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Multiple User Information Theory 
D B A S  EL MEMBER, IEEE, AND THOMAS M. COVER, FELLOW, IEEE 

Invited  Paper 

Abstract-A u d i i  framework is given for multiple user information 
networks. These networks consist of several users communicating to 
one another in the preaence of arbitrary inteflerence  and noise. The 
presence of many senders necessitates a tradeoff in the  achievable in- 
formation tmmnisdoa tptes. The god is the characterization of  the 
capacity  region consicting of dl achievabh? r a t a  The  focus is on broad- 
wt, multiple  axes, day,  and other channels for which the  recent 
theory is relatively well developed. A discussion of the Gaussian version 
of these  channels  dem0nstmte.s the concreteness of the encoding and 
decoding necesmry to achieve optimal information flow. We aka offer 
speculations about the form of a gend theory of information flow 
in networks. 

I. INTRODUCTION 

HE SHANNON theory  of  channel capacity  has been ex- 
tended successfully to many  interesting  communication 
networks in the  past 10 years. We shall attempt  to 

achieve three goals in  our  exposition of this  theory:  (i) make 
the  theory accessible to researchers in  communication  theory, 
(ii) provide conditionally novel proofs of the  theory  for re- 
searchers in  information  theory,  and (iii) present an overview 
of the basic problems in  constructing a theory of information 
flow in networks. 

The primary  ideas can be  obtained  by reading the  introduc- 
tion  and  the  sections  on  the Gaussian examples, the Shannon’s 
theorem, and the summary. The  heretofore unpublished  in- 
formation  theoretic  proofs  are  those  for  the sections on  the 
multiple access channel, Slepian-Wolf data compression,  and 
the degraded  broadcast  channel. All proofs,  both new and 
old, are based on  the idea of jointly  typical sequences. 

No claim for comprehensive coverage is given. For  that 
the reader is referred to van der Meulen [ I ] .  Rather, we are 
concerned  with  providing  a  unified approach to the  theory. 
This  leads naturally to a discussion of some of the major re- 
sults. We begin by discussing some of the building  blocks 
for  networks. 

Suppose m ground  stations  are simultaneously  communica- 
ting to a common satellite as in Fig. 1. This is known as the 
multiple access channel. What are the achievable rates of com- 
munication? Does the total amount of information flow tend 
to  infinity  with  the  number of stations-or does the  interfer- 
ence put an upper limit on  the total communication? Does 

of A. El Gamal was partiaUy supported by the Joint Services Elec- 
Manuscript  received June  2, 1980; revised July 25,  1980. The work 

tronics Rogram through the Air Force  Office of Scientific Research 
(AFSC) under  Contract  F44620-76-C-0061  and NSF ENG 79-08948. 
The work of T. hi. Cover was partiany  supported by the  Joint Services 
Electronics Rogram DMG29-79-C-0047  and by NSF Grant ECS78- 

A. El Gad is with  the  Department of ELectrical Engineering,  Stan- 

T. M. Cover is with  the Departments of Electrical  Engineering  and 

23334. 

ford University, Stanford, CA 94305. 

Statistics, Stanford University, Stanford, CA 94305. 

Fig. 1. Multiple access network. 

Fig.  2. Broadcast  network. 

Relay I 

A COMMUNICATION NETWORK WITH RELAYS 

Fig. 3. Relay network. 

the signaling strategy change with m? Here the  theory is com- 
pletely known (Ahiswede [2]  and Liao [3]) ,  and all of these 
questions have quite satisfying answers (Section V). 

In  contrast, we can reverse the  network,  and consider one 
satellite  broadcasting  simultaneously to m stations as shown in 
Fig. 2. This is the  broadcast channel. Here the achievable set 
of rates is not  known  except  in special cases (Section VI ) .  Yet 
another example  consists of only  one  sender  and  one receiver, 
but includes extra channels serving as relays. This is the relay 
channel  shown in Fig. 3. 

In general, the  underlying goal of work on these special 
channels is a theory  for  networks of the general form given 
in Fig. 4. 

The  interpretation of Fig. 4 is that  at each instant of time 
the  ith  node sends  a symbol x i  that depends on the messages 
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Fig. 5 .  Capacity is min {C, + C,, C, + C, + C,,  C,+ C,,  C,+ CS}. The 
maximum flow minimum  cut  theorem. 

x, - Y1 : x p  - v2 

C1 C 2  

Fig. 6. 

Y 

Fig. 7. Degraded and deterministic relay channel capacity. 

he wishes to send and  (perhaps) his past received y i  symbols. 
We assume that  the result of the  simultaneous transmission of 
( x 1 ,   x 2 ,  . . - , x ,  ) is a random collection of received symbols 
( Y l ,   Y 2 ,  . - , Y , )  drawn  according to a conditional probabil- 
ity p (  y l ,  . + , y ,  ! x l ,  , x, , , ) ,  where p (-1.) describes all of 
the  effects of interference  and noise in  the  network. 

In a more restricted domain,  such as the flow of water in 
networks of pipes, the existing theory is very satisfying. For 
example, in the single source, single sink network in Fig. 5 ,  
the maximum  flow from A to B is easily computed  from  the 
maximum  flow  minimum cut  theorem of Ford  and Fulkerson 
141. 

Assume that  the edges have capacities Ci as shown. Clearly, 
the maximum  flow across any cutset is no greater than  the 
sum of the capacities of the  cut edges. Thus minimizing the 
maximum  flow over cutsets yields an  upper  bound to  the 
total flow from A to B.  This  flow  can actually be achieved, 
as the  Ford  and  Fulkerson  theorem  demonstrates. 

However, the  information flow  problem involves “soft” 
quantities  rather  than  “hard” commodities. A choice of node 
symbols x results in a random response Y, and it is difficult to 
see how to choose as many distinguishable x’s as possible in 
this random  environment.  Consequently,  it is gratifying to 
find  that  information problems  like the relay channel  and 
cascade channel  admit min flow max cut  interpretations.  For 
example, the informally  defined cascade network  in Fig. 6, 
has  capacity C = min {Cl,  C2}, where Ci denotes  the  Shannon 
capacity of the  ith  channel. Also, for  the degraded or  deter- 
ministic relay channel (Section VII) we have a similar max flow 
min cut  interpretation as shown  in Fig. 7. 

The  structure of this  paper is presented  in miniature  in Sec- 
tion 11. In that  section, we use Gaussian channels to run 
through  the major  results that will be given in greater general- 
ity  and detail  in the  subsequent sections. The physically moti- 
vated Gaussian channel  lends itself to concrete  and easily 
interpreted answers. Some  preliminary  technical  details on  the 
properties of joint  typicality are given in  Section 111, followed 
by a  simple  proof in Section IV of Shannon’s original capacity 
theorem.  Then  treated are the  multiple access channel (Sec- 
tion  V), Slepian-Wolf data compression theorem (Section VI), 
the  combination of both (Section VII),  the broadcast  channel 
(Section  VIII),  and  the relay channel  (Section IX). 

The final  summary (Section X )  is a recapitulation of the 
paper paralleling Section 11, this time in  greater  generality. 

11. GAUSSIAN MULTIPLE USER CHANNELS 
We shall begin our  treatment of multiple user information 

theory by investigating Gaussian multiple user channels. This 
allows us to give concrete descriptions of the coding  schemes 
and associated  capacity regions. The  proofs of capacity for 
the discrete  memoryless counterparts of these channels will be 
given in later sections. 

The basic discrete time additive  white Gaussian noise chan- 
nel with  input power P and noise variance N is modeled by 

where Zi are independent identically distributed Gaussian 
random variables with mean  zero and variance N .  The signal 
x = (x,, x2, . - - , X,,) has a  power constraint 

i = l  

The  Shannon capacity C, obtained by maximizing Z(X; Y )  
over all random variables X such  that  EX2 < P is given by 

C = ( 1 /2) log (1 + P / N )  bits/transmission.  (2.1 ) 

The  continuous time Gaussian channel  capacity is simply re- 
lated to  the discrete time  capacity. If the signal x ( t ) ,  0 < t < T, 
has  power constraint P and  bandwidth  constraint W, and  the 
white noise Z ( t ) ,  0 G t < T, has power  spectral  density N ,  then 
the capacity of the channel Y ( t )  = x ( t )  + Z ( t )  is given by 

C = W log (1 + P/NW) bit/s. (2.2) 

The relationship  between (2.1)  and  (2.2) can be seen in- 
formally  by replacing the  continuous  time processes by 
n = 2TW independent samples from  the process and calculating 
the noise variance per  sample. The full theory establishing 
(2.2) can be  found  in Wyner [SI, Gallager [61, and Slepian and 
Pollack 171. 

Having said this, we restrict our  treatment  to  time discrete 
Gaussian channels. 

Random Codebook: Shannon observed in  1948  that a  ran- 
domly selected codebook is good (with high probability) when 
the  rate R of the  codebook is less than  the channel  capacity 
C = max Z(X; Y ). As mentioned above, for  the Gaussian chan- 
nel the capacity is given by C = (1/2) log (1 + P / N )  bits  per 
transmission. 

We now  set up a codebook  that will be used in all of the 
multiple user channel  models below. The codewords  com- 
prising the  codebook are  vectors of length n and power P. To 
generate such a random  codebook, simply  choose 2“R inde- 
pendent identically distributed  random n-vectors {x(l), x(2), 
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- . ~ x(2*)}, each  consisting of n independent Gaussian ran- 
dom variables with mean zero  and variance P. The  rate R will 
be specified later. Sometimes we will need two  or  more inde- 
pendently generated codebooks. 

In  the  continuous channel case, one simply lets  the white 
noise generator of power P and  bandwidth W run  for T sec- 
onds. Every T seconds,  a  new codeword is generated and we 
list them until we fd up  the  codebook. 

Now we analyze the Gaussian channels shown in Fig. 8. 

A. The Gaussian  Chonnel 
Here Y = x + 2. Choose an R < C = 112 log (1 + P / N ) .  

-Choose  any  index i in  the set 2"R. Send the  ith vector x ( i )  
from  the  codebook generated abole.  The receiver observes 
Y = x ( i )  + 2, then finds the  index i of the closest codewofP 
to Y. If n is sufficiently large, the  probability of error P(i  # i ) 
will be  arbitrarily small. As will be  seen  in the  definitions  on 
joint  typicality, this  minimum  distance  decoding  scheme for 
the Gaussian channel is essentially  equivalent to finding the 
codeword  in  the  codebook  that is jointly  typical  with  the 
received vector Y. 

B. The  Multiple  Access Channel with m Users 
We consider m transmitters,  each of power P. Let 

Y =  xi+z. 
m 

1 

Specializing the results of Section IV to the Gaussian chan- 
nel  shows that the achievable rate region for  the Gaussian 
channel  takes on  the simple form given in  the following 
equations: 

Ri  < C ( P / N )  

Ri + Ri  < C ( 2 P / N )  

Ri + Ri  + Rk < C ( 3 P / N )  
(2.3) 

m 
Ri  < C ( m P / N )  

1 

where 

C(X) = (1/2) log (1 + x )  (2 .4)  

denotes  the capacity of the Gaussian channel  with signal to 
noise ratio x. When all the  rates are the same, the last inequal- 
ity  dominates  the  others. 

Here we need m codebooks,  the ith codebook having 2nRi 
codewords  of  power P. Transmission is simple. Each of the in- 
dependent  transmitters chooses  whatever codeword  he wishes 
from his own codebook.  The users simultaneously send these 
vectors. The receiver sees the  codewords  added  together  with 
the Gaussian noise 2. 

Optimal decoding  consists of looking  for  the m codewords, 
one  from  each  codebook,  such  that  the vector  sum is closest 
to Y in  Euclidean  distance. The  set  of m codewords achieving 
the minimum  distance to Y corresponds to the  hypothesized 
collection of messages sent. 

If ( R l ,   R 2 , .  - - , R m )  is in  the capacity region given above, 
then  the  probability of error goes to zero as n tends to infinity. 

Remarks: It is exciting to see in this  problem  that  the sum 
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Fig. 8. Gaussian multiple user channels. 

of the  rates C ( m P / N )  of the users goes to infinity  with m .  
Thus  in a  cocktail party  with m celebrants of power P in the 
presence of ambient noise N ,  although  the  interference grows 
as the  number of speakers  increases, the  intended listener re- 
ceives an unbounded  amount of information as the  number 
of people goes to infinity. A similar conclusion  holds of 
course for  ground  communications  to a  satellite. 

It is also interesting to  note  that  the  optimal transmission 
scheme  here  does not involve time division multiplexing. In 
fact, each of the  transmitters utilizes the  entire  time  to send 
his message. 

A practical  consideration for ground transmission to a satel- 
lite involves the possible inability of the ground  communica- 
tors to synchronize  their transmissions.  Nonetheless, it czn be 
shown  that  the capacity is unchanged when there is a  lack of 
synchronization [ 81. 

C. The  Broadcast Channel 
Here we assume that we have a sender of power P and  two 

distant receivers, one with noise spectral  density N 1  and the 
other with  noise  spectral  density N2. Without loss of general- 
ity, assume N ,  < N 2 .  Thus, in some sense receiver, Yl is better 
than receiver Y2. The  model  for  the channel is Y1 = x  + Z1 
and Y2 = x  + Z 2 ,  where Z1 and Z2 are  arbitrarily correlated 
Gaussian random variables with variances N1 and N2, respec- 
tively. The  sender wishes to send independent messages at 
rates R 1  and R 2  to receivers Y1 and Y2, respectively. 

Fortunately, all Gaussian broadcast  channels  belong to  the 
class of degraded broadcast  channels  which will be discussed 
in Section VIII. Specializing that  work, we find  the follow- 
ing  capacity region for  the Gaussian broadcast  channel: 

where 0 < a < 1, E = 1 - a, may  be  arbitrarily  chosen to  trade 
off rate R 1  for  rate R2 as the  transmitter wishes. 

To encode  the messages, the  transmitter generates two code- 
books,  one with power a P  at  rate R l ,  and  another  codebook 
with  power EP and  rate R2. He has chosen R1 and R 2  to sat- 
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isfy the  equation above. Then,  to send an index i E (1, 2 ,  
. . , 2"R1) and j €  (1, 2 , .  . . , 2 - 1 )  to Y1 and Y 2 ,  respec- 
tively, he takes codeword x ( i )  from  the first codebook  and 
codeword x ( j )  from  the second codebook  and  computes  the 
sum. He then sends the sum over the channel. 

Two receivers must  now do  the decoding.  First  consider 
the bad receiver Y 2 .  He merely looks  through  the second 
codebook  for  the closest codeword to his received vector Y2. 
His effective signal-to-noise ratio is @/(e + N , )  since Y1 'S 
message acts as noise to Y , .  The good receiver Y1 first de- 
codes Y2's codeword, which he can do because of his lower 
noise N 1 .  He subtracts this codeword xh2 from Y1. This leaves 
him with a  channel of power aP and noise N , .  He then  looks 
for  the closest codeword in the first codebook to Y1 - 2,. The 
resulting  probability of error can be made as low as wished. 

A nice dividend of optimal encoding for degraded broadcast 
channels is that  the  better receiver Y1 always  knows the mes- 
sage intended  for receiver Y ,  in addition to the  extra  informa- 
tion  intended  for himself. 

D. The  Relay Channel 
For  the relay channel, we have a sender X1 and an  ultimate 

intended receiver Y .  Also present, however, is the relay chan- 
nel intended solely to help the sender. The channel is given by 

Y, =x1  +z1 
Y2 = x 1  +z, +x2 +z, ( 2 : 6 )  

where Z1,Z2 are independent zero mean Gaussian random 
variables with variance N ,  , N ,  , respectively. The allowed en- 
coding  by the relay is the causal sequence 

~ , i = f i ( ~ 1 1 , ~ 1 2 , . . . , Y l i - l ) .  (2.7) 
The  sender Xl has  power P1 and the relay X 2  has  power P,. 
The results of Section IX yield the capacity 

P l   + P ,  + 2 s  

where 

C = l - a .  
Note  that if 

p2 IN2 2 PI IN1 
it can be seen that C* = C ( P l / N , ) .  (This is achieved by a = 1.) 
The channel  appears to be noise-free after  the relay, and  the 
capacity C ( P l / N l )  from x1 to  the relay can be achieved.  Thus 
the  rate  without  the relay C(P1/(Nl + N , ) )  is increased by the 
relay to C ( P l / N l ) .  For large N , ,  and  for P2  IN2 2 P l / N 1 ,  we 
see that  the  increment in rate is from C ( P l / ( N l  + N 2 ) )  0 to 
C ( P I / N I ) .  

Encoding  of  Information: Two  codebooks are needed. The 
first codebook has 2RR1 words of power a P I .  The second has 
2&0 codewords of power t ip1 .  We shall use words from these 
codebooks successively in  order to create  the  opportunity  for 
cooperation by the relay. We start by  sending  a codeword 
from  the first codebook.  The relay now  knows the  index of 
this  codeword since R1 < C ( a P , / N , ) ,  but  the  intended re- 
ceiver does not. However, the  intended receiver has a list of 
possible codewords of size 2 " ( R I - C ( " P I ' N I + N 1 ) !  The list cal- 
culation involves a  result on list codes. 

In the  next block the relay and  the  transmitter would  like 
to cooperate to resolve the receiver's uncertainty  about  the 

previously sent  codeword  on  the receiver's list. Unfortunately, 
they  cannot  quite be sure  what this list is. They do  not know 
the received signal Y .  Thus  they  randomly  partition  the first 
codebook  into 2"R~ cells with an equal  number of codewords 
in each cell. The relay, the receiver, and  the  transmitter agree 
on this partition.  The relay and the  transmitter  find  the cell 
of the  partition  in which the codeword from  the first  code- 
book lies and cooperatively send the codeword from  the 
second codebook with that  index.  That is, both X1 and X2 
send the same designated codeword.  The relay, of course, 
must scale this  codeword so that  it meets his power constraint 
P 2 .  They  now  simultaneously transmit  their codewords. An 
important  point  to  note is that  the cooperative information 
sent by the relay and  the  transmitter is sent  coherently. So the 
power of the sum as seen by the receiver Y is (a + f i ) 2 .  

However, this  does not  exhaust what the  transmitter does in 
the second  block. He also chooses  a  fresh codeword  from his 
first codebook,  adds it "on paper" to  the cooperative  code- 
word from his second codebook,  and sends  this  sum over the 
channel. 

The  reception by the  ultimate receiver Y in the second block 
involves first  finding the cooperative index  from  the second 
codebook by  looking for  the closest codeword in the second 
codebook. He subtracts it off,  and  then calculates  a list of 
indices of size 2&0 corresponding to all transmitted words 
from  the first book which might have been sent in that second 
block. 

Now it is time  for  the  intended receiver Y to finish comput- 
ing the codeword from  the first codebook  sent in the  first 
block. He takes his list of possible codewords  that might have 
been sent in the first  block and  intersects it with  the cell of the 
partition  that  he has learned from  the cooperative relay trans- 
mission in  the second  block. The  rates and  powers have been 
chosen so that  it is highly probable that  there will be only one 
codeword in  this  intersection. This is Y's guess about  the in- 
formation  sent in the first  block. 

We are now in steady  state. In each new block,  the trans- 
mitter  and  the relay cooperate to resolve the list uncertainty 
from  the previous block. In addition,  the  transmitter superim- 
poses some  fresh information  from his first codebook  to his 
transmission from  the second codebook  and transmits the 
sum. 

The receiver is always one block behind,  but  for sufficiently 
many blocks, this does not affect his overall rate of reception. 

E.  The  Interference Channel 
The  interference channel has two senders  and two receivers. 

Sender 1 wishes to send information to receiver 1. He does 
not care what receiver 2 receives or  understands. Similarly, 
with  sender 2 and receiver 2. Each channel interferes  with  the 
other.  It is not  quite a  broadcast  channel because there is only 
one  intended receiver for each sender,  nor is it a  multiple 
access channel because each receiver is only interested  in what 
is being sent by the corresponding transmitter. 

This  channel has not been solved in general, even in the 
Gaussian case. But  remarkably,  in the case of high interfer- 
ence, Carleial [ 9 ]  has shown  that  the  solution to this  channel 
is the same as if there were no  interference whatsoever. To 
achieve this,  generate two  codebooks, each with power P and 
rate C ( P / N ) .  Each sender  independently chooses  a word from 
his book and  sends it. Now, if the  interference a satisfies 
C(a2 P/(P + N ) )  > C(P/N), the first receiver perfectly under- 
stands  the  index of the second transmitter. He finds it by the 
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usual technique of looking for the closest codeword to his re- 
ceived signal. Once he finds this signal, he  subtracts it from 
his received waveform. Now there is a clean channel between 
him and his sender. He then searches his sender's codebook to 
find  the closest codeword  and declares that  codeword  to be 
the  one  seat. 

III. THE ASYMFTOTIC EQUIPARTITION THEOREM 
AND SHANNON CHANNEL CAPACITY 

Every sequence of n fair coin  flips has equal  probability 
( l / 2 y .  If the coin has bias p ,  all of  the sequences having 
roughly np heads  are  nearly  equally probable  and  exhaust 
almost all of the  probability. A formalization of this  idea 
for  arbitrary  random variables is known as the  asymptotic 
equipartition  property (AEP) (Shannon [ l o ] ,  MacMillan 
1111,andBreiman [121). 

Consider a  sequence of independent identically distributed 
random variables X = (XI, X,, - - , Xn), where X i  is drawn 
according to probability mass function  p(x). We are interested 
in defining  a set A of possible outcomes, each  roughly  equally 
probable,  such  that P(X E A )  1. Toward  this  end, we shall 
say that a given sequence x = (x1, x2, , x n )  is erypical if 

I -(l/n) log P(X) - H(X)I < E (3.1) 
where 

H ( X )  = - P(X) logp(x) (3.2) 
is the  Shannon entropy of p ( . ) .  Let us define the  typical set 
A ,  to be the set of all €-typical n-sequences x. 

By the law of large numbers,  for a random i.i.d. sequence X 

n 

i= 1 
- ( l / n ) logp(X)=( l /n )  z - b ~ ( x i )  

+H(X),  with  probability  one. (3.3) 

Conse,quently, the following  results  are true. 
1)  P(A,)+l,  as n + = .  
2) x E A ,  implies 2-n(H+E) Q p ( x )  Q 2-n(H-E) 
3) The  number of elements 11 A,ll in A ,  is Q 2n(H+E). 
The  third assertion  follows from 

1 2 p ( x )  2 2-n(H+E)  = I I  A,!( 2 -n (H+E) .  (3.4) 
A ,   A ,  

Roughly  speaking,  a  sequence is typical if the  proportion of 
occurrences of each of its  symbols is close to  the  true probabil- 
ity of occurrence. 

An  immediate application of the AEP yields Shannon's 
source  coding theorem: 

Theorem 1 (Shannon 1948): Given an independent  iden- 
tically distributed  source X I ,  X z , .  - - with  entropy H(X), 
there exists, for every E > O ,  an integer n and an  encoding 
i: X n  + (1, 2, * , 2n(H*)) and decoding  rule  g:  (1, 2, 
* * * , 2"(H+E)} + x", such that 

P (g( i (X))  # X }  < E.  

Proof: Simply index  the  elements x in  the  typical  set A , .  
Remark: Since the  index set has Q 2n(HCE)  elements, we see 

that  only (H + E) bits/symbol  are necessary to  describe x. 
Now, to make progress with  multiple user information 

theory,  the idea of joint  typicality is needed.  A  pair of se- 
quences x  and y are said to be  jointly €-typical if x is individu- 

Fig. 9. Jointly  typical sequences. 

ally etypical, i.e., 

I-(l /n)logP(x)- H(X)I<€ 
y is individually  €-typical,  and (x, y )  is €-typical, i.e., 

I -(l /n) log p ( x , y )  - H ( X ,  Y)l < E .  

The  picture of jointly  typical pairs is given in Fig. 9. 
The  dots in the  matrix  denote  jointly  typical pairs. It can 

be  shown  by the  method of (3.4) that  there are Q2"H(yIx) 
dots  in  each row and <2"n(xl y, dots  in each column. 

The definitions and proofs of the needed  results  now  follow. 
Let {X(1), X ( 2 ) ,  . . . , X ( k ) }  denote a  finite  collection of dis- 

crete  random variables with some fixed joint  distribution 

- . X X ( k ) .  Let S denote  an  ordered subset of these r.v.'s, and 
p ( x ( ' ) ,  x(2), . . . , x W ) ,  (&), XO), . . . , x W )  E X(') x x (2) x 

consider n independent copies of S. Thus 

Convergence in (3.7) take place simultaneously  with  probabil- 
ity  one  for all 2k subsets 

S {XO), x@), . . . , X ( k ) } .  

Definition: The set A ,  of etypical n-sequences ( d l ) ,  x(2), 
. , is defined by 
A,(X( ' ) ,X(" ,  . . . ,X&)) = A ,  

= {(x('),x(2), . . . X ( k ) ) :  

I-(l/n)logp(s)- H!S)I<€, 
v s  2 {x('), X ( 2 ) ,  . * . ,X@)}). 

(3.8) 
Let A , @ )  denote  the  restriction  of A ,  to the  coordinates 
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(3.9) 

(3.10) 

(3.1  1) 

Proof: (i) follows from  the convergence of the  random 
variables in the  definition of A @ ) .  (ii) follows  immediately 
from  the  definition of A, (S) .  (iii) follows from 

=IIA,(S)I12-n(H(S)+E) (3.12) 

and 

(ii) 
(1 - E )  < P ( S )  < IIA,(S)II 2-"(H(S)-E) (3.13) 

sEA,(S)  

Finally, (sl, s,) EA,(S1, S,) implies 
p(sl, s2) & 2-"(H(S,,S,)-~) 

p ( s 2 )  & 2 - W ( 4 ) - 4  

P(slIs2)=P(sl,s,)/P(s2). 

and 

(iv)  follows from 

Lemma 2: Let S1, S2 be two subsets of X(1), . - , X ( k ) .  
For any E > 0, define IIA,(Slls2)(1 to be the  number of s1 se- 
quences, jointly €-typical with a  particular s2 sequence. If 
s2 EA,&) ,  then  for arbitrarily large n 

IIA,(S1ls2)ll G 2 W S ,  I 8, ) + 2,). 

(1 - E)2 n(H(S,IS,)-26) =G ~p(s2)llA,(S1ls2)Il. 

Moreover, 

81 

Proof: Similar to part (ii) of Lemma 1. 
In achievability proofs, we shall need to know  the proba- 

bility that  conditionally  independent sequences  are jointly 

typical.  Let S, , S,,  and S, be  three subsets of {X('), X ( 2 ) ,  . . . , XW}. 
Lemma 3: 
(a)  Let 

n 

i = 1  
P ( S ;  =sl,sI, = s ~ , s $  = ~ 3 ) =  n ~ ( s l i I s , i ) ~ ( ~ Z i I ~ 3 i ) ~ ( s 3 f ) .  

Then, 

p { s ; ,  si, s;) E A , )  G 2-d(S1;S21S3). 

Proof: 

P { ( S ; ,  SI,, SS) € 4 1  
= x P(s,)P(SlIs3)P(s2Is3) 

(sl,%,s3)EAE 

IIAe(S1, SZ, S3)II 2 -nH(s3)2-nH(S11S3)2-nH(S,1S,) 
- - . 2~(Sl,S,,S,)2-~(H(S,)+H(S,IS,)+H(S,IS3)) 
- - 2-"'(S1;S21S3) 

IV. SHANNON'S CAPACITY THEOREM 
We begin the  theoretical discussion by reproving Shannon's 

original channel  capacity theorem  for  the discrete  memoryless 
channel  (Fig. 10). When Shannon's work was published in 
1948,  the  proofs were considered to be only heuristic-mere 
plausibility  arguments. The fmt rigorous proof  by Feinstein 
[ 131 8 years later was completely  different  from Shannon's 
random  coding  idea.  Further  proofs by Wolfowitz, Fano, 
Gallager, and  many  others, were also different.  The rigorous 
proof we give here  supports  the idea of Shannon's outline.  It 
can be found as a problem in Gallager [6] and  in Forney's 
unpublished class notes [ 141. This proof  technique will come 
up many  times in  subsequent sections. The  fact  that Shannon's 
original proof is the  natural proof for multi-user networks is 
really quite remarkable. 

The basic Shannon model for a communication channel is 
the discrete  memoryless  channel (x, p ( y l x ) ,  3) consisting of 
two  ilphabets-input  alphabet x and  output  alphabet9 -and 
a  channel probability  matrix p ( y 1 x ) .  The interpretation is 
that if x is sent,  then  the received symbol Y is drawn  accord- 
ing to probability mass function p ( y  [x). Discrete  memory- 
less means if a  sequence xl, x2, * * * , x, is sent,  then  the 
received sequence y = ( y 1 , y 2 ,  - , y n )  is drawn  according 

A (A , n )  code  for a  channel  consists of a set of integers 
to r I ; = l p x i ) .  

[ 1, 2 ] called the message set,  an  encoding  function 

x : [ l ,  2 9  + x n  

g :3, +. [ l ,  2 9 .  

and a decoding  function 

If the message w E [ 1, 2* J is sent,  let 

Vw) = P { g ( Y )  f W I  w sent} (4.1) 

denote  the  conditional  probability of error. Define the aver- 
age probability  of  error of the  code assuming a uniform dis- 
tribution over the  set of messages [ 1,2& 1 ,  as 

- 1  p ; = -  
ZnR N w ) .  (4.2) 
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W - - , I ~ ~ ~ ~ ~ ~ ~ w  ~ ( ~ / ~ ) ~ D E C O D E R + G  

Fig. 10. The discrete  memoryless  channel. 

The  rate R of an (2*, n) code is said to be achievable by 
the discrete  memoryless channel  if,  for  any E > 0, %ere  exists 
a (2*, n )  code  for all n sufficiently large such  that P z  < E. 

The capacity C of the discrete  memoryless  channel is the 
supremum of the  set of achievable rates. In 1948, Shannon 
showed that  the capacity C of the discrete  memoryless f in te  
alphabet  channel is given by  the following. 

Theorem 2 (Shannon): The  capacity of the discrete  memory- 
less channel @, p (  y lx) ,  %) is given by 

c = sup I(X; Y ) .  (4.3) 
P(X) 

Proof: The proof that C is the capacity of a  channel  in- 
volves proving: 

(i) achievability of any R < C, i.e., that  there exists  a se- 
quence of (2*, n )  codes such  that P," + 0, and 
(ii) a converse showing that given any sequence of 

( P R ,  n )  codes  with e +. 0 then R < C. 
We shall only prove the achievability part of the  theorem. 

The converses are discussed in the following  sections of this 
paper. 

Achievability: Assume that  the maximization in (4.3) is 
achieved for a distribution p * ( x )  on%. 

Random  code: Choose 2* i.i.d. x sequences  each  with 
probability 

n 
P(X) = n P*(Xi). 

i= 1 

Decoding: Given y ,  choose  the message w such  that 

(Y 9 x(w)) E A A X ,   Y )  

is such a w E [ 1, 2* ] exists and is unique, otherwise  declare 
an  error. 

By symmetry of the  random  code  construction,  the  prob- 
ability of error (averaged over the  random  code) is indepen- 
dent of the  index w sent. Thus without loss of generality 
assume that 1 is sent. Consider the events 

E ,  = ( ( X ( w ) ,  Y ) E A , } ,  w E 11, znR1. 
Then  by the  union of events bound 

Pn = P  u E w U E f  
( w * *  ) 

G P ( E f )  + 1 P(E,). 
w f  1 

From Lemma 1, it follows that 

P ( E f )  +. 0 .  

From Lemma 3, 

P(Ew) & 2-"', VVJ # 1. 

Therefore, if R < C, then 

P(Ew) I2"(R") +. 0. 
wf 1 

If the  error averaged over the  random  code  tends to zero, then 

there must exist a sequence of codes with P z  + 0, and achiev- 
ability is proved. 

V. THE MULTIPLE ACCESS CHANNEL 
The  most  completely  understood  multiple user channel is 

the multiple access channel  shown in Fig. 1 1. 
Many senders  each  simultaneously attempt to communicate 

a message to a common receiver. The most common  example 
of this is a  satellite receiver with  many independent  ground 
stations.  After  reception,  the satellite will broadcast the 
information back to  the  ground,  but  that is the  subject of 
the  section  on broadcast  channels. 

We see that  the senders  must contend  not  only with the 
receiver noise but with interference  from each other as well. 

The discrete  memoryless  multiple access channel (srl x x ? ,  
p ( y l x l , x z ) , ' y )  consists of three  alphabetsxl,Xz,  and3  and a 
probability  transition  matrix p ( y l x l ,   x z ) .  

A ((2*1, 2-2 ), n )  code  for  the multiple access channel  con- 
sists of two sets of integers kll = [ I ,  Y R 1  I ,  k12 = [ I ,  2 " R 2 ~  
called the message sets,  two encoding  functions 

x1 : kll +x;  
x, : k l 2  -+x; 

g : ? J n  + ?K1 x a,. 
and  a  decoding function 

Assuming uniform  distribution over the  product message 
sets kl X 8 2  i.e., that  the messages are independent  and 
equally  likely, we defme the average probability of error for a 
((2*1,2*2), n )  code to be 

C PIg(Y)f(wl,W2)1(Wl,w,)sent}. 
( W l 1 W Z F ' I ( 1 X ~ 2  

(5.1) 
A rate pair ( R 1 ,   R 2 )  is said to be achievable for  the  multiple 
access channel if there exists  a  sequence of ((2*1, 2*2 ), n) 
codes  with p," + 0. 

The capacity  region of the  multiple access channel is the 
closure of the  set of al l  achievable ( R  1, R z )  rate pairs. 

The capacity region of the  multiple access channel was 
established  by Ahlswede [ 2 ]  and Liao [3].  The following 
proof is different from theirs. 

Theorem 3: Multiple access capacity. 
The capacity of the multiple access channel G1 X%,, 

p ( y l x l , x z ) , ( Y  ) is given by the convex  hull of the union of 
the sets 

C ( p 1 ~ 2 ) = { ( R 1 , R z )  : R 1  GI(X1; YIX2) 

Rz  G I ( X z ;  YIX1) 
R1 + R z  G I ( X 1 , X z ;  Y )  

where 

~ ~ ~ 1 , ~ 2 ~ = P 1 ~ ~ 1 ~ ~ 2 ~ ~ z ~ ~  (5 .2)  
over all input  product  probability  distributions  on xl x Xz.  

Proof: 
(i)  Achievability. 
Random  coding: Fix p l ( x l ) ,  p 2 ( x 2 ) .  Let p ( x l ,   x , ) =  

pl ( x 1 )   p 2 ( x 2 ) .  Choose a random  code of 2nR1 x l 7 s  Ex: 
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Fig. 11 .  The multiple access channel. 
~ P ~ ~ l I ~ ~ ~ P ~ ~ Z 1 ~ Z ~ ~ ~ ~ I ~ 1 , ~ Z ~ .  

i.i.d - l ly=l p1 (xu), and  independently choose 2"R2 xz's EX: (5.5) 
i.i.d - 117=1 p z ( x z i ) .  Index  these sequences as x l ( i ) ,  x z ( j ) ,  
i ~ [ 1 , 2 " ~ 1 1 , j ~ [ 1 , 2 " ~ 2 1 .  Fano's inequality [ 61 requires that 

Decoding: For decoding, given y ,  simply choose  the pair 
(i, j )  such  that H ( W l ,  W 2 1 Y ) < n ( R l   + R 2 ) P , "  +h(P:)4? ne,. (5 .6)  

( X l ( i ) , X Z ( j ) , Y ) E A ,  The assumption that P," +. 0 implies that E, + 0. Consequently, 

i f suchan( i , j )E [1 ,2"RL]  X [1,2"Rz]  existsandisunique- 
otherwise  declare an error. 

ability of  error (averaged over the  random  code) is indepen- 
dent of the  index  (i,])  sent. Thus without loss of generality Now consider, 
assume that  (i, j )  = (1, 1) is  sent. Consider the events 

H ( W l  I Y )  < ?I€, 

By symmetry of the  random  code  construction,  the prob- H( w, I Y )  < nEn. ( 5 . 7 )  

6)  n R 1   = H ( W l )  = I ( W 1 ;  Y ) + H ( W I I Y )  
E i j = { ( X l ( i ) , x z ( j ) ,   Y ) E A : I .  < Z ( W 1 ;  Y )  + R E , .  (5.8) 

Then, by the  union of events bound By the  data processing inequality it follows that 

Pn = P E ; ,  U U Eij) ( nR1 < I ( W 1 ;  Y ) + n c ,  <Z(X1; Y ) + n e , .  
( i , i )# ( l ,  1) But since X1 and Xz are  independent, we have 

< P ( E i l  + P ( E i l )  + P ( E v )  + P(Eij). 
i#l, j =1  i=1, j # l  i#1, jZ1 

nR1 <Z(X1; Y IX2) + n e , .  (5.9) 

(5.3) 
By symmetry it can be shown  that 

From Lemma 1, P(E;1) + 0 .  (fi) nRz <Z(X2; Y I X l )  + ne,. (5.10) 

Next,  for i # 1, Finally, 

(iii) n(R1  +RZ)<I(WI ,  wz; Y ) + n e , .  (5.1 1) 

The  data processing theorem yields 

I ( W 1 ,  wz; Y )  GI(X1, x,; Y ) .  (5.12) 
I 2-nl(X,;YIX,) 

~~ 

- Now the discrete memorylessness of the channel is easily ap- 

where the first equality follows from i # 1, which  implies the plied to yield 
independence  of X1 from (X,, Y ) .  The second and  third in- 
equalities follow  from  the definition of A,,  Lemma 1, and  from R < ( l / n )  z (x l ;  Y 
I ( X 1 ; X z ,  Y )   = Z ( X l ;   Y I X 2 )  when X1 and Xz are  independent. 

Similarly, for j f 1, 
p ( E l j )  & 2-n1(x2; y I x ~ )  Rz <(l/n)l(Xz; Y 

a n d f o r i # l , j # l ,  

P(Eij) & 2- nI(X,  ;x2 ; Y) 
and 

Thus the  conditions of the  theorem cause each term to tend  to and  the converse is proved. 

zero as n + 00. 
Time-sharing allows any ( R 1 ,  R z )  in the  convex hull t o  be 

achieved, and  the  theorem is proved. 
We now prove the converse to Theorem 3. This should 

provide the reader  with some of the basic converse proof 
techniques. 

(ii) Converse. 
Given a ((2"R,, 2 " R 2 ) ,  n) code  for  the MAC, the empirical 

probability  distribution on a X X x: X x!: X is of 

VI. THE SLEPIAN-WOLF SOURCE CODING THEOREM 
We know  how to encode a source X. A rate R > H ( X )  is 

sufficient. Now suppose  that  there are two sources ( X , . Y )  - 
p ( x , y ) .  A rate R > H ( X ,  Y )  is sufficient.  But  what if the 
Xsource and the  Ysource  must be  separately described for 
some user who wishes to reconstruct X and Y? Clearly, by 
separately encoding X and Y ,  it is seen that a rate R = R ,  + 
R ,  > H(X) + H (  Y )  is sufficient. However, in  the surprising 
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Fig. 12. Correlated source  coding. 

R 

Fig. 13. Rate region  for Slepian-Wolf data compression. 

and  fundamental paper of Slepian and Wolf [ 15 I ,  it is shown 
that a total  rate R = H(X, Y) suffices. 

Example: Let X be a  sequence of 1's and 0's generated  by 
flipping  a  fair  coin.  Let 2 be  a  sequence of 0's and 1's gen- 
erated by flipping  a  coin  with Pr(Z = 1) = p = 0.1 1. Let 
Y = X Q Z. Note that Y is also a  fair  coin  sequence. 

Suppose that R, = 1, so that Y is perfectly  described. Then 
the  information  rate needed to describe X is not R, = 1 but 
is R, = H(XI Y) = h ( p )  = 4. This is true despite the  fact  that 
the describer of X does not  know  the  Yon which his descrip 
tion will be conditioned. 

We now give a  formal  description of the Slepian-Wolf prob- 
lem depicted  in Fig. 12.  The proof is different  from  that  in 
[151  and [161 in  that  no  time  sharingis required. 

A sequence {(Xi. Yi)}:=, of independent copies of the pair 
(X, Y) of discrete random variables is to be encoded by two 
separate encoders; an Xencoder  that observes the se- 
quence and  maps it into  an integer i E [ 1,  2"RX],  and a 
Yencoder  that observes the {Yi}r=, sequence  and  maps it 
into the integer j E [ 1,  2%].  The integers ( i ,  j )  are then 
communicated to a common  decoder  that tries to reproduce 
the {(Xi, Yi)}r=, sequence. A ((ZmX, 2%), n )  compression 
scheme  for  this problem  consists of an integer n,  two  encoding 
functions 

i : X "  + [ I ,  P X ]  

j : 3 "  + [ l ,  2"RYl 

g :  [1,2"RXI x [1,2"RYI +X"X3".  
The average probability of incorrect  reproduction  is given by 

F," A P { g ( i ( X ) ,  j ( y ) )  f (1, Y)}. 
A rate pair (R,, Ry? is said to be achievable if there exist  a se- 
quence of cornpression schemes  with 7; + 0. The  problem is 
to fmd  the set R of achievable compression rates (R,,  R,). 
The  rate region R  (shown  in Fig. 13) was established by 
Slepian and Wolf [ 151. 

Theorem 4 (Slepian-Wolfl: The  set R of all achievable rates 
is given by 

and a  decoding function 

R = {(R,, Ry)  : R ,  > H ( X I  Y) 

Ry  >H(YIX) 

R, + R, > H(X, Y)}. (6.1) 

The idea is to divide the X"-space into 2mX bins and the 
%"space  into 2&Y bins as shown  in Fig. 14. 

Fig. 14. Bins for  Slepian and Wolf. 

The  dots  in  this figure correspond to jointly  typical ( x , y )  
pairs,  and they  €exhaust  the  probability. If Rx and R, are 
large enough,  there will be no  more  than  one  dot  per  product 
bin. Thus  the  name i of  the x bin and  the name j of the y 
bin will uniquely  define  the  sequence (x, y )  that falls in  the 
product bin ( i ,  1). We now prove this result. 

Proof: 
Encoding: Randomly assign every x Ex" to one of 2&x 

bins,  according to a uniform  distribution over the integers 
[ l ,  2"RX1. More precisely, for every x EX", let p ( i ( x )  = 
i )  = 2-*x for i E  [ 1,2&x].  Similarly, randomly assign 
every y E%" to one of 2"RY bins, such  that p ( j (  Y) = j )  = 

Decoding: Given ( io ,  io) declare (X^,p) = (x, y )  was sent 
2-"Rr,j E [ 1,2"RY]. 

if there is one  and  only  one pair of sequences (x, y )  such  that 

i (x)  = io ib) = io 
an d. 

( X , Y )  E A , ( X ,  Y). 

Otherwise  declare an  error. To bound Fz ,  define  the events 

Eo = {(X, y> 4 Y)} 
E, = {3 some ( x ' , y ' ) # ( X ,  Y), ( x ' , y ' )  E A , ,  

such  that i(x') = i o ,  jb') =io}. 

Using the  union of events bound, we obtain 

F,, =P(Eo  UEl)<P(Eo)  +P(E1).  (6.2) 

The  Fist  term  in (6.1) + 0 as n +m by typicality  (Lemma 1). 
Notice that  the event El is equal to the  union of the events 

El l  = {3 some x' such  that x' # X 

and i(x') = io ,  ( x ' , y )  EA, ,  y = Y} 

E12 = {3  some y' such  that y ' #  Y and j ( y ' )  = io, 
( x , y ' )  E A , ,  and x = X} 

and 
E13 = {3 some (x', y ' )  EA,  such  that X' # X  and y' # Y 

and i (x ' )  = io and j (  y ' )  =io}. 

First  consider the  probability of El l .  By the  union of events 
bound 

P(E11)< C P{i (x ' )  = i o }  
x '#x 

(x:Y)Ea€(x, Y) 

= 2-"R"IIA,(xlv)ll. 
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But from Lemma 2 

lIA,(Xly)ll < 2"(H(X'Y)+Z€ ) .  

Therefore, 

P(Ell)+O as n + w  

if 

R x  > H ( X I  Y ) .  

Similarly, the  probability of the events E, ,  and E,, + 0 as 
n+=ifRy>H(YIX)andRx+Ry>H(Y,X) , respec t ive ly .  

Finally, the  probability of error is averaged over random 
partitions. Thus there exists  maps i* ( . ) ,  j * ( - )  such  that P, + 0. 

The Slepian-Wolf theorem presented  in this section is his- 
torically the f i t  fundamental result  in multiple user source 
coding theory.  For a  comprehensive overview of that  theory, 
the reader is referred to  Berger [ 171. 

VII. THE MULTIPLE ACCESS CHANNELS WITH 
CORRELATED SOURCES 

From Slepian-Wolf, we know  how to give efficient separate 
descriptions of correlated sources. From  the  multiple access 
channel, we know  how to send two  separate  independent 
descriptions over a  noisy  channel. Apparently we can weld 
these  two  problems  together t o  obtain a theory of sending 
correlated sources over a multiple access channel ( F i g .  15). 

We do so in this  section  and find that  the  combined  theory 
involves a new ingredient-correlation of the  inputs  for  the 
multiple access channel. As a byproduct, we shall f h d  a 
common  proof of the Slepian-Wolf theorem  and  the  multiple 
access channel  capacity region [ 181. 

Assume we have  two  information sources U1, U,, * * * and 
V I ,  Vz , * * * generated  by repeated  independent drawings of 
a  pair of discrete random variables U and V from a given 
bivariate distribution p ( u ,  u). 

A block code  for  the  channel consists of an integer n ,  and 
two  encoding  functions 

assigning codewords to  the  source  outputs,  and a  decoding 
function 

d" :%" +a" XO". 

The  probability of error is given by 

P, = P { ( U " ,  V")#d"(Y") }  - 
= 1 p(u",  u " ) P  { d " ( y " )  # (u", u")[(V", V " )  

(U,")EPI" x 0" 

= (u", U")} (7.1) 

where the  joint  probability mass function is given, for a code 
assignment {x1 (ti"), x,(#)}, by 

n 

i= 1 
P ( u , U , Y ) = n  P(ui,ui)P(YiIXli(u"),XzXv")). (7.2) 

Definition: The  source (V, V) can  be  reliably transmitted 
over the  multiple access channel (X1 Xx2,%, p ( y l x l , x z ) )  if 
there exists  a  sequence of block codes ( X : ( U " ) ,  x;  (v"), 
d"(y") )  such  that 

P, = P { d " ( Y " ) # ( U " ,  Y") }+O.  

Fig. 15 .  The multiple  access  channel with arbitrarily correlated  sources. 

Example: Consider the transmission of the  correlated sources 
(U, V )  with the  joint  distribution p ( u ,  u )  given by 

1 1  
3 3  :I 0 5 

over the  multiple access channel  defined by 

x1 = x 2  ={o, 1) 

9={0,1 ,2}  

Y =X1 t X,. 

Here H(U,  V )  =log 3 = 1.58 bits. On the  other  hand, if X1 
and X2 are  independent, 

max I (Y;  X1, X,) = 1.5 bits. 
P ( X , ) P ( X * )  

Thus H ( U ,  V ) > I ( Y ; X 1 ,  X,) for all p ( x l ) p ( x 2 ) .  Conse- 
quently  there is no way, even with  the use of  Slepian-Wolf 
data compression on U and V ,  to use the  standard multiple 
access channel capacity region to send U and V reliably to 
Y .  However, it is easy to see that with the choice X1 U, 
and X? E V ,  error-free  transmission of the source over the 
channel is possible. This example shows that  the  separate 
source  and channel  coding described above is not optimal- 
the partial information  that each of the  random variables U 
and V contains  about  the  other is destroyed in  this  separation. 

To allow  partial cooperation  between  the  two  transmitters, 
we allow our  codes to depend  statistically on  the  source  out- 
puts. This induces  dependence between  codewords. 

We shall outline  here a  proof of a special case of Theorem  1 
1181,  in which U and V have no  common  part. In this case, 
we must  show  that U and V can be  reliably sent t o  Y if, for 
P ~ ~ , ~ ~ P ~ ~ l l ~ ~ P ~ ~ Z l ~ ~ P ~ Y l ~ l , ~ Z ~ ,  

H(UI V )  < I(X1; YIXz, V )  

H( V I U )  < Z(X2; YlXl , U )  (7.3) 

H ( U ,  V) < Z(X1, X,; Y ) .  (7.4) 

The proof will employ  random coding. We first describe 
the  random  code  generation  and encoding-decoding  schemes, 
and  then  analyze  the  probability of error. 

Generating  Random  Codes: Fix p ( x l l u )  and p ( x z l u ) ;  for 
each uEu" generate one x1 sequence  drawn  according to 
rlf=l p ( x l i l u i )  and  for each ~ € 0 "  generate one x2 sequence 
drawn according to nf=, p(xz i  [vi). Call these  sequences 
x1 (u )  and x z ( u ) ,  respectively. 

Encoding: Transmitter  1,  upon observing u at  the  output 
of source 1, transmits x1 (u)  and  transmitter 2, after observing 
u at  the  output of source  2,  transmits x ~ ( u ) .  Assume the maps 
x1 (a), x2 (.) are  known to  the receiver. 
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Codewords 

by typical 
generated 

x ' s .  

. . *  . . .  . .  
. .  . . .  . . . . .  

Fig. 16. Picture of joint typicality for multiple access  channel. The 
dots correspond t o  jointly  typical ( X l ,   X , )  pairs. Note  that  only 
~ ~ ( ~ 3 ' )  (xl(u), x2(u)) pairs are likely to occur. 

Decoding: Upon receiving y ,  the decoder  finds the  only 
(u,u)pairsuchthat (u,u,xl(u),x2(u),y)EA,,whereA, is the 
set of jointly €-typical sequences. If there is no  such (u, u )  
pair,  or  there exists more  than  one  such pair, the  decoder 
declares an  error. A helpful  picture is given in Fig. 16. 

Error: Suppose (Uo,  V o )  is the  source  output,  and define 
the events 

E ( u , . ) = { ( ~ , ~ , x l ( u ) , x 2 ( ~ ) , ~ ) E A € ) .  
The  probability of error averaged over (UO, VO) and  the ran- 
dom  codes is given by 

The f i i t  term + 0 by Lemma 1. The second term is bounded 
above  by 

P(u0 ,vo )  
(%%)EA€ 

- P { ( u ' , u ' , x 1 ( ~ ' ) , X z ( u ' ) ,   Y ) E A , l ( u o , ~ o ) )  
u'fu, 
v" Uo 

(U , ,UO)EA€  u'=uo 
v'z vo 

(uo ,voFA,  U'f u, 
U ' f  Do 

+ c P ( U 0 , U O )  c P C )  

+ c p ( u 0 , v o )  c P C )  

2n(H(UlY)+~)2 -n(Z(X , ;   YIX , ,Y ) -e )  

+ 2n(H(YIV)+~)2-n(Z(X2;   Y lX , ,u ) -4  

+ p ( U , V ) 2 - n ( W , , X 2 ;   Y ) - 4  (75) 

Consequently, Pn + 0 if the  conditions  in (7.3) are satisfied. 
1 

VIII. THE BROADCMT CHANNEL 
The broadcast  channel [ 191 is a communication  network 

with  one  transmitter and many receivers. 
The basic problem is to find  the  set of simultaneously 

achievable rates ( R o ,   R 1 ,   R 2 ) .  To  date  this problem has not 
been solved. The special case of sequentially degraded chan- 
nels has  been solved by Bergrnans [ 2 0 ]  and Gallager [21 I .  An 
achievable rate region for  the general broadcast  channel has 

Fig. 17. T h e  discrete memoryless broadcast channel. 

been put  forth by  Marton [ 2 2 1 ,  but is not  known  to be the 
capacity region. 

We now give the  formal  definition of the two-receiver broad- 
cast channel problem. A discrete  memoryless  broadcast  chan- 
nel ( X ,  p ( y  , z I x ) , 3  X 2) as depicted  in Fig. 17 consists of 
three  finite  alphabets X ,  3 ,  Z and a probability  transition 
matrix p ( y  z 1x1 

An ( ( 2 d o , 2 k l , 2 " R z  ), n )  code  for a  broadcast channel 
consists of three  sets of integers 

B o = [ 1 , 2 n R ~ ] , ~ l = [ 1 , 2 n R ~ l ,  and @ 2 = [ 1 , 2 " R 2 1  

an encoding  function 

x:  IBO x 01 x m 2  + x n  

gl :3" +. a0 x a, 
and  two decoding  functions 

The integer wo has the  interpretation of the  common  part of 
the message, while the integers w l ,   w 2  are called the inde- 
pendent parts of the message. Assuming uniform distribution 
on  the  set of messages W 0 X 13 X 2 ,  define 

c p { g l ( y ) # ( w o , w l )  or 
(W(I,Wl,WZ)EuJO x uJ1 x @ ,  

g~(z)#(wo,w2)l(wo,wl,w2) sent1 (8.1) 

to be the average probability o f  error of the  code. 
The  rate triple ( R 0 , R l   , R 2 )  is said to be achievable by  a 

broadcast  channel if there exists  a  sequence of ( ( 2 - 0 ,  2"R1, 
2 - , ) ,  n )  codes with Fz + 0. The capacity  region C for  the 
broadcast  channel is the closure of the  set of all achievable 
rate triples ( R o ,  R 1 ,  R 2 ) .  We now  look  at a  family of broad- 
cast channels in which one receiver can be considered worse 
than  the  other.  The  mathematical  definition corresponding 
to this physical  idea is as follows. 

Definition: The broadcast channel (x p ( y ,  z I x ) ,  % X z) is 
called degraded if there exists  a probability  transition  matrix 
p(zly)suchthatforallzE%andxE% 

p ( z I x ) =   p ( y , z l x ) =   p ( z l y ) p ( y l x ) .  ( 8 . 2 )  
Y E 9  Y E 9  

Theorem 5: The  capacity region of the degraded  broadcast 
channel G, p ( y  , z I x), 3 X 2) is given by 

C = { ( R o , R l , R 2 ) :   R o   + R 2  < I ( U ; Z ) ,  R , < I ( X ;  Y I U )  

for  some p ( u )  p (x 1 u ) ,  

llpl II min {IIXII, 113l1, 11211) 1. (8.3) 
Proof: Fixp(u),p(x lu) .  

a)  Achievability: The  natural coding  idea necessary to 
solve this  channel is that of superposition coding [ 191, [ 2 0 ] .  
We first find a  low rate code for  the worst receiver Z. Since 
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this  rate is below the capacity from X to 2, it  is possible to 
further randomize the  codewords chosen for Z into a small 
cloud of satellite codewords  intended  for  the good receiver 
Y. Receiver Z then decodes the cloud center. Receiver Y first 
decodes the cloud center, which he can do because he can 
"see" at least as much as Z 1 .  Receiver Y then decodes the 
satellite codeword. 

(i) Random  Code: First  generate 2n(R2+Ro) i.i.d. se- 
quences u ,  each with probability 

Label  these u(i), i E [ 1, 2n(Ro+R2)]. 

sequences, each  with  probability 

n 

k = l  

For every u(i), generate 2nR1 conditionally  independent x 

P ( X  lu(i)) = n p(xkluk( i ) ) .  

Label these x ( i ,  j ) :  j E [ 1, 2-1 1. 
Here u ( i )  plays the role of the cloud center  understandable 

to  both Y and 2, while x ( i ,  j )  is the  jth satellite codeword  in 
the  ith cloud. 

(ii) Decoding: If y is received, declare (?,?) = (i, j )  was 
sent if there is one and only  one pair ( i , j)  E [ 1, 2n(R0+R2)] x 
[1 ,2*1] ,  such  that ( u ( i ) , x ( i , j ) , y ) E A , ( U , X ,  Y). If z is 
received, declare i = i was sent if there is one  and  only  one i 
such  that  (u(i), z) E A,(U,  Z). Let Z, J be independent r.v.'s 
drawn  according to uniform distributions  on [ 1, 2n(RO+R1)] x 
[ 1, 2-1 1 .  Let the code be chosen randomly according to 
the encoding description.  Then  the probability of error 
averaged over Z, J and  the  random  code is  given by 

P, =P{(?,.?)#(z,J)  or z+z}. (8.4) 
By the  symmetry  induced by the  random coding, we see that 
each transmitted message (i, j )  yields the same  probability of 
error.  Thus,  setting (i,j) = (1, I ) ,  we have 

P, = P { ( ? , . ? ) # ( I ,  I )  or Z +  lI(z,J)=(l ,  1)). 

R 

A 

A 

Define the events 

EZi = I(u(i), Z) EA,(U, 2)) 

EYi = {(u(i), Y) EA,(U, Y)} 

EYij = W ( i ) ,  x( i , j ) ,  Y) EA,(u, X, Y)}. 
Then 

Pn = P  {EcZl U ECrll U EZi U Eyi  U EYljI I 
i f 1  i # 1  j Z i  

+ P {ECYI~ I + P { E d  + P {EYi} + P {EYljI- 
i # 1  i f 1  j # l  

The f i s t  two  terms correspond to  the event that  the  correct 
codeword does not belong to  the decoding set.  The last terms 
correspond to  the event that  some  incorrect  codeword belongs 
to the decoding set.  From Lemma 1 ,  it follows that 

P{EcZl)+O, P m 1 1 ~ + 0 .  

Consider the event Ezi .  We observe, for i # 1 ,  that U ( i )  and 
Z are independent.  Thus, by  Lemma 3 ,  for i f 1 

p {Ezi} 2-"'(u;z). 

Consequently, 

and 

P { E y i } +  0, if R o   + R 2  <Z(U; Y )  (8.5) 
i f  1 

But since by the degradedness of the broadcast  channel 
Z(U; Y) < I ( U ; Z ) ,  the  condition (8.5) is redundant. 

Next, consider the event EYU.  From Lemma 3,  it follows 
that 

P { E y u }  2 -&(X; Y l U )  

Thus  the  term 

P { E y l j }  + 0, if R 1  <Z(X;  YIU). (8.6) 
j # l  

b )  Converse: (See Gallager [211 and Bergmans [ 231 .) 
The capacity region for  the general broadcast  channel is 

still an open problem. Several special cases have been recently 
solved (e.g., degraded message sets [ 2 4 ] ,  more  capable class 
[25] ,  deterministic class [261 ,   [27 ] ,  and parallel degraded 
channels [28]) .  The most general inner  bound to  the capacity 
region of the broadcast  channel is that given by Marton [ 2 2 ] .  
In the following theorem, we outline a proof of a special case 
of Marton's general result where it is assumed that  no  common 
part is decoded. However, this special case isolates  a new 
coding  idea.  This, together  with  superposition, yields Marton's 
theorem.  The proof of the following theorem is due to El 
Gamal and van der Meulen [ 291. 

Theorem: Let 

$ 0  = { ( R 1 , R 2 ) : R 1 , R z  20, 
R1 <Z(U; Y), 

R2 <Z( V ;  Z ) ,  

R1 + R z ~ Z ( U ; Y ) + Z ( V ; Z ) - Z ( U ; V ) ,  

for some p ( u ,  U , X )  on PI X0 X X 1 (8.7) 

Then  any  rate pair ( R   1 ,   R 2 )  E go is achievable for 

( X , P ( Y , Z l X ) , ' Y X Z ) .  

Proof: (Outline) 
Fix p ( u ,  u) ,  p ( x  Iu ,  u). The channel p ( y ,   z l x )  is given. The 

idea is to send u t o y  and u to z. 
Random  Codin Generate 2"'("; typical u's in U". 

Generate 2 "'(V'zf..typical Y's in V".  Now randomly  throw 
the u's into 2*1 bins and the u's into 2'2 bins. For  each 
product  bin, find  a jointly typical ( u ,  U) pair.  This can be 
done, as shown by the circled dots in Fig. 18, if 

R1  +R2 <Z(U;  Y)+Z(V;  Y)-Z(U; V ) .  (8.8) 
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CAUSAL 
RELAY 
ENCODER 

TRANS- 
MITTER RECEIVER 

w-Y * v  -9 

I I I I 

Fig. 18. Coding for Marton's Theorem. 

To see  this, we recall from Lemma  3 that  independent choices 
of u and u result in a jointly ty ical (u U) with probability 

and 2"('(V;Z)-Rz) Y's in  any V-bin. Thus  the  expected  num- 
ber of jointly  typical (U, V )  pairs in a given product U X V 
bin is 

2-"'(u;V). Now there are 2n(z&;Y)-R:) lJ's in  any U-bin, 

2"(Z(LT;Y)-RI)2n(Z(V;Z)-Rp)2-n'(u;V) (8.9) 

The desired jointly  typical (u,  u )  pair can be found if this 
expected  number is much greater than 1. This is guaranteed 
if (8.8)  holds. 

Continuing  with  the coding, for  each U X V bin and  its 
designated jointly  typical (u ,  u )  pair, generate-x(u, u)  accord- 
ing to  the  conditional  distribution p (xk I uk, uk). 

Encoding: To send i to Y and j to Z,  send x ( u ,  v), where 
(u, u )  is the designated pair in  the  product bin (i, j ) .  

Decoding: Receiver Y ,  upon receiving y ,  f i d s  the u such 
that (u,  y )  is jointly  typical.  Thus it is necessary that R 1  < 
I ( U ;  Y ) .  He then finds the  index i of the bin in which u lies. 
Receiver 2 f i d s  the u such that (u,  z )  is jointly  typical.  Thus 
we need R2 <I( V ;  Z). He then finds the  index j of the bin 
in which u lies. 

A Note on Feedback: In [30],  it  was shown  that  feedback 
cannot increase the capacity of the physically degraded broad- 
cast channel, i.e., broadcast  channels for which p ( y ,  z l x )  = 
p ( y l x ) p ( z l y ) .  Surprisingly, it  was later shown  by  Ozarow 
[ 3 11 and Dueck [32]  that feedback can in  fact increase the 
capacity of general  broadcast  channels. 

IX. THE RELAY CHANNEL 
The discrete  memoryless  relay channel  denoted by ( X 1  X x 2 ,  

p ( y , y l I x 1 ,   x z ) ,  'Y X 'Y1) consists of four  finite  sets X1 ,X2,%, 
%1 and  a  collection of probability distributions p (  * , I x l ,   x 2 )  
on 'Y X 91 one  for each ( x 1   , x 2 )  EX1 X X 2 .  The  interpreta- 
tion is that x 1  is the  input  to  the channel  and y is the  output, 
y1 is the relay's output  and x2 is the  input  symbol chosen  by 
the relay as shown h Fig. 19.  The problem is to find  the capa- 
city of the channel  between the  sender x1 and  the receiver y .  

The relay channel was introduced by van der Meulen [33]. 
The following discussion is based on Cover and El  Gamal [ 341. 

A (2"R, n )  code for  the relay channel  consists of a set of 
integers a [ 1,  2nR],  an encoding function 

x 1 :  [1,2"RI +X: 

.. ENCODER P ( Y . Y , l X , ' T 2 1  DECODER 

Fig. 19. The relay channel. 

a set of relay functions  such  that 
x 2 i = f i ( Y 1 1 ,   Y 1 2 ; * . ,   Y l i - l ) ,  1 < i < n  

and a  decoding function 

g : % " + [ 1 , 2 M I .  

Note  that  the allowed encoding  functions  actually  form  part 
of the definition of the relay channel because of the  non- 
anticipatory relay condition.  The relay channel input x2i is 
allowed to depend only on  the  pasty 11, y 12, * * , yli-1.  This 
is the  definition used by van der Meulen [ 33 I .  The  channel is 
memoryless in  the sense that ( y i , y l i )  depends on  the past 
only  through  the  current  transmitted symbols ( x l i ,   x 2 9 .  Thus 
for  any choice p(w), w E a, and  code choice x 1  : [ 1,  2RR] + 
x f and relay functions {fi}gl, the  joint  probability mass 
function  on M X X y  X X ! :  X % n  X 9: is given by 

n 
~ ( W , X ~ , X ~ , . Y , Y ~ ) = P ( W )  n p ( x l i I w ) ~ ( x 2 i I ~ l l , ~ t 2 , . . .  > 

i=1 

Y l i - l ) P ( Y i , Y l i X l i , x 2 i ) .  (9.1) 

If the message w E [ 1, 2"R ] is sent,  let 

h(w) = Pr {g (  Y )  # w Iw sent} 

denote  the  conditional  probability of error. 
average probability of error of the  code as 

We define the 

F: = 2-* C h ( w ) .  
W 

The  probability of error is calculated under  uniform distribu- 
tion over the codewords w E [ 1, 2"R 1. The  rate R is said to 
be achievable by  a  relay  channel if there exists  a  sequence of 
(2-, n) codes with F: + 0. The capacity C of the relay chan- 
nel is the  supremum of the  set of achievable rates. 

We first give an upper  bound  to  the capacity of any relay 
channel [ 341 : 

Theorem 9.1: For  any relay channel g 1  X x 2 , p ( y , y 1 1 x l ,  
xz), 'y X 91) the capacity Cis bounded above by 

C < SUP min { I ( X 1 ,  X2 ; Y ) ,   I M I ;  Y ,  Y1IX2 )I (9.2) 
P ( X , , X , )  

This upper  bound has  a  nice max flow min cut  interpretation. 
The first term  in  (9.2)  upper  bounds  the  rate of information 
flow from senders Xl and X2 to receiver Y .  The second term 
bounds  the  rate of transmission from X1 to Y and Y1. 

We now  consider  a  family of relay channels in which the 
relay receiver Y ,  is better  than  the  ultimate receiver Y in the 
sense defined below. Here the max flow min cut  upper  bound 
in (9.2) is achieved. 

Definition: The relay channel (x1 x ~ z , p ( y , y l l x l , x 2 ) ,  
'Y X 31) is said to be degraded if p ( y , y l   I x 1 , x z )  can be writ- 
ten in the  form 

P ~ Y , ~ l l ~ l , ~ 2 ~ = ~ ~ v l l x l , ~ z ~ ~ ~ v l v l , ~ 2 ~ .  (9.3) 
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Thus Y is a random degradation of the relay signal Y1. 

following. 

is given by 

For  the degraded  relay  channel, the capacity is given by the 

Theorem 9.2: The capacity C of the degraded relay  chanel 

c = SUP min ( I ( X 1 ,  x2 ; Y),I(X1; Y1 1x2)) (9.4) 
P ( X , , X , )  

where the  supremum is over all joint  distributions p(x l ,  x2)  
on X1 X X 2 .  

Proof: Converse. 
The converse follows from  Theorem 9.1 and by  degraded- 

ness. Thus 

I(X1; Y ,  YlIX2) = I(X1;  YlIX2).  (9.5) 
This  capacity region proof involves 1)  random coding, 2) 

list codes, 3) Slepian-Wolf partitioning, 4) coding for  the co- 
operative  multiple access channel, 5) superposition coding, and 
6) block Markov encoding  at  the relay and  transmitter. 

Achievability (Outline): We consider  B blocks of trans- 
mission, each of n  symbols.  A  sequence of B - 1  indices 
wiE[1,2"R],i=1,2,...,B-1 willbesentoverthechan- 
ne1 in  nB transmissions. (Note  that as B + 00, for fixed n ,  that 
the  rate R (B - 1)/B is arbitrarily close to R .) 

In each  n-block  b = 1 , 2 , .  . , B, we shall use the same 
doubly  indexed  set of codewords 

~ = ~ . l ~ ~ l ~ ~ , . 2 ~ S ~ ~ , W ~ ~ 1 , 2 n R l , ~ ~ ~ 1 , 2 " R ~ l , . 1 ~ ~ l ~ ~  

EX:,xz(*)EX!:. (9.6) 
We shall also need  a partition 

5 =  {SI, S2,. * , S 2 n R o }  of a= {1,2, * * , 2nR} 

into 

2nRo cells, n Si = #, i +i, u = a. 
The  partition s will allow us to send  side information to  the 
receiver in  the  manner of Slepian and Wolf [ 15 1 . 

Random Coding: First  generate at  random  2"R0  independent 
identically distributed n-sequences id!:,  each drawn  according 
to p ( x 2 )  = lly=l p ( x 2 i ) .  Index  them as x2(s), s E [ 1, 2nR0 I .  
For each x2(s), generate 2"R conditionally  independent n- 
sequences xl(w Is), w E [ 1,2- ] drawn  according to 
p ( x 1  Ixz(s)) = ny=l p ( x l i l x 2 i ( s ) ) .  This  defines  a random code- 
book C = {. 1 (W IS), x2 (8)). 

2&} is defined as follows.  Let  each  integer w E [ 1 , 2  ] be nli ' 
assigned independently, according to a  uniform distribution 
over the indices s = 1,  2, * * * , 2nRo,  to cells S,. 

Encoding: Let wi E [ 1,2& ] be the new index  to be sent 
in block i,  and assume that wi-l E S%. Thzn the  encoder sends 
xl(wilsi). The relay has an estimate wi-l of the previous 
index ~ i - ~ .  (TAhis will be made precise in  the decoding section). 
Assume that ES4. Then  the relay encoder sends the 
codeword X 2  Gi) in block i. 

Decoding: We assume that  at  the  end of block (i - 1)  the 
receiver knows (wl, w 2 ,  * , ~ i - ~ )  and (s1 ,s2 , .  * ,s i- l)  
and  the relay knows (wl , w2, * * , ~ i - ~ )  and consequently 

The decoding  procedures at  the  end of block i are as follows. 
1) Knowing S i ,  and  upon receiving y l ( i ) ,  the relay receiver 

estimates the message of the  transmitter wi = w iff there exists 
a  unique w such  that (x1(w Isi), xz(si), yl(i)) a5e jointly e- 

Therandompartition~={S~,S~;~~,S2nR0}0f{1,2 

( S I ,  . * * , s i ) .  

A 

typical. Using Lemma 3 it cau be shown that wi = wi with 
arbitrarily small probability of error if 

R < I ( X 1 ;   Y I  Bz). (9.7) 

and n is sufficiently large. 
2) The receiver declares that $i =s was sent iff there exists 

one and only  one s such that (x2(s), Y(i))  are jointly €-typical. 
From Lemma 3 we know that si can be decoded with arbitrarily 
small probability of error if 

Ro <I(x2; Y )  (9.8) 
and n is sufficiently large. 

3) $ssuming that si is  decoded successfully at  the receiver, 
then wi-l = w is declared as the index  sent in block (i - 1) iff 
there is a unique w E Ssi n f (Y( i  - 1)) where s (Y( i  - 1)) is 
the list of indices w that  the  receivery considered to be "typi- 
cal" with Y(i  - 1) in the (i - 1)th block.  If n is sufficiently 
large and if 

R < I ( X 1 ;  Y I X z ) + R o  (9.9) 

then wi-l = wi-l with  arbitrarily small probability of error. 
Combining the  two  constraints (9.8) and (9.9) Ro drops  out, 
leaving 

I\ 

R <I(Xl;   YIX2)+I(X2; Y ) = I ( X l , X z ;   Y ) .  (9.10) 

For a  detailed analysis of the  probability of error,  the reader 
is referred to [34]. 

Theorem 9.1 can also be shown to be the  capacity  for  the 
following classes of relay channels. 

(i) Reversely degrades, i.e., 

P(Y,Yllxl,x2)=~(Yll.l,.z)P(rlYl,.z). 
(ii) Relay channel  with  feedback. 
(iii) Deterministic  relay  channel [351 

Y 1  =f(x1,xz) Y=g(.l , .z) .  

A general lower bound  to  the  capacity of any relay channel 
can be found in [34] .  

X. SUMMARY AND OPEN PROBLEMS 
Now that we have presented  the Gaussian multiple user 

channels in, Section I1 and proved some of the results in de- 
tail in  subsequent  sections, it is time to abstract  the salient 
points of the  theory. We do so by paralleling the discussion 
of Section I1 for  the channels shown in Fig. 20. 

1) The Shannon Channel: The codewords are n-vectors 
x( l ) ,   x(2) ,  , ~ ( 2 ~ ) .  First suppose R < I ( X ;  Y). The 
intuitive idea is that 2"R x sequences, each  independent 
identically distributed according to n?=l p ( x i )  will be mutually 
far apart  in  the sense that if one sends an x ( i )  and receives a 
Y ,  then, looking  back from the Y, one fiids a unique x in 
the  codebook  that  is  jointly  typical with Y. This is the wrrect 
x (i). 

2) List Codes: Suppose that 2& wdewords  are generated 
as above for  the  Shannon  chamel,  but R > I ( X ;  Y ) .  Then 
there will be exponentially  many  codewords  jointly  typical 
with Y .  In fact,  the  number of codewords on the list associated 
with Y will be 2"(R-'). Thus the cutoff at  capacity is very 
sharp. One goes from  one  wdeword in the inverse fan  for 
R < I  to an exponential  number of codewords  for R >I .  

3) The Multiple Access Channel: Again, random  wding 
works. Fix p 1 ,  p 2 .  Choose 2"Rl x 1  sequences  according to 
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x-Y  Shannon Channel 

x1  > Y M u l t i p l e  Access 
Channel 

X2 

x - Y - z  Degraded  Broadcast 
Channel 

X,-(V,,X,)-Y Degraded  Relay  Channel 

Fig. 20. Multiple user channels. 

Hpl (xli) and choose 2nR2 x2 sequences  according to  n p z ( x z i ) .  
Now send one of the codewords from  the first codebook, and 
one of the codewords from  the second codebook. These two 
together generate  a random response Y drawn  according to 
the  conditional probability distribution of Y given the  two 
sequences. With high probability, Y will be jointly  typical 
with these  two sequences. If R ,  and R ,  satisfy R < 
I(X~;YIXZ),RZ<I(XZ;YIX~),R~ + R z < I ( X l , X z ; Y ) f o r  
some pl(xl)p2(xz), then  the receiver Y will see that, al- 
though  there are exponentially  many xl's jointly  typical with 
Y and exponentially  many xz's jointly typical with Y ,  there 
will be only  one (x1, x,) pair in the  codebook  that is jointly 
typical with Y .  Thus no  error will  be made in  the decoding. 

4)  The  Degraded  Broadcast Channel: We assume that X 
sends to two receivers Y and Z ,  where Z is stochastically 
noisier than Y. Here, the idea of superposition is needed. We 
f i i t  introduce an auxiliary  sender U and an associated channel 
from U to X. Thus the overall channel becomes U --f X -+ Y -+ 

Z .  We now use a random code for  the channel U+ Z with 
2&2 codewords u independently drawn  according to fly=, 
p ( u i ) .  For each such codeword u ,  we generate 2-1 code- 
words x according to rIy=l p(x i lu i ) .  If R z  < I ( U ; Z ) ,  then 
Z perceives u correctly. And if R < Z ( X ;  Y I V), then re- 
ceiver Y perceives x correctly  after decoding u.  In summary, 
we send crude codewords to  the  poor receiver Z, but each of 
these crude codewords is really made up of small satellite 
codewords distinguishable by Y. 
5) Degraded  Relay Channel: Random  coding  works, but 

here we also need the Slepian-Wolf theorem.  The idea is that 
we randomly choose  codewords which are distinguishable by 
the relay, but  not by the  ultimate receiver. Nonetheless, by 
the argument for list codes, the  number of codewords on  the 
ultimate receiver's list is given by 2 n ( R  - Z W 1  ; YIX, men 
the relay, in  cooperation  with  the  sender,  attempts  to send the 
name of the codeword on  the  (unknown) list of known size 
2n ( R - I ( X ,  ; YIX,) . He does  this  by randomly  partitioning all 
the codewords into 2-0 sets  each of equal size. This is the 
Slepian-Wolf step. He then sends the  index of that  set  in 
cooperation with the  transmitter.  They  do so by  superimpos- 
ing  this information  in  the manner suggested by the degraded 
broadcast  channel. Yet  one more  ingredient is necessary. The 
resolution of the  index of the  sent codeword on Y's list does 
not  take place until  the  next block  transmission. Thus we 
have a  block Markov encoding of the resolution information, 
while superimposing the fresh information  for  the relay. 

Summing up, we have the following  points. 
1) We use a random  code  to send information to the relay. 
2 )  We use the list coding  idea to see how  many codewords 

3) We have a  block Markov encoding  scheme  in which the 

4) We use superposition to put cooperative information  on 

are left  to be resolved by the  ultimate receiver Y. 

resolution of the  information is sent  in  the  next block. 

top of the new information to the relay. 

Fig. 21. Communication  system. 

M u l t i p l e  Degraded Shannon 
Access Re1 ay  Channel Broadcast 

Shannon Degraded 
Channel 

w i t h  Feedback Channel 

( R ~ , R * )  EC"  R1 + R Z  <COR R1 + R p  < CFB R 1  + R Z < C  (Rl.Rr) 'c08 
CFB = c 

Fig. 22. Communication  network  with  known  capacity. 

When we put all of these ideas together, we get the 
achievable rate region for  the degraded relay channel. More- 
over, a converse, which we do  not prove here, shows that this 
is in  fact the capacity for  the degraded relay channel. 

We can obviously combine  these building blocks to solve 
networks like that in Fig. 21  and schematized in Fig. 2 2 .  

We have suppressed the  input  and  output labels at  the  nodes 
of this graph. In this network,  sender 1 wishes to send an 
index W 1  at  rate R1 and sender 2 wishes to send an inkex W 2  
aJ rate  Rz to  the receivers respectively ies iea ted  as W1 and 
Wz with overall probability of error P {(Wl , W,) # (Wl , W,)} 
tending to zero. This can be  accomplished if and  only if R 1  
and  Rz simultaneously  satisfy all of the  constraints  in Fig. 2 2 .  
This overall capacity region is the convex subset of the ( R  1,  
Rz)  plane given by the  intersection of the individual  capacity 
regions. Thus max flow min cut  holds  for  the  capacity regions 
in this  network. 

Optimism is created  each time a new capacity theorem is 
obtained,  but a  general theory does not  yet exist for  informa- 
tion flow in  networks. Even for  the building blocks of net- 
works, some problems  remain open.  The multiple access 
capacity is known,  but  the  capacity of the multiple access 
channel  with  feedback is still open.  The capacity of the de- 
graded broadcast  channel is known,  but  the capacity of the 
general  broadcast  channel  remains unknown.  The capacity 
of the general relay channel is still unknown. Progress on 
Shannon's two-way channel [36] and  on  the  interference 
channel [ 3 7 ]  has just begun. A general theory  for  networks is 
years away. Indeed there may not be a  mathematically nice 
answer. Even  if there is a nice answer, it  may not yield a 
practical implementation. But in  communication  theory, as 
in physics, one must have some  faith. If a theory is found,  it 
will have enormous qualitative theoretical implications.  In- 
deed, even if optimal  implementations prove to be too com- 
plex, the  theory will tell the  communication designer when 
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he is close to optimality. Finally, new coding  schemes will be 
suggested from  inspection of the proofs. Fortunately, all of 
the results achieved to  date are consistent  with an  infor- 
mation  theoretic description  solely in  terms of quantities like 
I ( X 1 ,  X2  ; Y3 IX,), where I( * ; *  I 9 )  denotes  conditional  mutual 
information. Whether this is a  result of limited technique  or 
is true of the  entire  theory is yet  to be revealed. 
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