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Two-Dimensional S tochastic Model for 
Intercoxinections in Master S lice 

Integrated Circuits 
ABBAS A. EL GAMAL, MEMBER, IEEE 

. Absmct-T stochastic nwdels for in- in 
master slice LSI iare described. Several Umit theorems are derived for 
~~thewiringareaonlargechipsint~ofaveragewirelength 
R, average number of wires emanating from each logic block A, and wire 
trajectory parametem The expected value of the maximum number of 
tracksperehannelonanNXNchipisshowntobelessthanOOnN)as 
long as R doe3 not grow faster than O(ln N). If R> O(h N), then the 
expected maximum number of tracks is O(R). Simple bounds on the 
expected wiring area are given and numerical results compared to the 
earlier work by Heller et al. 

I. INTRODUCTION 

T HE BATE OF progress in integrated circuit technol- 
ogy indicates that it will soon be possible to imple- 

ment on the order of several million devices on a single 
chip [l]. In contrast to implementing small or medium 
scale (MSI) integrated circuits, where a designer can 
quickly try different layout possibilities and choose the 
“best,” the designer of a large system (LSI-VLSI) needs a 
way of predicting chip area and layout complexity without 
actually having to do complete layouts. These predictions 
are not only necessary for determining initial placements 
and layout, but, more importantly, for deciding whether a 
system can be implemented economically. In [2], M. 
Shima, the designer of the 28000 microprocessor, em- 
phasized this point by stating that, “If the designer (of the 
VLSI system) waits until the last minute to calculate chip 
size, his company may wind up with a chip too big to sell 
profitably,” But how does one go about predicting the 
chip area? And what information must be available to the 
designer for such prediction? As far as we know no 
general answers to these questions exist. The problem of 
predicting the space requirement for wiring (PC boards, 
LSI) has, however, received some attention. Sutherland 
and Oestreicher [3] considered the case of wiring when the 
placement is done randomly. Their result, although useful 
for small to medium size integration, is too pessimistic for 
truly large systems. 

In a recent paper, Heller et al. [4] gave a one-dimensional 
probabilistic model for wiring in master slice (gate array) 
LSI with the objective of predicting the wiring area. They 

Manuscript received November 20, 1979; revised August 12, 1980. 
This work was supported in part by the Joint Sexvices Electronics 
Program through the Air Force Office of Scientific Research (AFSC) 
under Contract F44620-76-C-0061, and under DARPA Contract MDA 
903-79-C-0608. 

The author is with the Electrical Engimering Department, Informa- 
tion Systems Laboratory, Stanford University, Stanford, CA 94305. 

heuristically extended their model to two dimensions, and 
applied their results to estimating the maximum number 
of tracks per channel needed for successful wiring. The 
results in [4] are currently being used by several design 
automation groups at IBM and elsewhere. 

Briefly, the model in [4] considers a doubly infinite 
linear array of equal size logic blocks. The number of 
wires emanating from every block is taken to be randomly 
distributed according to a Poisson distribution with 
parameter X, and is assumed to be independent among the 
different blocks. Each wire length is assumed to be inde- 
pendently chosen according to a geometric distribution 
with mean E. The problem of estimating X and x was 
studied in earlier work by Donath [5], [6] and in Feuer [7]. 

In this paper, we shall extend the work in [4] by 
formulating a two-dimensional probabilistic model for 
wiring. In addition to assuming knowledge of the distribu- 
tion of the number of wires (which will also be taken 
Poisson) and the average wire length, we shall assume 
certain strategies for wire trajectories in two dimensions. 
It will be shown, however, that certain general results do 
not depend on the assumed wire trajectory distribution. 

The organization of this paper is as. follows: in Section 
II, we informally describe our model and state the main 
results. In Section III, a formal description of the model 
and several elementary results are derived. Limit theorems 
concerning the space requirements for wires are then 
given in Sections IV and V. In Section VI, similar results 
are stated for the case of “biased chips” (i.e., unequal 
average wire lengths in horizontal and vertical directions), 
and in Section VII, we consider the case when wires have 
at most one corner. In Section VIII, we assume that wire 
lengths have a geometric distribution and show that under 
this assumption a joint wiring distribution could be de- 
rived. Finally,. several generalizations and other potential 
applications of our model are discussed in Section XI. 
Many of the important proofs in this paper are contained 
in [ 141. 

II. INFORMAL DESCRIPTION OF MODEL AND 
RESULTS 

The model of the chip is depicted in Fig. 1. It consists 
of a two-dimensional lattice; every lattice point represents 
the comer point of a logic block. Wires are assumed to 
start at lattice points, travel ho&ontally and vertically 
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Fig. 1. The four minimum distance wire trajectories. 

only (no diagonal wires), then stop at other lattice points 
(no loops). Each wire is assumed to take a minimum 
distance path in connecting two lattice points. This im- 
plies that any wire has to choose among the following four 
possible trajectory directions: 

(a) a direction consisting of only (Right, Up) steps (in 
any order); 

(b) a direction consisting of only (Right, Down) steps; 
(c) a direction consisting of only (Left, Up) steps; or 
(d) a direction consisting of only (Left, Down) steps. 

These four directions are illustrated in Fig. 1. 
We now describe the random generation of wires, wire 

lengths, and wire trajectories: 
i) At every lattice point (i, j) the number of wires Xij is 

independently drawn from a Poisson distribution with 
parameter X. 

ii) Given that the number of wires at (i, j) is xii > 0, 
the length of every wire LJx), 1 < x <xii, is drawn 
independently (of every other wire and of the Xii’s), and 
according to a distribution PL with mean E. Observe that 
up to this point the generation of wire numbers X, and 
wire lengths is identical to that in [4]. 

iii) Now, to choose the trajectory of each wire, the wire 
first chooses one of the four directions (a)-(d) with equal 
probability and independently of i), ii). The specific 
trajectory is then decided by flipping a fair coin &(x) 
times and moving accordingly. For example, if a wire x of 
length J&(X) = 3 starts at (i, j) and chooses direction (a), 
the coin is flipped three times. If the outcome of the coin 
flips is (HHT), the wire first moves to the right two steps 
then up one step, and stops at (i+2, j+ 1). 

It can be easily seen from the model assumptions that 
one can decompose the wiring process into four indepen- 
dent processes, each with Xii Poisson distributed with 
parameter h/4 (for every (i, j)), and such that the first 
process consists of wires in direction (a), the second 
consists of the wires in direction (b), and so on. Analysis 

of process (a) can then be carried out, and the results 
superposed (see Section III for details). It is also shown 
(Section VII) that the specific trajectory description given 
here is not necessary for deriving the limit theorems for 
wiring space. Rather, the coin flipping scheme is an intui- 
tive way of describing wire trajectories (however, it is not 
the most realistic). 

Before stating our main results, we introduce the follow- 
ing random variables: 

1) For every (i, j) let Tr be the number of wires in 
channel segment (i, j)+(i+ 1, j), and qy be the number 
of wires in channel segment (i, j)+(i, j+ 1). 

2) Consider an NxN segment of the lattice, and define 
the random variable 

to be the total number of wires segments on the N X N 
chip. 

3) For prediction of wiring space consider the following 
random variables: 

6) 

The random variables L?/ and 6: represent, respec- 
tively, the maximum chip width and height needed (in 
terms of the total number of tracks). The random variable 
?N represents the maximum number of tracks needed in 
any channel segment on the chip. 

4) For every integer 0 < t < cc define the random varia- 
ble KN( t) to be the number of channel segments with t 
wires in an N x N chip. 

We now summarize several key results in this-paper. 
(1) (Section IV). If the average wire length R < 00 (in- 

dependent of N), then 

sN -%R. NZ 
(2) (Section IV). If EL ‘+‘< 00, for some e>O, then S, 

satisfies the following central limit theorem: 

$WSN) 
where %(O, 1) is the normal distribution with mean 0 and 
standard deviation 1. 

(3) (Section. V). If R< cc (independent of N), the for 
every t 

[AR\’ 
KN(f) ’ i2j -+-e 

2N2 t! 
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(4) (Section V). If R< O(ln N), then 

i) P{fN<O(lnN)}NyWl, and 

ii) EfN < O(ln N). 

If R>O(ln N), then 

i) P{ f’, <O(R)} N2W 1, and 

ii) EfN =0(R). 

(5) (Section V). 

i) P{max(@, 3:) <O(NE)} N2W 1, and 

ii) E{max(@‘, a:)} =O(N@. 

(4) 

(5) 

(6) 
(6) (Section V). For 1 d i < N, 1 <j < N and for R< 

OOn W, 
EfiK = Ehjz < O(ln N) 

and for E>O@r N) 

El!K=Efij;=O(i?). (7) 

Statements (1) and (2) give with arbitrarily high proba- 
bility the estimate of the area required for wiring large 
chips (large N). Statement (3) indicates that the distribu- 
tion of the wires on the chip ( KN( t)) JAI converge to a 
Poisson distribution with parameter hR/2. Statement (4) 
implies that if R < O(ln N) then the widest channel seg- 
ment (in terms of number of wires) on the N x N chip is 
upper bounded by O(ln N). Thus to ensure successful 
routing completion the designer of the master slice should 
leave O(ln N) tracks in every channel segment on the 
N x N chip. The total wiring area on the chip is, therefore, 
O(N21_n2 N) (see Fig. 2(a)). 

If R grows faster than O(ln N), then the designer should 
leave O(R) tracks in every channels segment, and the 
resulting wiring area becomes O(N’@). If the designer is 
allowed to change the dimensions of the master slice chip 
after wiring (this is not the common practice at the 
present time), he could in principal reduce the wiring area 
at least by a constant factor. One way to reduce the wiring 
area, while keeping the square shape of the chip, would be 
to first squeeze the horizontal wiring dimension of the 
chip from NTN to bN, n then the vertical dimension from 
NT, to 6; (see Fig. 2(b)). ‘In practice, this type of com- 
paction may not be easy to do, however. An easier com- 
paction could be done by keeping the row and column 
blocks lined up, as shown in Fig. 2(c). The wiring dimen- 
sions in this case are given by EE, ii% and Ey= ,l?,k in 
the vertical and horizontal directions, respectively. 

Before proceeding with the formal presentation of the 
above results, we plot in Fig. 3 the upper bounds to EfN, 
f Efif, and EfiH ,&obtained in Section V versus (N2)‘i6. 
The values of _N, R, and X used are from [4] (where it was 
assumed that R = 0( N ‘13)). Consider the case N = 30. From 
Fig. 3, the expected width of the chip (in terms of the 
number of wire segments) when EfN tracks are left in 
each channel segment = 357. If the compaction in Fig. 2(c) 
is performed, after wiring, the expected width of the 

TOTAL NUMBER 
OF HORIZONTAL 
TRACKS : 6” N 

TOTAL NUMBER 
OF VERTICAL 
TRACKS c 6; 

0) 

(4 
Fig. 2 (a). Master slice before wiring. (TN tracks per channel segment). 

(b) Master slice after wiring and compaction. (@ tracks in the 
horizontal direction and & tracks in the vertical direction). (c) Master 
slice after wiring and compaction leaving horizontal and vertical 
blocks lined up. 

chip = E@ = 25 1. If, on the other hand, the compaction 
in Fig. 2(b) is performed, the expected width becomes= 
139. 

III. FORMAL DESCRIPTION OF PROCESS (a) AND 
ELEMENTARY RESULTS 

Let Z2 = {(i, j)} be the set of lattice points in I%‘, and 
define the set {X& (i, j) E E} of independent identically 
distributed random variables each drawn according to a 
Poisson distribution with parameter h/4, i.e., 

P{x;=n}s~e-“/4. 
9. 
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Fig. 3. Expected number of tracks with and without compaction. 

The random variable X$ represents the number of wires 
that emanate from (i, j) and that move right (R) and up 
(U) only (as indicated in Fig. 1). For XG > 1, the length of 
each wire x, 1 < x < X$ is an independent integer-valued 
random variable LJx) > 1 drawn according to some dis- 
tribution PL, with finite mean R (in the proof of the central 
limit theorem (Theorem 3) we shall also require the finite- 
ness of EL’+‘). In Section VIII we will choose PL to be 
geometric and derive several simplified results. 

To determine the trajectory of each wire x, first define 
the sequence of independent identically distributed ran- 
dom variables 

zijl(x>, zij2(x)pe - * 3 zijLij(x)(x> 

such that 

Zijkc4 = 
1 

+1, with probability l/2 
_ 1 7 with probability l/2. 

The wire x, starting at the point (i, j), moves according to 
the outcomes of the Z+(X))S, 1 <k < LJx); to the right 
(R) if the outcome is + 1 and up (U) if the outcome is - 1. 

Now, for every (i,j)EZ2, the number of wires, their 
lengths and their trajectories is completely specified by the 
following set of random variables. 

nyj = (x;; LJl), &(2),-. . ) LJx;); 

The random process {A$ (i, j) E z2} thus consists of 
independent identically distributed components, and com- 
pletely specifies wiring process (a). 

We shall be interested in estimating the number of 
wires crossing from say, point (i, j) to (i + 1, j), or (i, j) 
to (i, j+ 1). Therefore, for - cc < I< i, - co <k <j we 
define random variables 

Xii 
GH(Z, k)= 2 1 &(x) >(i+j+ 1 -Z-k), 

X==l i 

i+j-I-k 

x Z,,,(x)=(i-Z):(j-k) 
m=l 

and Zij(i+j+l-/-k)(X)= + 1 I 
and 

%I 
q”(Z, k)= z 1 &,.(x) >(i+j+ l-Z-k), 

x-1 I 

i+j-I-k 

2 Z,,(x>=(i-Z)-( j-k) 
m=l 

and Zij(i+j+l-,-k)(x)= - 1 
I 

(9) 

where 1 {A} is the indicator function of the event A. The 
random variables q‘J”(Z, k) and qTr’(Z, k) represent the 
number of wires starting at (I, k) and going through (i, j) 
to (i + 1, j) and to (i, j+ l), respectively. Therefore, the 
total number of wires crossing from point (i, j) to (i + 1, j) 
is the sum of the random variables T;“(Z, k) over - cc < I 
<.i, - cc G k <j. We denote that sum by 

qH= i i q”(Z,k). 
I=-00 k=-co 

v-9 

Similarly, we denote the total number of wires from (i, j) 
to (i, j+ 1) by 

TV= i i cv(Z, k). 
I==-a, k=-co 

(11) 

Observe that the random vectors (~“~‘) are not 
independent. However, it is easy to see that the two- 
dimensional random field {( I;y”q’); (i, j) E Z2} is 
translation-invariant in the sense that if A cZ2, then the 
joint distribution of {( ~~“~“), (i, j) 64 + (I, k)} is iden- 
tical to the distribution of {(~~“~‘), (i, j) EA} for any 
integer pair (Z, k). It is also easy to see that two random 
variables, say TIgH and T,Or, from the collection {q”, q::‘} 
are independent if no wire can simultaneously go through 
channel segments (I, k)+(Z+ 1, k) and (m, n)+(m+ 1, n). 

We shall now state several elementary lemmas concern- 
ing the random variables r;“(Z, k), 7’;v(Z, k) and their 
sums T;H, q;‘. 

Lemma I: For (i, j) E z2, the random variables 
{q”(Z,k),T$‘(Z,k) -co<Z<i, -co<k<j} are mutu- 
ally independent and the distribution of T/J”(Z, k) is Pois- 
son with the parameter 

X,,=$P(L>i+j+l-Z-k) 

. (i+<~~-k)2-~i+j-,-k~ (12) 

Lemma 2: The random variables qy” and T/J’ are in- 
dependent and identically Poisson distributed with param- 
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eter Xx/8. Moreover, (~~“~‘J”) are independent of the 
randomvariables {(T&HTgv); i+ 1 <I< co, -co < k<j- 1 
or -w<ZI<i-l,j+l<k<oe}. 

Lemma 3: If (i, j) and (I, k) are such that i> 1 and 
j>k, then 

(i) P{GH=t,, ~~H=t2} 

=P(qy= t,, zy=t2) 

=P{ly= t,, qH=t2} 

=P{Tp,y= t,, zy=t2} 

= e~“2’p( $(&j$;‘?,); t, -d) 
d=Q 

(13) 
where 

and 

P(A; x)= $eeA 

qjg = i+j--z-k- 1 

’ ( 1 
2-(i+j-l-k) 

i-l 

2 P{L>m+l}. (14) 
m==(i+j-l-k) 

Remarks: 
1) The independence in Lemmas 1 and 2 is a result of 

the infinite divisibility of the Poisson distribution and the 
fact that no wire contributes to more than one of the 
random variables considered. In particular, observe that 
for any (i, j) and (I, k) such that either i + 1 < Z < co, 
-co<k<j-1 or - co<Z<i-1, j+l<k<co no wire 
can pass through both (i, j) and (I, k); also, no wire can 
go both horizontally and vertically at (i, j). 

2) If (i, j) and (Z, k) in Lemmas 3 are far apart, it is 
easy to see that i?$,,‘k’, app roaches zero. This is true since 
the larger the distance between (i, j) and (I, k), the fewer 
the number of wires that pass through both points. To 
illustrate this important fact, we derive the following ap- 
proximations of Z$‘k’,. 

Lemma 4: (See [8]). For large K=i+j-Z-k- 1, 

(a) if:-K 
K 1/2+C <i-z<- +K’/2+2 
2 

then 

fii,j) _ e 
-(i-l-(K/2))2/(K/2) co 

(1, k) x P{L>m+l}. (15) 
m-K 

(b) x  
i--I>(K/2)+K’/2+’ 

or i-I<(K/2)-K”2+’ 

.,mtKP{L>m+l}. (16) 

The symbol - means asymptotic equality, 5 means 
asymptotic inequality. 

Proofs (Lemmas 1, 2, 3, and 4): 
The independence claimed in Lemma 1 is evident since 

the random variables in Lemma 1 are functions of inde- 
pendent random variables (see definitions (8), (9)). Next, 
(12) can be proved by a simple combinatorial argument. 

Lemma 2 is clearly true since no wire can go through 
both channel segments (i, j)+(i+ 1, j) and (i, j)+(i, j+ 
l), simultaneously. 

To prove Lemma 3, observe that the number of wires 
vkH going through channel segment (I, k)+(Z+ 1, k) is 
the sum of two independent Poisson distribute& random 
variables; the first T;zy has parameter (X/8)( R -FE’,),) 
and represents the number of wires that go through (Z, k) 
+(I+ 1, k), but not through (i, j)+(i+ 1, j); the second 
TIH(i, j; Z, k) has parameter (X/8)Z$‘k’, and represents 
the number of wires that go through both (I, k)+(Z+ 1, k) 
and (i, j) + (i + 1, j). Similarly, TiT! = TiTf + 
TIH(i, j; Z, k), where T$p is independent of TtH(i, j; I, k) 
and is Poisson with parameter (X/8)(R- E$$). Com- 
puting .E$;$\ can be done by a simple combinatorial 
argument. 

Lemma 4(a) follows from the DeMoivre-Laplace limit 
theorem [8, p. 1681. Lemma 4(b) follows from Lemma 2 
VII.1 in [8] and the DeMoivre-Laplace theorem. This 
completes the outline of the proofs of Lemmas l-4. 

Following the lines of the above discussion, we can 
define the wiring stochastic processes (b), (c), and (d) and 
their associated random variables qibH, q;‘, . . . , etc., and 
derive identical results to Lemmas l-4. The total number 
of wires in channel segments (i, j)+( i + 1, j) and (i, j)+ 
(i, j+ 1) is now defined by 

q.7 = q.” + ly + y + $” (17) 
q = q” + T;:i”’ + q” + qv W-9 

respectively. 

IV. ESTIMATION OF WIRING SPACE 

The number of wire segments (horizontal and vertical) 
generated by process (a) on an N XN segment of the 
doubly infinite chip is given by the random variable 

&(a)= 5 5 (G”+zy). (19) 
i=lj=l 

In this section, we give a weak law of large numbers 
and a central limit theorem for S,(a). 

First, it is easy to see that 

(20) 

Next we compute the variance of S,(a). 
Lemma 5: 
(a) Var(&(a)) >O(N’). 

(b) IfR<co, N4 WM4) +. . 

(i) If ELZ+L < 00) Var(s,(a))=O(iV’). 
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It is now easy to prove the following weak law of large 
numbers for S,(a). 

Theorem 1: If R < CO, then 

Proof of Lemma 5: (Appendix A in [14]). 
Proof of Theorem 1: 

The proof follows directly from Lemma 5 and 
Chebychev’s inequality 

The right side of (22) goes to zero as N+co, thus proving 
the weak law of large numbers. 

To prove that (S,(a) - (AE/4)N2)/+w 
converges to a normal distribution with zero mean and 
variance 1 (i.e., central limit theorem) requires more work. 
First the random variables (q” + q’) are clearly not 
independent, and, therefore, the standard central limit 
theorem for sums of independent random variables can- 
not be directly applied. Secondly, little is known about 
general limit theorems for random fields (see, for example 
[9], [lo]). However, a fair amount of work has been done 
in proving limit theorems for one-dimensional stationary 
stochastic processes (see, for example, [ 111, [ 141). In partic- 
ular, if the stochastic process is uniformly or weakly 
mixing (elements far apart are weakly dependent), central 
limit theorems can be proved under a variety of condi- 
tions [ 121. 

For the random field ( ~~H~~v) under consideration, we 
could show that if EL2+’ <cc it is possible to prove a 
central limit theorem. This is done by first considering the 
underlying independent process A:j, and then observing 
that the (T;“T;“>‘s are functions of that independent 
process. The proof follows theorem 7.5 in [l l] and theo- 
rem 18.6.1 in [12] with the necessary generalizations to 
two-dimensional processes and several simplifications re- 
sulting from the special structure of (q”q’). 

We first introduce a two-dimensional generalization of 
the m-dependent stochastic process [ 121. 

Definition: The translation-invariant random field 
{I&, (i, j) E Z 2} is said to be m-dependent if for any (i, j) 
and (I, k) such that Z>i+m or Z<i-m or k>j+m or 
k<j- m, the random variables qj and q, are indepen- 
dent. 

Theorem 2: For the m-dependent translation-invariant 
random field qj > 0, if Var(X~V-IZ~=,~j)=O(N2), and 
EY:, < co, then 

5 5 K,--N’EY,, I 
m-J ‘9 

No, 
--+FJc(O, 1) (23) 

where 

uNzli+ar( +I iI Fj) * 

Proof: (Appendix B in [14]). 

We now utilize Theorem 2 to prove a central limit ~ 
theorem for S,(a). 

Theorem 3: If EL’+’ < 00, for some e>O, then 

S,(a)-N2Ai?/4 Q 

NON 
+ GJL(O, 1) (24) 

where 

a, = l/N\JVar(&(a)) . 

Proof (Appendix B in [14]). 
The number of wire segments S,(a) on a large N X N 

portion of the doubly infinite chip is therefore less than 
(or equal to) 

N2s+5a N 
4 N 

with probability over 0.999. 
Finally, by superimposing the four processes that con- 

stitute the total wiring of the chip it is easy to prove that 
1) If R< co, then 

where SN =S,(a)+S,(b)+S,(c)+S,(d) is the total 
number of wire segments on the N x N chip, and 

2) if EL’+’ < co, then 

(26) 

i.e., 

S, < N2AR+ lOaNN (27) 
with probability higher than 0.999. 

Remark: The above theorems could be generalized for 
R< co growing with N. For example, if x= CN ‘13, then it 
can be proved that 

v a7 
3N 

NZ.N’/3 
sac. 

V. DISTRIBUTION OF WIRES 

In the previous section, we found that with very high 
probability there will be s(N’AR+ lOaNN) wire seg- 
ments on a chip of size N x N. The question we shall 
address in this section is how these segments are distrib- 
uted among the different channels. In particular, we shall 
determine the number of channels on the chip with t wire 
segments. Thus define the random variable KN(t) that 
represents the number of channels in an N X N portion of 
the finite chip, with t wires 

KN(t)= 2 5 (l{~~=t}+l{~~=t}). (28) 
i=l j=l 

It is easy to see that 

EKN(t)=2N2P 

Thus the average number o_f channels with t wire seg- 
ments is proportional to P(XR/2; t). 
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It is now easy to show that in fact the proportion of 
channel segments with t wires is asymptotically equal to 
P(XR/2; t). 

Theorem 4: If R< co, then 

(30) 

Proof: Follows by computing Var ( KN (t )) and apply- 
ing Chebychev’s inequality. 

Remark: A central limit theorem can also be derived 
for KN(t). 

We now turn to the probl:m of bounding EfN. We first 
bound the probability that TN exceeds some large number 
t,* 

Lemma 6: For t, >AE/2 

P(T,= max max(?$‘,~~)<t,) 
I<i,j<N 

> 1 _2N2e-(‘“+‘)‘n((‘“+l)/h~/2/Z)+t~+1-(hR/2). (32) 

Proof: Define the random variable 
N N 

MN(t)= .z 2 (l{zy>t}+l{~~>t}). 
i=l j-1 

It is easy to see that 

Therefore, 

But 

P{~~<tN}=P{&&)<l} 

= 1 -P{hfN(tN) > I}. (34) 

EMN(tN)=2N2 5 
t=t,+1 

Using Markov inequality, it follows that 

P{M,(t,)> 1} <2N2P{T;>tN}. (35) 

Now using the Chernoff bound on P{X>A} (see [13]), we 
obtain 

P{Tf>t,} <e- (1,+1)*n(r,+I)/h~,2+.~N+I--X~,2 

Combining this bound with (34) and (35) completes the 
proof of the Lemma. 

CoroZ&: 
i) If R<O(lnN), then 

EFN <O(ln N). (36) 
ii) If R>O(ln N), then 

EfN <O(R). 

Proof: First, it is easy to see that 

EfN= 5 P{fN>t}. 
t=1 

(37) 

Now, let t* be the smallest t such that 
2N2e-('+')ln('+1)/hR/2+t+l-(h~/2)< 1 

= 
N 

- 

6 
8 

10 

15 
20 

30 
40 
44 

- 

TABLE I 
ONE-DIMENSIONAL CHANNEL WIDTH PREDICTIONS 

1.387 
1.59 
1.771 

2.117 
2.41 
2.889 
3.276 

3.469 

A=2.5 

i, from [4] 

9.0 
10.5 
11.7 

13.9 
15.6 
18.4 
20.6 
21.5 

It then follows that 
m 

EfN<t*+2N2 x 
t=t*+ I 

e-‘1n(f/XR/2)+‘+1-(h~/2). (38) 

i, from (41) (i, from (42) 

10.7 10 
12.1 11 
13.4 12 

15.7 14 
17.6 16 
20.5 19 
22.8 21 

23.8 22 

Statements i) and ii) now follow by investigating (38). 
Remarks: 
1) Alternative bound to (32) can be obtained by using 

Chebychev inequality instead of Markov inequality. Thus 

P{"~(t~)~l}~P{IM~(f~)-EM~(f~)~>l-E~~(f~)} 

< var(MN(tN)) ,. 

t1 - EMN(tN))2 

(39) 

Evaluation of (39) requires knowledge of Var( MN(tN)).’ 
2) Lemma 6 gives a bound on P{T, < t} which is 

completely independent of the routing strategy (coin flip- 
ping, one comer wires, * . . , etc.). It is possible to improve 
that bound when the routing strategy is specified. 

Using the union of events bound it can be easily shown 
that 

P{fN<t}>l-N2(l-P{T,y<t,,T,‘;<t,)). (4) 

Now, given a routing strategy, P{T:: < t,, TIy < tN} can 
be evaluated (Remarks 3) and 4) below). 

3) Lemma 6 could be easily used to give a lower bound 
to the probability of success Ps, as defined in [4], for the 
one-dimensional model. Thus consider an N2 logic blocks 
segment of a doubly infinite linear array. Define I;: to be 
the number of tracks in channel 1 G  i Q  N2. The random 
variables T, 1 < i < N2 are Poisson distributed with 
parameter hR. Therefore, 

P,gP FNL max T<tt, 
1 l<i<N2 

>I-N’exp(-(tN+l)ln(f)+tN+l-AR). 

(41) 
We can also use (40) to obtain the following tighter 

bound to Ps: 

P+l-$(l-P(T,<tN, T, 'tN))* (42) 

A comparison of fN obtained from (41), (42), and from 
[4], for Ps = 0.9, is given in Table I. 
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TABLE II TABLE III 
TWO-DIMENSIONAL CHANNEL WIDTH PREDICTIONS CHIP DIMENSIONS AFTER COMPACTION 

/ 

6 
8 

10 
15 
20 

30 
40 
44 

1.387 5.8 8.65 11.1 
7.59 6.7 10.09 12 
1.771 7.5 11.42 13 
2.117 9 13.86 14.6 
2.41 10.2 15.83 15.9 
2.889 11.9 18.88 17.7 
3.276 13.4 21.23 19.1 
3.469 13.9 22.30 19.7 

Emax(Tyj + TYj) 

from [43, for Ps =.9 

Average Number of wire 

6 ?.387 3.79 3.05 
8 1.59 4.54 3.27 

10 1.771 5.02 3.47 
15 2.117 6.11 3.82 
20 2.41 6.97 4.14 
30 2.889 8.37 4.66 
40 3.276 9.45 5.09 
44 3.469 . 9.89 5.32 

1.73 
1.99 
2.21 
2.65 

3.01 
3.61 

4.10 
4.34 

- 

i 
h=2.5 

The values of 5?N given by (42) and by the algorithm in 
[4] are almost identical. The advantage of using (42), in P{&<Nd,}il-2N g P y;t 

addition to being computationally simpler than the method 
f=Nd, + 1 

in [4], is that it provides a lower bound to Ps which is 
independent of the wire length distribution PL (the algo- 
rithm in [4] gives an approximation to Ps when PL is 
geometric). 

~l-exp,-;d.N+~~~d~~~,+ln2N 

4) We now find an upper bound to E?,,, for the 
two-dimensional case, using (40) and the method in the 
Corollary to Lemma 6. Let t* be the smallest integer t 

+Nd, + l-NAE/2 

I 

. (4) 

such that 

then we obtain 

E& <t*+N* ,~~+~(l--p(~lw9 Tim)). (43) 

In Table II, we list the upper bounds to EfN obtained 
from (43) for values of-A, R, and N from [4]. No corre- 
sponding values to ET, were given in [4]. Rather an 
estimate of the maximum of the sum of a horizontal plus a 
vertical channel widths were given. For reasons of com- 
parison, we give in Table II upper bounds to 
E(max, < i,icJ $’ + qy)) and list the corresponding val- 
ues from [4]. 

Using the technique of Lemma 6, we now provide 
bounds on the dimensions of wiring space when the 
square shape of the chip is to be preserved (Fig. 2(b)). 
Thus consider the random variables 

and 

S:= max 
1 <j<N 

By an argument similar to that in the Corollary of Lemma 
6, it follows that 

E&, <O(N@. (45) 
We can also estimate the width of chip when the compac- 
tion in Fig. 2(c) is done (rows and columns of logic blocks 
remain lined up). We define for 1 < i < N, 1 <j< N the 
random variables 

Now, the dimensions of the chip (in terms 05 the 
number of wires) after compaction are given by. D: = 
EL, DiL in the horizontal direction, and by & = Zj”- i@ 
in the vertical direction. It can now be shown that 

h 

The estimates of the chip dimensions after the compaction 
of pig. 2(b); E@, and after the compaction of Fig. 2(c); 
E&f, are given in Table III. 

VI. BIASED CHIPS 

The width of the square chip (occupied by wires) is, Suppose now that the average length of each wire is 
therefore, larger in, for example, the vertical direction than it is in 

SN =max{fiF, @ }. the horizontal. Our model can still be applied with the 
following simple modification in the definition of the 

For every 1 < i < N, Zy- ,qy is Poisson distributed with 
parameter NAE/2. Similarly, for every 1 sj < N, 2: IT7 

random variables ZJX): 
Given that average length in the vertical direction is pi? 

is Poisson distributed with parameter NAR/2. Thus and that the average length in the horizontal direction is 
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qi?, where O<q<p< 1 andp+q=l, define VII. WIRES WITHATMOSTONECORNER 

zijk(x)= "_:? 
( 

with probability q The model described in Sections II and III allows each 

9 with probability p . wire to have an average of (K- 1)/2 corners. In practice, 

Other definitions introduced in Section III are un- 
the number of comers is usually constrained such that 

changed. Lemmas 1-3 can be generalized in an obvious 
each wire may have at most one corner. We now modify 

way to yield the following. 
our model to conform to this constraint. 

Lemma .I’: For (i, j) E Z*, the random variables 
The random variables {XG} remain unchanged. How- 

{ TGH( I, k), q’( I, k), i 00 < I< i, - co G  k <j} are mutu- 
ever, the trajectory and length of each wire is chosen in 

ally independent, and 
the following way: 

(a) qH(I, k) is Poisson distributed with parameter 
For every 1 < x < Xfi, define the random variables 

q$P(L>i+j+l-l-k) ( i+:I:-k)pj-kqi-, (47) 

(b) T,“cl, k) is Poisson distributed with parameter 

p$P(L>i+j+l-l-k) ( i+<+~-k)pp-kqi-~. c4g) 

Lemma 2’: The random variables T‘J” and TG’ are 
independent and Poisson distributed with parameters 
qXx/4 and phE/4, respectively. 

Lemma 3’: If (i, j) and (I, k) are such that i > I and 
j>k, then 

(i)P{TpH=t,, qH=t2} 

(ii) P{ qzH = t, , q’= t2} 

zij(x)’ _ 1 
1 

+1, with probability l/2 
, with probability l/2, (50) 

L.;(x)-PL, and L:(x)-Pf where PLY and PC are two 
distributions on the set of nonnegative integers { 0, 1,2, * - * } 
with means p( x- 1) and q( g- l), respectively. 

The value of Z,(x) determines the first step in the 
trajectory; if Z,(x)= + 1 the first step is right, if Z,(x)= 
- 1 the first step is up. If the first step is to the right 
L;(x)-Pf determines the remaining length of the hori- 
zontal part of the wire, then L;(x)-PL determines the 
length of the vertical part. Similarly, if Z,(x)= - 1, 
L;(x)-P[ determines the remaining length of the verti- 
cal part of the wire, and L,y(x)-PLH determines the 
length of the horizontal part. Observe that the average 
length of every wire is E. However, if Zii(x) is given say 
to be + 1, the average length of the wire in the horizontal 
direction is q( E- 1) + 1, and in the vertical direction is 
p(R- 1). Similarly, if Zij(x)= - 1, the average length in 
the vertical direction is p( R - 1) + 1, and in the horizontal 
direction is q(E- 1). Thus the average length of the wire 
in the horizontal direction is R’ A (q(R- 1) + l/2) and 
in the vertical direction is fl 2 (p(R- 1) + l/2). hm- 
mas l-3 can be generalized as follows, 

Lemma I”: For (i, j) E Z*, the random variables 
{ qH(I, k), qv( I, k); - co < I < i, - 00 < k <j} are mutu- 
ally independent and 

(a) For -oo<l<i, - co < k <j, T;“(l, k) is Poisson 
with parameter 

.P( q+(R=~{j;$\); t, -d)P( q$‘{j:‘*‘); d) 
X/8*PV{L=j-k-l}PH{L>i-f+l} (51) 

and TG’(Z, k) is Poisson with parameter 

(iv) P{ ykv = t,, TTJ” = t2} X/8*pH{L=i-I-l}P’{L>j-k+l}. (52) 
(b) For l=i and - 00 <k < j, qgH(I, k) is Poisson with 

= -$“‘P( pi!(&F{;:;\); t, -d) 

.P;+?$:::): t, -d)P( p$‘{;:‘r:; d) 

the same parameter in (51), and qv(Z, k) is Poisson with 
parameter 

A/8Pv{L>j-k}. (53) 

where 
Similarly, for k=j and - 00 < I < i, qH(I, k) is Poisson 
with parameter 

p(i,j) _ i+j-l-k- 1 
(1. k) - ( i-I ) P’-k i-’ 4 

h/8PH(LZi-l) (54) 
and T;v(Z, k) is Poisson with parameter in (52). 

5 P{ L > m+ 1 } . (49) 
Lemma 2”: The random variables q.” and q.’ are 

independent and Poisson distributed with parameters 
m=(i+j-I-k) X/4zH and X/4RV, respectively. 

Results similar to those in Section V can be readily Notice that on the average half the wires contributing 
derived. to q” come from the horizontal points (I, k), - 00 < I < i, 
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j= k. Similarly, for q”, on the average half the wires 
come from the vertical points (I, k), - co < k <j, i = 1. 

Lemma’ 3”: 
(a) If (i, j) and (I, k) are such that i > 1 and j > k, then 

Tan , Tgv, T.fH, Fv are independent. 
I$) For i:l an; j>k, 

P{q+, zy=t*} 

~(h,M 
= z p(A/4(?-@$$ t, -d) 

d=O 

4 x/4( E’-@$); t, -d)p( x/4Ez; d) 

P{ zy=t,, ykv=t2} 

d(rl, f2) 
= 2 P(A/4(~H-@::‘);tI-d) 

d=O 

.P(h/4(RV-@;)); t,-d)P(h/4@J;d) 

and Y&‘J”, q’, and TGH are independent, where 

i=!-kPv{L>i} +1/2 5 Pv{L>i+l} 1 [ i=j-k I 
and 

@$)=1/2[P’{L>j-k-l}PH{L>O}]. 

Similarly, for j= k and i > I, 

P{ zy=t,, z+t,} 

.~(h/4(~~-@$y); t,-d).P(h/4x$!;; d) 

P{q;‘=t,, TGH=t2} 

.P(A/~(E~-E$;;); t, -d)P(h/4@$;; d) 

and TGv, TGH, and T,;’ are independent where 

@$;=1/2 
[ 

g PH{L>j} +1/2 5 PH{L>j+l} 
j-i-I I [ j=i-I I 

and 

@;;=1/2[PN(L>i-I-l}Pv{L>O}]. 

The theorems and lemmas of Sections IV and V can 
also be generalized for the present model. 

VIII. PL -GEOMETRIC 

In our treatment up to this point, we have not assumed 
any specific probability distribution on the wire length 
(except for conditions on moments). This is both an 
advantage and a disadvantage. It is an advantage since 
our results on the size of the chip and wiring distribution 
are quite general, and it is a disadvantage because no joint 
probability distribution on { (&‘J”q’), (i, j) EA c Z *} can 

be easiJy derived and hence only bounds on the probabil- 
ity P{T, < t} can be given (see Sections IV and V). In this 
section, we assume that the wire length is distributed 
according to a geometric distribution with parameter e. The 
distribution of Lij(x) in Section III is, therefore, given by 

P{Lij(x)=I} =e’-‘(1 -e), l<l<oO 
- 

-- 
R- (llc) - (55) 

The simplication resulting from the above assumption can 
perhaps be best understood by an example. 

Consider the one-dimensional model, in [4]. Let i, i+ 1, 
i+ 2, be three consecutive points on a doubly infinite 
one-dimensional array and let T be the number of wires 
in channel segment i+i+ 1. Assuming that L= 3 with 
probability one, then from A (5) in [4]: 

Wi+i =0/~=2)=(1/3)*P(A;O)#O. (56) 

On the other hand, it is clear that 

P(T+ 1 =0/‘1=2, q-,=0)=0 

thus q+,+q-+T-, do not form a Markov chain.’ 
On the other hand, if PL is geometric, it can be easily 

shown that these random variables form a Markov chain 
thus simplifying the joint probability distribution of the 
channel widths {q}. 

Remark: An equivalent choice to the geometric distri- 
bution is to assume that at each point (i, j) a wire will 
decide to continue with probability l and terminate with 
probability (1 - l ). 

Now, returning to our two-dimensional model, it can be 
shown that conditional on the number of wires incident to 
any point (i, j),,(T$, q;r i), the number of wires leaving 
(i, j) are independent of C, k ((T,:, T,:); - 00 <I< i- 1, 
- oo<k<j-1 or -co<<<<-2,k=jorl=i, -co<k<j 
- 2). The conditional distribution of (T$“, qyv) given 
(T$fj, T$,) is now stated. 

Lemma 7: Under the assumption that the distribution 
of the length of the wire is geometric, and for any (i, j) E 
z*, 
P(GY=t,, l$=t2/qyj=tj, qV,=t4,Qj) 

=P(qV=tl, ~H=t2/~~~j+~Y_,=t3+t4) 

=2-(t,+f2) tl +t* ( 1 
,i.,3Ngl+h, t, ;t, 

( ) 
-(*)f3+f”‘(l - +tiA/4; I, 3-t, -j). (57) 

Proof (Appendix C in [ 141). 
Remark: The conditional prokbility P(q‘Jv, qT”/ 

qEyj, TTY,) for any PL with mean R is given by (57). 
The joint probability distribution of {(~~“~‘), 1 < i < 

N, 1 <j < N}, i.e., of an NX N chip can be easily derived 
(see [ 141). 

‘This is contrary to the claim in [4] that for all PL, I; form a Markov 
chain. 
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IX. GENERALIZATIONS AND REMARKS 

In this paper, we have analyzed a two-dimensional 
stochastic model for wiring in master slice LSI. In this 
section, we conclude the analysis by briefly discussing (i) 
the validity of the different assumptions made in con- 
structing the model, (ii) the effect of relaxing some of 
these assumptions on the derived results, (iii) possible 
immediate generalizations of the results, and (iv) altema- 
tive applications for the model. 

We begin with (i) and (ii): 
1) Xii independent identically Poisson distributed: The 

Poisson assumption does not seem to be unreasonable in 
view of the empirical data collected by Heller et al. 
(personal discussions with Heller, Donath, and M&hail). 
Relaxing this assumption will in general make the analysis 
very difficult. However, it is the infinite divisibility prop- 
erty of the Poisson distribution that is most needed. Thus 
assuming that Xij is distributed as mixtures of Poissons, 
i.e., 

xii- I Pd.) dF 
where F is a distribution function on [0, cc] with mean i, 
it appears that generalizations to most of the results in this 
paper can be derived. 

One possible objection to the Poisson assumption is in 
deriving the maximum chamrel width. Under the Poisson 
assumption, the maximum number of wires emanating 
from a logic block maxi < i,ic NXij grows with the number 
of blocks N (rate close to log N). In practice, the I/O of 
any fixed size logic block is bounded by some number M 
that does not necessarily depend on N. Thus for large N, 
our estimate of the maximum channel width may be 
pessimistic. To incorporate this fact in the analysis one 
could assume that Xii has binomial distribution with 
parameters 0 <p < 1 and M. Following steps similar-to the 
derivations in Sections III and V, a bound on P{T, > t} 
could be obtained. 

2) The independence of the Xii’s is not completely 
realistic. In practice, strong dependence may exist among 
neighboring Xii’s It should be pointed out, however, that 
the independence assumption allows us to compute upper 
bounds to the desired estimates of area. 

3) Independence of Lij(x)‘s of the Xii’s: this assump- 
tion may not be completely realistic. However, we are not 
aware of any attempts to determine the nature of the 
above dependence, either empirically or theoretically. 

If such dependence is assumed, the derivation of many 
of the results in this paper may become very difficult. 

4) Independence of wires trajectories: most master slice 
routing algorithms attempt to accomplish the following 
objectives: 

a) route all wires in minimum distance fashion; 
b) minimize the number of necessary vias (or corners); 
c) minimize the variations in the numbers of wires in 

the routing channels. 
Our model takes into consideration objectives a) and b), 

but by assuming the independence of wires trajectories, it 
does not completely accomplish, objective c). The results 
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in this paper, however, suggest that at least for R> O(ln N), 
the saving in wiring area by relaxing the wires trajectories 
independence assumption is only a constant factor. 

5) Wires travel minimum distance: This assumption is 
crucial for the “causality” of our model. Moreover, it is in 
general a desired feature to have the shortest possible wire 
lengths on the chip. We do not, therefore, feel that it is 
necessary to relax this assumption. 

(iii) Generalizations of the results. 
Now recall Lemma 6. It is interesting to notice that 

only knowledge of the individual (marginal) distribution 
of the random variables (177, $‘) is needed for the proof. 
In fact, one can easily derive the following general result: 

Let X,,X,;.., X, be nonnegative random variables 
(not necessarily independent) such that X,-P,, for all i. 
Assume that P(X> x) 2 a(x) + 0 faster than l/x, then 
if Nu(t,)+O as N+~o, 

P( ,yiyNxi <tN)+lp as N-co. (59) 

In the particular case that P, is Poisson, t, =O(ln N). 
A generalization of our two-dimensional model to three 

dimensions (or to K dimensions) is straightforward. In this 
case, one decomposes the wiring process into the sum of 6 
processes (or in general 2K processes) in the diagonal 
directions. 

(iv) Possible alternative applications. 
Our model may apply to traffic flow in a large city of 

N x N blocks. In such a case Xii represents the number of 
cars per unit time starting at any block (i, j). x is the 
average number of blocks traveled by cars. An interesting 
observation is that the widest street should be O(ln N) 
lanes for a city of N2 blocks! 

Communication networks are another potential applica- 
tion for the model. The lattice points would represent the 
different communications terminals, Xii is the number of 
packets emanating from terminal (i, j) per unit time, and 
E is the average number of hops traveled by a packet. 
Again, the largest bandwidth of any channel should be 
O(ln N). 
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Qualitative Analysis of Nonlinear Quasi- 
Monotone Dynamical Systems Described by 

Functional-D ifferential Equations 
‘YUZO OHTA, MEMBER, IEBE 

Abstmct-TlIis paper dlswsws propertIes related to the atablllty of a 
nonbear qnasl-monotone dynamIcal system described by a fonctiomd- 
differential eqlmtion i=F(x,,t)+u(t). spedally, mathematical condi- 
tkum whleh guaraotee the same qnalhtive behavior htherent III a ucmlhwu 
off4qonaUy monotone dynamical system i=f(x(t),t)+u(t) are dis- 
cussed. We first amdder the bask properties of solutioux lower and upper 
bound preservation and ordering preservation of solutions. By uhg these 
properties, we &hate the trajectory behavior by means of a partial 
ordering rclaUon, and derive tbe following results: If F is independent of I, 
and u is a co&ant input, then every bounded solution converges to a 
unlquc equilibrium point x* under some oahmd conditioos. In addition, if 
F Is a wnllwar functional with separate variables, tben every shtion 
converges to x* under tbe same conditions; If F(xt,*) sod u(e) are 
per&de and have tbe same period o, then, under certaio natural condi- 
tlous, there Is a w-perlodIc solution x*( .), and every solution converges to 
it u it b a oniqoe o-periodic solution. 

I. INTRODUCTION 

I N THE STUDY of social-process models [l], price 
adjustment process models [2]-[4], and compartmental 

systems [5]-[l l], we often encounter a dynamical system 
i=f(x, t) in which f has the off-diagonally monotone 
property. Furthermore, in also the stability analysis of 
nonlinear large scale composite systems by means of 
vector Lyapunov’s functions, we encounter a differential 
inequality li < f(u) (the inequality means that di <J(u) for 
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each i) in which f has the off-diagonally monotone prop- 
erty [ 1 l]-[14], and the problem of estimating its behavior 
is reduced to that of a differential equation a=f(x) by 
applying the comparison principle. 

On the other hand, there are many systems which are 
not well modeled by ordinary differential equation. An 
often observed feature in the real world is de existence of 
time delays. 

In this paper, we deal with a nonlinear dynamical 
system described by a functional-differential equation 1= 
F(x,, t) + u( t) in which u is an input, and F has the 
quasi-monotone property (which coincides with the off- 
diagonally monotone property if F(x,, t) =f [x(t), t]). 

It is well known that a linear off-diagonally monotone 
time-invariant system ii =Z&iaijxj +ui (i= 1;. . , n) has 
an asymptotically stable equilibrium point x* = -A - iu > 8 
(0 is the zero vector) for all u > 8 if and only if -A = 
- (aij) is an M-matrix (see, for example, [ 151 and/or [ 161 
concerning M-matrices). At the same time, it is also shown 
that a linear quasi-monotone time-invariant system ii(t) 

=aiixi(t)+Zjziuijxj(t-.7ij)+ui (i=l;**,n) has an 
asymptotically stable eqmhbrium point x* > B for all u > 8 
if -A is an M-matrix [ 171, [ 181. The significance of this is 
that the existence of a stable equilibrium point is not 
affected by that of time delays. One suspects that this 

insensitivity property is an intrinsic one not only of linear 
systems but also of nonlinear systems. In fact, it is shown 
that a nonlinear compartmental system with constant time 


