channel. Four of these
span the channel above the module, four the channel
below. The use of short segments for the inputs reduces
parasitic capacitance and hence delay.

Note that each input is accessible from either the chan-
nel above or below but not both. At first, this would
appear to limit routability compared to a conventional
“double-entry” gate array cell, in which signals may enter
from either channel. However, there is nearly always more
than one way to implement a macro. For example, there
may be up to four distinct ways to implement a two-input
gate: with both signals connecting to inputs in the top
channel, with both signals connecting to inputs in the
bottom channel, with one signal in the top and the other in
the bottom channel, or vice-versa.

By letting the router choose an implementation that uses
inputs accessed from convenient channels, the benefits of
full double-entry symmetry are approached or sometimes
attained. The degree of symmetry possible for a particular
macro m implemented in a given module is reflected in the
following measure S:

S(m) =log, (N(m))

where N(m) is the number of distinct possible implemen-
tations of the macro m. Full double-entry symmetry would
correspond to a value S(m) equal to the fan-in of the
macro. To evaluate the overall symmetry of a module, we
average S(m) over the macro library, weighted by relative
macro usage U(m) and the fan-in F(m):

L U(m)S(m)
LU(m)F(m)’

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 24, NO. 2, APRIL 1989

Programmed
Horizontal Fuse

Output
Segment -

Logic Module
Output

Logic Module |
Input

I I j). Programmed
S Cross Fuses

Rows of
Logic Modules I | I

Fig. 6. A routing path.

This is the effective fraction of macro inputs in a typical
design that have double-entry symmetry, and is an impor-
tant criterion for choosing a module.

IV. ROUTING

Fig. 6 illustrates the routing of a net. The vertical
segment connected to the driving module’s output is con-
nected by cross fuses to horizontal segments, which in turn
connect to the segments associated with module inputs. In
the top channel, a horizontal fuse is used to link two
segments into a longer one.

The resistance of the blown fuses and the parasitic
capacitance of the segments used form an RC tree, with
the driver of the net as the root. Note that each input is
driven through a maximum of three and generally two
fuses to limit the delay. (If the number of series stages in
the RC tree were allowed to increase further, the delay
through the routing would increase rapidly.) The maxi-
mum number of fuses and the segment lengths (hence
capacitances) can be altered to suit the chip dimensions
and the resistance of the fuse technology.

In rare instances, it is not possible to place the macros
so that all inputs on the net lie within the channels
spanned by the output segment of the driving module. To
handle this case, a few additional uncommitted long verti-
cal segments are provided. The net is then routed from the
output segment to a horizontal segment, then to the long
vertical segment, then to another horizontal segment, and
finally to the necessary input segments. To keep the num-
ber of fuses in series limited to four, no horizontal fuses
are allowed in such nets. (If necessary, the architecture can
be extended to provide a special fuse connecting the out-
put directly to a long vertical segment passing over the
driving module, thus eliminating the first horizontal seg-
ment and reducing the total number of fuses in series back
to three.)

A means must also be provided to connect internal
signals to the bonding pads of the chip. Each pad has a
dedicated bidirectional buffer, which connects to the array
through an associated 1/0 module. The I/0 modules fit
in the outer columns and rows of the array next to the
logic modules. Each 1/0 module has two inputs, data and
enable, and an output. The data and enable signals are

EL GAMAL er al.: ARCHITECTURE FOR ELECTRICALLY CONFIGURABLE GATE ARRAYS ’ 397

sent to the output buffer of the associated bonding pad,
and the module’s output comes from the input buffer of
the pad. Thus the 1/0 module can be configured to
provide input, output, tristate, or bidirectional capability.

To minimize clock skew due to differential routing de-
lay, one entire track (or more if needed) in each channel is
set aside for clock distribution. These tracks are connected
directly to buffers, so that each input presents a similar
load driven through exactly one fuse.

An interesting theoretical question is whether more hori-
zontal tracks are needed in each channel here (where the
lengths of the wiring segments must be predetermined)
than in mask-programmed routing (where the wiring is
customized for the design). Surprisingly, a high probability
of routability is obtained with only a few tracks above
channel density.

This requires a careful choice of the lengths of the
segments, based on statistics from an extensive suite of
design examples. This was done by first determining the
distribution of net lengths, i.e., the length each net would
run along each channel if the constraint of fixed segmenta-
tion were absent (as in a conventional gate array). The
distribution of physical segment lengths provided on the
chip was chosen to obey similar statistics. Then the seg-
mentation was “tuned” manually based on actual routings
which obeyed the constraints it imposed.

To obtain good routing performance it is also necessary
to take advantage of the symmetry of the macros where
possible. For example, observe that if macro 4 in Fig. 6
permits its input to be routed from either the upper or
lower channel, there is a better chance of finding a free
horizontal segment to connect it.

V. TESTING

To assure high programming yield, it is necessary to
thoroughly test the chip for defects in the modules and
fuses prior to programming. With a simple addition, the
addressing circuitry used for programming suffices for this
purpose as well.

Continuity of the tracks is easily verified by turning on
all vertical and horizontal pass transistors, and using the
peripheral circuits to drive the tracks from one end and
read them back from the other. Testing for the absence of
shorts between adjacent tracks is done in a similar way by
applying a pattern of alternating ZERO’s and ONE’s.

Shorted or weak cross fuses are detected by turning on
all horizontal and vertical pass-transistor lines, grounding
all horizontal segments, and driving all vertical segments
to some stress voltage. Horizontal fuses are tested column
by column, with the same addressing method that is used
to program them.

To verify the functional operation of the modules, we
need to apply test vectors to their inputs and read their
outputs. A vector is applied simultaneously to an entire
row of modules by turning on all vertical pass transistors
except those in the row being tested. Data are applied to

Probe

Column To

Enable External

-- { - -- Pin
% H‘ Shift Register
- -
Module
Qutput
g . Row Select
Column Sense |

Fig. 7. Probe circuit.

the inputs in the channel above the row from the periphery
at the top of the array, and to the inputs in the channel
below the row from the bottom of the array.

Since the outputs of the modules share a vertical track
with outputs of other modules above and below them,
some other means is required to read the module outputs
at the array periphery. As shown in Fig. 7, a select line is
provided along each row of modules, and a sense line
along each column. Activating the select line for the row of
modules under test gates their output values onto the sense
lines. The sense lines are loaded into a shift register at the
top of the array.

This ability to read the output of any module at the
array periphery is highly useful after programming as well.
Only a small amount of extra circuitry is required to select
one of the sense lines and make its value available at an
external pin of the chip. Thus by shifting in the appropri-
ate address, the user can observe any internal node of his
design externally in real time. This virtual probe can be
used and its address changed even as the programmed chip
is operating in the user’s system.

VI. IMPLEMENTATION: SILICON AND SOFTWARE

The architecture has been implemented in a CMOS
device. For details, including the speed of the module in
isolation and in an application, see [5].

Computer-aided design tools have been developed to
support the architecture. Designs are entered as schematics
or net lists using a cell library.

The placement and routing algorithms are specific to the
architecture. As usual these are time consuming, taking up
to a few hours on a low-cost workstation. They achieve
100-percent routing completion. (Even expert users have
never been able to improve manually on the automatic
router.) The probability of successful routing can be pre-
dicted by analyzing some statistics of the design.

Because the nets are RC trees, delays are not a simple
function of capacitive load as with mask-programmed gate

398

arrays. Nevertheless, we are able to quickly calculate pre-
cise delays at each input for post-layout simulation and
timing verification.

ACKNOWLEDGMENT

The authors gratefully acknowledge the technical contri-
butions of J. Chang, D. Gluss, R. Guo, D. How, and F.
Sohail.

REFERENCES

[1] S. Wong, H. So, C. Hung, and J. Ou, “CMOS erasable pro-
grammable logic with zero standby power,” in ISSCC Dig. Tech.
Papers, Feb. 1986, pp. 242-243.

[2] H. Hsieh er al, “A second generation user programmable gate
glirsayé’;lin Proc. Custom Integrated Circuits Conf., May 1987, pp.

[31 A.El Gamal, K. El-Ayat, and A. Mohsen. “Programmable intercon-
nect architecture,” pending U.S. patent.

[4] E. Hamdy et al,, “Dielectric based antifuse for logic and memory
ICs,” in IEDM Tech. Dig. (San Francisco, CA), 1988, pp. 786-789.

[5] K. El-Ayat et al., “A CMOS electrically configurable gate array,” in
ISSCC Dig. Tech. Papers, Feb. 1988, pp. 76-77.

[6] B. Osann and A. El Gamal, “Compare ASIC capacities with gate
%gral)'gggnchmarks," Electron. Des., vol. 36, no. 23, pp. 93-98, Oct.

Abbas El Gamal (S'71-M’73-SM’83) received
the B.Sc. degree in electrical engineering from
Cairo University, Egypt, in 1972, and the M.Sc.
degree in statistics and the Ph.D. degree in elec-
trical engineering both from Stanford University,
Stanford, CA, in 1977 and 1978, respectively.
From 1978 to 1980 he was an Assistant Profes-
y sor of electrical engineering at the University of
s Southern California, Los Angeles. Since 1980 he
’ has been with the Electrical Engineering Depart-
ment of Stanford University where he is cur-
rently an Associate Professor. From 1984 to 1986 he was Director of the
Systems Research Laboratory, LSI Logic Corporation, Milpitas, CA. He
is a co-founder and Chief Scientist of Actel Corporation, Sunnyvale, CA.

Jonathan Greene received the Sc.B. degree in
biology from Brown University, Providence, R,
and the Ph.D. degree in electrical engineering
from Stanford University, Stanford, CA, in 1983,
where he performed research on configurable
VLSI arrays, VLSI complexity, and information
theory.

During 1984 he was with Hewlett-Packard
Laboratories. From 1984 to 1986 he worked on
cell design automation and module compilation

R at the LSI Logic Systems Research Laboratory
in Palo Alto, CA. He is currently Manager of System Architecture at
Actel Corporation, Sunnyvale, CA.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 24, NO. 2, APRIL 1989

Justin Reyneri received the B.S. and M.SEE.
mathematics degrees from Stanford University,
Stanford, CA, in 1978, and the Ph.D. degree in
electrical engineering, also from Stanford, in
1985, having done research in cryptology and
information theory.

He is now Manager of System Development at
Actel Corporation, Sunnyvale, CA, where he has
worked since 1986. Prior to that he worked at
LSI Logic’s System Research Laboratory on au-
tomated data-path layout, and at Hellman Asso-
ciates on communications security systems.

i
i

Eric Rogoyski received the B.S. degree in mathe-
matics from the State University of New York at
Stony Brook in 1972.

He was at IBM Corporation from 1974 to
1982 with his last position in EDS at East
Fishkill, NY. He held various positions in physi-
cal design from 1982 to 1984 at the company he
co-founded, California Automated Design Inc.,
and from 1984 to 1986 at Mentor Graphics
Corporation. He is currently a software consul-
tant at Actel Corporation, Sunnyvale, CA, sup-
porting the architectural development and physical design of Actel’s
configurable technology.

Khaled A. El-Ayat received the B.Sc. degree in
electrical engineering from the University of
Cairo, Egypt, in 1968, the M.Sc. degree in electri-
cal engineering and computer science from the
University of Toronto, Canada, in 1971, and the
Ph.D. degree in electrical engineering and com-
puter science from the University of California,
Santa Barbara, in 1977.

In May 1977 he joined Intel Corporation,
Santa Clara, CA, to work in the Microprocessor
Design Group, where he worked on the defini-
tion and development of industry standard microprocessor families such
as 8086, 80186, and 80386. As a Project Manager at Intel, he was
responsible for the design of the control structures of the 80386 Micro-
processor. After leaving Intel, he cofounded Actel Corporation in Sunny-
vale, CA, and was the Program Manager responsible for development of
electrically configurable gate arrays. His present research interests include
configurable logic and application-specific architectures, VLSI design,
and microprocessor architectures. He has authored many articles and
holds patents covering Actel’s architecture and testability techniques.
Presently he is a Chief Engineer working on the definition of the next
generation of products.

Amr Mohsen ($'72-M’74-SM’84) received the
Ph.D. degree in electrical engineering and ap-
plied physics from the California Institute of
Technology, Pasadena.

He is the founder, President, and Chief Execu-
tive Officer of Actel Corporation, Sunnyvale,
CA, and has more than 20 years of experience in
the semiconductor industry. Before founding Ac-
tel, he was a Senior Engineering Manager in the
technology division at Intel Corporation. He also
worked on charge-coupled device development at
Bell Laboratories and served as a consultant. He has authored more than
45 articles relating to semiconductors and is responsible for inventions
covered by 20 patents.

