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PACITY OF THE PRODUCT AND SUM OF TWO
UNMATCHED BROADCAST CHANNELS

A. A, El Gamal . | : UDC 621.391.1

Assume that plyy, z,1%4} = ply,|x,)p{z,1¥)) and ply,, z,1x5) = plz,ix,)ply,iz,y) are two degraded
broadcast channels. A broadcast channe] with transmitter (x,, X,) and receivers (Y,, Y,} and
(Z,, Z,} is called a product of two unmatched degraded broadcast channels. Similarly, the sum

- of two unmatched degraded broadcast channels is defined as a broadcast channel with trans-
mlitter y,uY, andreceivers (X\UX:) and vz, . Unlike the original broadcast channels, neither the
sum nor the product is a degraded broadcast channel. The region of the capacity is established
for the following: 1) the product of two unmatched degraded discrete memoryless broadcast
channels; ii) a spectral Gaussian broadeast channel; iii) the sum of two unmatched degraded
discrete memoryless broadcast channels. These theorems concerning the capacity contain par~
ticular results regarding the product of discrete memoryless channels that were obtained by
Poltyrev, as well as resuits concerning spectral Gaussian broadcast channels obtained by
Hughes-Hartogs. They also demonstrate that the region of rates obtained by Hughes-Hartogs
is optimal for zero overall rate,

1. Introduction

A discrete degraded memoryless broadeast channel with two outputs (2, p(y|x)p(z|y), GYXZ) caonsists of
three finite alphabets &, 4/, £ and two transition-probability matrices p(y!x) and p{z!y). As was established
in [1, 2], the capacity region of this channel consists of all triples of rates Ry, Ry, R;) such that

RA+R.<I(U;2), R,<I(X;Y|Z)
some joint probability distribution of the form pfu, x, y, z) = pWp&lwpy Ix)Ipily).

Assume that two degraded broadeast channels (&,, p{w.{lz)p(zlw), ¥.XZ) and (&, p(z:| ) p (g2l 2.,
4. X%Z;) are specilied, as shown in Fig. 1. We will define the product of unmatched degraded broadcast chan-
nels as a hroadcast channel (&, p(y, z|z), Y¥XE) with two outputs, where

$=£1X,@=, %’z%'a)(%"h £=£;X9:;, (1}
ply, zlz)=ply ) plz | y) p (2| 22) p (52| 22).

When &,0&.=% N4 ,~F,NF,=2 , we also define the sum of unmatched broadcast channels as a broadeast
channel with two outputs (Z, p(y, zlz), ¥XZ} , where =& ,U&,, Y =%, yq/, =2,

Prnlz)pi(z |y, (2y, 2} € T1X % X Zy.
P [ = Pelee|Z) pya]22),  Af (4 2) ¢ Ta X e X X, @)

0 otherwise.

The notion of sum and product of channels was first introduced by Shannon in {3]. It is well known that
the capacity of the product of two discrete memoryless channels with capacities C; and C,is C=0Cy + Gy,
whereas the tapacity of the sum of these channels is C = log, @C1 4+ 2Cy.

An example that gave an impetus to the study of the product of degraded broadeast channels is the spec-
tral Gaussian broadcast channel shown in Fig. 2a. It is known that every broadcast channel with additive
Gaussian noise is degraded. It is easy to show that if the noise spectrum Z, lies everywhere below the noise
spectrum Z, (Fig. 2b}, then the broadcast channel is degraded, and the capacity region for a two-component
spectrum (Fig. 2c), as established by Hughes-Hartogs in (4], consists of all triples of rates (Ry, Ry, Ry} such
that
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(58

for some a,, a,, f from the segment [0, 1].

If spectra Z, and Z, overlap (Fig. 2d and e), then the channel is not degraded and only the region of per-
missible rates is known (see (5, Problem 26}).

The product of discrete memoryless broadeasting channels as specified by formula (1) was investigated
by Poltyrev {6], who determined the capacity region for independent rates (R, = 0} and provided internal and
external boundaries for the overall capacity region. Sum (2) of broadeast channels was introduced by Cover in
(7] as a problem whose solution was unknown. Further studies of these issues may be found in (8, 9].

In this paper we will offer theorems regarding the capacity for the fellowing cases:
i) product of channels defined by formula ();

ii) spectral Gaussian broadcast channel;

iii) sum of channels defined by formula (2).

We will also show that the region of permissible transmission rates given in [4] is optimal in the case of
independent rates (R, = 0}.

In this paper we will employ the following standard definitions. An n-fold expansion of a broadeast chan- '
nel will be understood to mean a broadeast channel (&, ply, zlx), H"XZ"), where

piy 2im = [ [ rlyazlz). @
Tumi F:
Ap [(M,, M, M), n]-code for a broadcast channel consists of three sets of integers: :
Jn={1.---.Mn},dl,:{'l,.“,M‘},J‘:={1, T ,J’”z}, {4} .-_
a coding mapping ,
L4 o ,-»,9?"‘ 5
%M b ¢ 5) i

and two decoding mappings
gy Y MK A g (Y =(Te, W), _
5 6) 3
gyt Zrr M XM, B(L)=(W,, W),

Set {x(w., w,, wi) 1 (we, Wy, @1) 6 XM XM, is called the set of code words. Integer w, is interpreted as
the common part of the message, while integers wy and w, are called the independent parts of the message.
Assuming that a uniform distribution is specified on the set of messages A XA XM, we define the mean er-
ror probabilities for decoders g; and g, by the following formulas, respectively: _ : w3

P = o ‘; o P (g {Y) 5= {ws, w,)] for uansmision.of (zltn, 1;')‘1,‘?.05.}}, .
. Sl 1ty Wy, Wpluln XM My s (7) g
1 A = . o) o kA IR % 4
Bt = P {ga (Z) 7= {ws, ws) | for wansmission of (W, W1, We}}-

ihro"‘fl‘.‘{‘ 10e, W1, WeEu X M X M,

We alaso define the triple of rates (Rg, Ry, Ry} for an [(Mg, My, Ma), n]-code by the formulas 7,

4 Ro=n~" log M, R=n"' IOE Mu. Hy=n~! log M: N (8}
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The triple of rates Ry, Ry, R,) is called permissible for a broadeast channel if for every € > ¢ and for
all sufficiently large n there exists an [(My, My, My), nl-code with
Moz2" M 22" M, >0 (@
for which ma.x{Pgl, sz} < g,

The region of the capacity C of a broadcast channel is defined as the set of all permissible triples of
rates CB.O, Rg, Rz].

2. Capacity of Product of Channels

The capacity C, of the product of two unmatched degraded broadcast channels, defined by fermaula (1),
is given by the following theorem, .

THEOREM 1. Assume that (&, p(y, z|x), Y XZ) is the broadcast channel defined in (1), and assume that
U; and U, are two arbitrary random variables whose number of values (2] is bounded by the inequalities

leli=<min(IlZd, N9 0, 1), i=1, 2, (10}
Then the capacity region is defined as follows:

Co= {(Ro, By, By) : Ryt (U; Y,) + (U Y.), {11)
R,<I(Uy; Z)+1(Uy; Z,),
Ro+R|<I{U:; Y:) +[{X:: Yl)‘
ReAR<I(U,; Z)+I (X, Zo),
RARAR<I(X,; Y. )+ (Uy; Vi) H(Xy; Z5| U,
R+R,+R.<I(X,, ZyHIU; Z)+I{X,: Y, |0}, for some pEF},
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p(ult o, I, I, 3} '__p(ul)p{u!)p(zllul}p(rz‘udpty! ZII}‘ (12]

It is easy to show that for Ry = 0 this region reduces to the region of independent rates obtained by
Poltyrev, This is formally contained in the corollary that follows.

where # is the set of probability distributions of the form

COROLLARY (Poltyrev [6]). Let R; = 0; we set
e,~— max {(X;7Y,), €= max !_(X:; Y.), (13)

Pz Fiz)

the maximum vaiues being attained on distributions p*(x) and p*(x,), respectively. Then, for independent
rates, the capacity is given by the following formula:

C.={(R, R : R<I(U; Y +e, RebRa<I(U; Y3) +eH (X33 Z3|U)  focsome  plu, 2,9, 2)
=p(u)p(z]u)p (2 ply, 2i0)} D{(R, Be) : Re<<I(U; Z)) tep, RiHR<I{U; Zy) e (14)

+i(X,; Yy |U) fasome plz, z,y,2) =p(a)p(z|u)p*(z) p(y, 2]} }.
It is easy to see that region (14) can be obtained by summing all possible pairs of points from the regions
of channel capacities ply,|x,}p{z,l ¥y, and p(z,|x,)p(¥,l2,), respectively.

If R, = R, = 0, we obtain

=

Ry« max min{l{(X.;Y,)+(Xs Ya), I(X;; Z)+I(X; Z5)) 2 €., (15)

P(E)PixE)
this being the maximum capacity of the channel.
This capacity region for degraded sets of messages R, = 0} is specified by the following for mula:

Co=({Ro, R, : Re<<I{U; Y} H (X5 Ya), (16)
R<I(U; Z)H (X5 Z4),

R+Ry<HX,; Y)H(X,; ¥a),

RAR<I(X; ¥, |U)+I(U; ZY+H(Xsi Ze). -

for some  p{u, z, y, 1) =p (W plz ju)p(z)p(y, z]2)}.

Remarks Concerning Cy. 1. It is important to note that, if we admit ou ULLXYUKE KE. more general
probability distributions than those described in (12), we do not increase the region as compared to C;. The
reason for this is that every information quantity in {11} depends either on p(uy, Xy} or on p(u,, X,), but not on
the entire distribution pfu;, u,, X;, X;}. 2. Cy is a convex region {sce Appendix 1). 3. An estimate for the num-
ber of values of auxiliary random variables U, and U, can be obtained by using the customary procedures (see,
e.g., [10]}). 4. Assume that Px,Px, is a probability distribution on &,X&: that is the product of distributions on
&, and &.; we set

C,(pﬂpn)={(Rn'_R“ R.): R,, R, R, satisfy the six inequalities
in (11} for p{(z)) p{T) =pepul -

Then
Com U Culpedn). an -

L
T, %
v X i

Figure 3 shows the region Cr(py by ). The external boundary for Cr{px px,) 18 a combination of the fol-
lowing three surfaces:

Tt e L e

1. Cylindrical surface specified by the equation

Ro+R:=I(X1} Y:)"'I( U:; Y:)‘ :
Ri=1(Xs; 2| Us), | . W8y
Ruif(Uz; Y:}‘ Us"fﬁ- b

2. Cylindrical surface specified by the equations

Byt Ryl (Xa; Z)+1(U2: 22},
RI‘=I(XI; Y1|U1)1 {19]
R<I(U,; Z,), Usmg.




Fig. 3. Region Cw(PxIsz)-

3. Convex surface specified by the equations

R:=I(Xﬁ Ylfvt),
Ri=I(X,; Z,|U), 20)
Re=min {I{U; Y)+I(Uy; V), I(U,; Z,)+1{Us; Z,)).

This reformulation of the assertion of Theorem ! makes the proof of the direct p;art of Theorem 1 trivial
since we need only prove that all triples (R;, R, R,} lying below the boundary of some region Crlpx s Px,) are
permissible.

*

To relate the proof of permissibility to Bergmans' coding theorem for a discrete degraded memoryless
broadeast channel [1], we note that

1. U, and U, are restored by both receivers, and hence can be interpreted as the common information;
however, U, may incorporate particular information for receiver Z, while Uy may incorporate such
information for receiver Y.

2. X, is restored by receiver Y, so that for specified U; we can interpret X, as the particular informa-
tion for Y.

3. X, is restored by receiver Z, so that for specified U, we can interpret X, ag the particular informa-
tion for Z.

Triples of rates on surfaces 1 and 2 can be obtained using one of two degraded channels in a superposi-
tion mode, while simultaneously transmitting information over the other channel at the Shannon rate. Triples
of rates on surface 3 are obtained using both channels in a superposition mode,

In the next section we will show that this scheme is in fact optimal.

3. Converse Part of Theorem 1

The weak converse of Theorem 1 says that if Ry, R, R,) 4 Cy, then there exists a A > ¢ such that for all
o we have

max {Po,, Pl) =h.
Proof. Fano's incquality states that
Pl <e=H(W, WY, Y.)<n(R+AR)eH < ne,,

Pricess (W, WelZ,, Z) S (R R e+t 2 nea,

Now

nR=H(W)<I(We; Y, Yo} tnen=I(We Yoy H(We Yi|Yo) FreSI(W, W Y HH{W,, Wo, Yo Y tnew. 21)
£ larly,

RRET(Wo, W ZYHI(W,, W,, £, Z.) +nean. 22)




Furthermore,
' RBAR ) =H(W)+H(W)<I(W, W Y, Y.)+ne,.

=W, W, o) H{(W,o, Wi Y| Yo)bnew <I(W,, W,; Yo} +I(X,: Y.) +re,.,

where the last inequality follows from the fact that we are considering our discrete memoryless channel,

Similarly we can show that
n(RotBy) <T(W,, W ) +1{Xy; L) +nes.

Furthermore, let us consider the triple

AARFR)=H{W)+H (W) +H (W) <I(W,, W; Y,, Y)+1(Wy; Z,, L) +n(emtesn):

1) sI{(W, Wi Y, Y. )HH(W,; Z,, Z,|W,, W)tn(eten)
=I(W, W, Y)+I{W, W,: YJY,_)%—I(W,;-Z,”‘V.,, W

2} =[!(WD| W, Z; Yi)_l(zl; Yz' W" Wl)]+l(wl; Z, I‘Wh W, Z!)_+n(sin+e;.)=
H(Wo, W YY) +I(W; ZW, Wy +I(W Ze| W, W, Z) 4 n(eintesn)

3) <{I(Ww.,, W, Z; Yo)HI{((W,; Z,|W,, W, Z) 1+I(W,, W,;
YY) H (W 2| W, Wo, Yo} Frlemtes),
where inequalities 1, 2, and 3 are obtained as follows:
L I(Wy 2, Z| W, W)= W, 2. Z 5),
since W;, W, and W, are independent;
2: we add and subtract 1@ ; Y, Wy, W) to the first term in 25);
3: the inequality _
Wy, Z,)W, W, <{W,; Z, Y, W, W)

and regrouping of terms are employed.

22}

(24)

(25)

(26)

Let us now consider the last two information terms. As a result of the degraded nature of the chanpel we

have

W, W, Y, | Y.} +I(W,; LW, W, Ya<I(w, W, Y.\ Y.)
H(Wy; YJW',, W, Y!)=H(Y1{Y=)‘H(Y1|Wh w,, Y,)
THX W, W, YO)—H (Y, |W,, W, W, Y,).

The second and third terms cancel, and we obtain that expression 27) does not exceed
H(Y)-HX,|W, W, W, Y,).
Since the channel is discrete and memoryless, expression {28) does not exceed
: H(Y)—-H(Y|X)=[{X,; Y,).
Now we obtain from (26) that
a{RARARY<[IW, W, Z;; Y)+HI(W,, LIW, W, Z,)] +I(X,; Y.)-ﬁn(s‘.+e,.).
Similarly, we can show that
R{RARAR)<SUI(W,, Wy, Yo Z)+H(W,; YW, W, Yo) 11 {Xs L) tn(ete,.).
"I‘o bound the right sides in (21)-(24), 30}, and (31), we require the following lemma, . .
LEMMA 1. For everyl, 1l =i =< n, we set
Uim (Yo, Wo, W, ¥ and Uy o (2, W, W,, 20 ), where Y4 2 (.., Yioa).
Then |

pluy, Ty Yy -‘-'s;) =P{u:(.]:P{=u|“u}P(yu. zu|3u).

2y, zu, I ¥u) =p (8} p(Ta|ts) p (zm_ Yae| 224}

(28)

29

30

(31

32)
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(i) 1{W; Y W, W, Y < E;(xu; YulUs),
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I(W:; Zzlwn W, Z,) GZ I(Xn: Zn*U:i)-

tmml

1 directly to (21)-(24), (30), and (31}, we obtain that

nﬂoéz u (Uu; Yu) +1 (Uu', Yu))'i'ns,.,

Naml

nRy= ZI ;U(Uu; 2.0+ {Ua 22} ) e,y

immi

n.(Ro'i'R,}é 2 {I(Un; Y) )+ (xn Yl) +ne. QZ (I (Un; Y:i) +I (Xn] Yu}) +nEin,

el dami

n{R,+R,)= ZI (U, 2,0+ (X Z2)) T hesa,

n(Rn+H,+H,)aZ (I(Xyo Yy ) H Us; Ve H (X3 Z251Us) ) Hr(2nFean),

immi

n(R,+R|+R,) = 2 (I (X.; Zﬂ) +1 (Uu; th) +I (X:i} Yul Uu) }+n(31n+8u)-

i

Now the converse part of Theorem 1 follows directly from the fact that C, is convex.

4. Spectral Gaussian Broadcast Channel

We define a spectral Gaussian broadeast channel with two unmatched degraded components in Fig. 2.

The following theorem describes the capacity region of this channel,

(35a)

(35h)

Proof. The proof is analogous to that of Lemma 2 in [2] (see Appendix 2 for details) If we apply Lemma

(36)

Assume that CP/N) = (1/2)In @1 + p/ N is the capacity of a channel with additive white Gaussian noise

{AWGN), for which the signal-to-noise ratio is P/ N.

THEOREM 2. The capacity region of the channel in Fig, 2e is specified as follows:
Co={{Re, Ry, Ra}: ReSC(apP! (N2, pP)) +C{a.pP/ (Ni+0.pP)),

Ro<<C(a,pP/ (N, +&,pP) Y +C(a,pP/ (M, +a,8P)),

RoAR<C(a.fP/ (N.+8.pP) ) +C(BPIN,,),

By+-By=<C{a,pP/{N +0,pP)) +C (PPN,

Hn+R1+R:£C{ﬁP!Nu) +C [G:E’PJ" (N:‘f‘G.:BP) } +C (U. |EP,,N;,) i

RARARSC (PPN, ) +C (@, P/ (N,+0.pP) ) +C(8,BPIN ;)
for some Z1, O, B from the segmemt [0, 11} .

37
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Remarks. 1. Region Cg i3 convex.

2. For fixed oy, &y, f we can achieve any triple (R,, R, R;} € Cla, oy, B) if we first divide the entire
power P into the part AP used in the first channel and 8P used in the second. Then 8P is divided into the power
o P used to transmit the common information to Y and &lﬁiP used to transmi! the particular information to Y;
BP is divided into the power @,8P used to transmit the common information to Z and «,BP used to transmit
the particular information to Z. The details of the proof of permissibility are standard and will be omitted,

3. In the case of independent rates (i.e., for Ry = 0}, region Cg leads to a plane region Cy, where

Ca={(R,, B:}: B<C{a,pP/(N.+0.5P))+C(BPIN.), (38)
Ry<C{apP/{N +a,pP))+C(BPIN,),

RAR<C(BPIN)4C (B P (N +0.pP)) HC(8.BPINL),
R+R.<C(BPIN,)+C(aBP! (Nt ,pP))+C(a pPIN,),

Dgah Ly, ﬂéi}'

It is easy to show that CH coincides with the Hughes-Hartogs permissible region [4].
Now if we prove the converse, we obtain that Theorem 2 does indeed specify the capacity region.

Converse of Theorem 2. Assume that we are given an arbitrary sequence of codes that leads to the triple
of rates R;, Ry, R,). We will show that there exist a,;, a,, and # such that ®;, R, R;) satisfy the conditions
of Theorem 2. First let us recall Fano's inequality:

H(W, WAY) <Pl in(RHR,) +H = ne..,

H{W, W.Z)<P,:n(R,+R:}+1 = nesa,

Furthermore,
nBe=H(W)<I{W,; Y, Yi)tnew <I{Wo, Wy, Z; Vo) H (Wo. W, Ya: Y,) e,
=H(Y:)—H(Y\|W,, W, Z)+H(Y)—H(Y,|W,, W, Y,)+ne... (39)
But
H(Y.)< (nf2)In (BP4-N,), 40)
where
BP L (n/2) ¥ MY, @n
and
H(Y,)<(n/2)In(BP+N.), {42)

where, in view of the constraint on the power,

P=— Z M(X" +X.)= —-Z MXu’+BP | 43)

inal fami

1t is easy to see that there exists o, w, € [0, 1] for which

exp{(2/n) H(Z,| Wo, W, Z))} =2re (@pP+Nu), - o a4y
exp ((2/n) H(Y,|W., Ws, Yy)) =2ne(afPHN). - (45)

a

Let us consider the following provisional form of the entropy mequality with the power [11]:

oxp [(2/R) H(Y.|W,, W,, Z,}}=exp {{2/n)H(Z,|W,, W,, Z}}12reNy,
exp { (2/n)H (Z,|W,, W;, Y))}=exp {(2/n}H{'(|IW,, W_, Y,}}+2neN,,

R armn A i v E

" From this we have

L H(Y\|Wo, W, 2,)2(n/2) In 2ne(u,ﬁp+r_~'_;},’ - 46) 1
H(ZW,, Wy, Y2)>(7/2) In 2ne (03P +N,). . . @n |

"




Substltutmg 4oy, 42), 45), and (46) into {39} we obtain-

S enSVRE T Lo, st W
[ e . P o 2 ﬁP -
{otd- (N Rs;C(——ﬁ )+ — )+ o

AN e pP C(N,+a,f31_0 o

Similarly, we can show that | |
a,pP B P
RO —" )+ (22 Y 4.,
(N+ .5P) C( 1 )ﬂ-"‘

P\lrfherlﬁbre:, ’
R(Rg'}‘Rl}gl(W“ WI; Yly “'!) +n8|n

1) <HW,, W, Z; Y)H (X,; Y,) +ne,,
’ . Cf-zBP ﬂp

<nCl—— ) +
?) e (N +a,ﬁp) ”C(N,,)Jr“'“’ .

where step 1 was proved in (23}, while step 2 follows from the upper bound for I(Wn, Wi Z,, Yz) from (40) aucl
(46). Moreover,

(50}

(X, Yy =H(Y)—H (Y.)X,)<(n/2) In 2ne (8P+N..) —(n/2) In 2neN, =nC (BP/N,,).
Similarly, we can show that

ReHRy<C (——“’ﬁp )+c( BP )+s,.

N +a,pp Nes 6
Let us now bound the sum of rates from above. Let us assume that for some 6 > 0 we have either
6,82 8P wpP
R+RAR>C (—22° +c(
; ( T ) N“) +c(,_._“ ) +8, (52)
or
apP pP a,pP
+RAR>C|{ —— 1 +C + +8. (33}
RetR,HR, ( N,+a,gp) (N) C( N ) g
Combining (30) and (50}, we obtain that
apP pP
R(Rn+R1+R=) <nC (m) +HC(N—H) +1(W,_; Zz|Wo, Wl; Zl) +n (8:n+l‘l:n)
; (54}
«pP BP ; _
< (ﬁﬁ,—) +nC(-RF—:) +H (ZiWo, W, Z) —(n/2)In{2xeNs,) +nlesmtesn).
Now if we assume that inequality (52) is satisfied, we obtain that
H{Z,|W,, W, Z,}> (n/2} In 2ne(N,,+4a,BP) —R({EintEs)+né. (55)
However, this contradicts {44). Similarly, assuming that (53) is satisfied, we obtain from (31} and (51),
H(Y;le, W1v Y=)>{n!2} In 2ne(N“+ﬂ,ﬁP)—n(g“+g,,‘) +n6; (56)

and this contradicts 45). Thus the triple ®R,, Ry, R,) could satisfy the six inequalities from Theorem 2 for
some &y, a,, and f, The proof of Theorem 2 is now complete,

5. Capacity of a S8um of Channels

In the pext theorem we will define the capacity region of the sum of two unmatched degraded broadcast
channels, which was defined in (2).

THEOREM 3. Assume that (&, p(y, z|z), 9XZ) is the broadcast channe] defined by (2), and assume that
Uy and U, are two arbitrary random variables for which the number of values is bounded by inequalities (3).
Then the capacity region is defined as follows:

Co={(Rs, R,, R2): Ro<<al (U,; Y,) &l (Uy; Yy)+h(a), {57
Re<al(Uy; Z2)+al(Uy; Z.)+R{a),
BAR,<al(X,; YO +al{U,; V) +h(a),

e et - m AL ermra insn




A+R,<al(U; Z)+al(Xy Z)+h({a),
RetR+HR<al (X,; Y.)+a[I(Uy; V) HI(Xa; Z,| U [+h(a),
Ret+-R AR, <alI(U; Z)+H(X,; Y, |U) 1 +al (X, Z:)thia)

for ome pEP and some o 6[(), 11}
Remarks. 1. Region Cs i3 convex (Appendix 1).

2. If we consider the case R = R, = 0, then expression (57} becomes

Rt max min{al(X,; Y)+al(X,: Vi) +h(a), al(X; Z)+al{X:; Z,) +h(a)). (58)
Fizuipio.
EE[0,4]

We should note that there is an analogy between (58) and Shannon's sum of channels [3].

3. By amalogy with C?,(pxleE), we define Cg (o, pxlp)(z) as the set of all triples R,, R,, R,} that satisfy the
5ix inequalities of Theorem 3 with pixy) = Bx s pix,) = Px, for fixed @. The outer boundary of Cs{ar, pxipxz) can
be represented as the union of the following three surfices:

i} the cylindrical surface
RytR=al{X,; Y,)+al(Uy; Yi)+h{a),

Ri=0l(X; Z.| U, ' 59)
Resal(Uy; Yo)+h{a), Uy

ii) the cylindrical surface

RotR,=al(X,; Z,)+(U,; Z,)+h(a),
H|=GI{X|; YliUg), (60)
Re=al(U,; Z)thia), U=g;

iii} the convex surface

R<al(X,; Y,|U) +Hhia),

Restl(Xy; ZojUs) +h(a),

RAR+R,=min {al (X,; Y.} +a[I(Us; V) + 61}
+I(Xg; Z,l Uz) ], G.I(X:; Z;)+G11(U:; zl)-{-r(xl; Yll UI) ]}+k(a)'

Rysmin {ol{U; ¥) +al(Us Vi), al(Us; 2) +ad(Us; Z:)} +h(a).

Let us now sketch the proof of attainability of Cg. First we fix o € [0, 1] and pés.

Random Code. 1. We choose 20h{®) independent identically distributed (ID) sequences v & {0, 1}? with
probability

IGES | EICNS | 62
i |
where
p)=a, pl0)=1-a. {63}
Numbering the chosen v, we obtain v(i}, i ¢ [1, 20h(a)y .
2. For every v(i) we choose 2B®R¢*Ri-Bh(@)) g¢ [0, 1], TID sequences u, with probability*
wivdy 64}

pldvin— J] ptws

N

each, Numbering them, we obtain u, (', i), ' € [1, 2n(Ra+R;-ﬁh{a))]-

g e

*We denote by w(v) the Hamming weight of sequence v,w(v)= 'va.

(il
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3. For every v(l) we choose 2“(R0+Rz”‘3h(a}] 16} Sequences u with probablhty : ; TEny .

' B l‘- Sl e, W Baen 7 -—-{v[m Do :
p(u‘l"“))" H P(uﬂ) ezaaw oratan P 7 |
MR Suas B . At - i »r

each. Numbering them. we obtain u,(§", iJ. ji" € [1 2HCRO+B' ﬂh(&}}} I
4. For every u,{}', i) we choose 2"B{ 11p sequences x; with probability ' % :
' ST s il u -4
pelbur.0)= H ERINGR) CON
each. Numbering them, we obtain x,(m,, j', 1}, m'l €[1, 2“R1 I ) _f
5. For every u,(j", {} we choose 20R2 11 sequences x, with probability ' ' 1
n=—w{Y{f1} s
paln( )= [ plaluaG0) (66) i
o | '-
" R .
each. Numbering them, we obtain x,(m,, j7, i), m, € [1, 2Rz, i
. iy
Now we obtain i
R=R/+R,”, R=R/+R,", R.~R/+R,". &7) i
The code book 5

{xlmy, myy ) 77, 0) 1 ASES2™D, gy zriny 480 -men ' |

e

IjrE2MN B (g m <20t m, < 2nn ) *

can be obtained from the sequences x;(-), X,(-) as follows. For every combination (my, my, j', j", i) and every ' ;
1< k= n, we set £
& .

gl T, IF w{i)=1, [ % -

X (m ) rn"h 1 1 = { i £

x 12y g% Tow I 0 () =0, Nt

> s

where k=Y vi(®),  ke—k—k.
P 3

Now a direct check establishes that this random code canbe usedto attain any triple of rates lying on the outer
boundary of the region Csla, pxlpx:!).

The converse part of Theorem 3 is less obvious than the direct part; it will be taken up in the next sec- |
tion, |

6. Converse Part of Theorem 3

We will show again that if Ry, R,, R,} ¢ Cg, then there exists an € > 0 such that max (Pe 1 Pe ) > e for
all n. If code book & ={x(w,, w,, w.), {<wW, 2" 1< <" (<w ,<2"%} with mean error probabllities (P2

’ Pe ,2) is specified, then for at least half the code words x(w,, w,, v,)6% we have &l _
Plg,(y)* (@, w,)| was gansmitted (w,, wy, Wa) } 2P, " ©8) e
Thus if I
F = {x(w,, w,, w:): x(w,, v, 10, € and condition (68) is satisfied} , 69) | 14

then ||@,=(1/2) 2»R+8+80  Moreover,

ﬁ Z P{g ()7 (w,, w:) | was ransmirted

(LI 1
X W, W17,

(wl; Wy, w,) }“{-2P:.:

“ ‘-n-twq-r.—ow L' "
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and for half the code words x(w,, w,, w:) €&, the following condition is satisfied:
Py, (z) * (wo, w,) | was transmitted (i, iy, w,) ) S4P,. (70)
Therefore, setting

© {x(wo, wy, w2): x{ws, w,, 1,) 6%, and condition (70), was satisfied}, (71)
we have
N2 (1] 4) 2mReriatsl, (12)
Now let us set
No(x(wo, w\, w)) =1{i: £,(ws, w,, w,) 62, 1i<n} ],

where Al denotes the cardinality of the set A, The quantity N;&twg, wy, w,b} indicates how many times channel
1 is employed in transmitting code word X{wy, Wi, Wy). For 0 = n; = nwe set

G () ={x{wo, w,, w:}: x(w,, w,, w;) €7,

(73)
N, (x(w,, w,, w:))‘=nl}.
Then
= |} ¥(n) (14)
and
! 1 '
—logll®l=—Ilog ¥} 1€ (n)l<(1/m)log(n+1) max B (a0}, (75)
n n :—_lo Dagn
Let us assume that the maximum in (75) is attained for some n;. Then
(1/n)logl®l<(1/n)logl® (n, ) i+ {1/ nylog(nt1) <(1/n)logll® (n,3 145, (76}
where
8.'=(1/n)0(logn). 77
Now let us consider a new code book ®{n,”) of cardinality
!|§'(n1°} l|>2u(&+n.+ﬂ,—u,}‘ (78]
where &p = 6y, + 2/n. This code book @ specifies an empirical distribution on £, Assume that ¥ = (Vis -« oy
Vn} is a2 random vector such that for 1 < i =< n we have
1 if Xlegh
€ =1" 79)
Ve, 1}, V., {0‘ . (
50 tlml;z| Vi=n,". We also define the random vectors Xt Xop Yo Yy, 2y, Z; as follows: Xy = X, Xigy v » .,
=i
XipY Is 2 random vector consisting of components X that belong to &,, ordered by increasing number. The
random vectors X;, Y,, Y;, Z;, Z; are similarly defined. _ _ _
Now let us define the following joint probability distribution on 508 X¥°, XP "X XY "X X"+ .
" ; P04, Wy, 103, ¥, Xy, Xy, ¥s, Y Ty Ba) 3
,.l.- (R—Rit) !
= p (1w, w,, ) p (v, x,, x,|w,, w,, w:)HP(yulzu)P(zltlyn) H P(zuf-"-'n)P(Uu!z:t)‘ 8o} }
. = fmll B
i
where L 1
1718 (na™y . i x_{wu, wy, W) € B (1), 1)
P e 04, 103) = 0 otherwise. : _ ( s
Note that all the fwy, wy, w,) for which x(w,, w,, w:) 6% (r.") satisfy conditions (68) and (70). Thus, employing
Fano's inequality, we have

‘ H(W, W, |Y)<4P]\n(R+R,) +12ne,,,

{82a)




G B H(Wo, W,1Z) 4P (R Ry) H=ne,.
e R H(W,, W,, W,)=[€(n,"} = n{R+R+R.—8.).

H(W)<nR,, H(W)<nR, H(W,) <nR,
so that ' ' '

n(R+R+R,—8,)<H(W, W, W,)<n(R,+R,+R,),
H(W)en(R—8,), H(W,(|W, W)zn(R,-3,),
H{W,|W, W)Yan(B—8.), H(W, W) =n(RAR~85,),
H(W, W)=n(R,+R,—-6.).

Now we will proveed as in the proof of the converse in Theorem 1. We have
i} nRy<H({W,)+n8,=I(W, V, Y)+n(e..+5,)=I{W,; V)
+H(Wo, Y, Ya| V) +n(e 48, <H(V)+T(W,; Y. V)

+I(W,, Y. |V, Yy} tnle,+8.)<H(V)HI(W, W, V; Y,)
+H(W,, W, Y., V; Y, ) +n(e.+8.).

Moreover, .
ARSH(VYHI(Wo, W, V; Z)+I{Wo, Wy, 2o, V; Zs) +n(esnt8.).

Furthermore,

i) n(RAR)SI(W,, Wy Y) +n(en+8.) =I(W,, W,; V)

T (W, Wi Yo, Y| V) Hr{enH8) <H (V) HI (W, W, V; Y.)

+I (Xi; x“l) +n(gln+6n},
and

r(RARY<H(V)+I{W,, W, V; Z)+I(X,: Z)ta(e.+8.).

Ally,

il n(Ry+R+R}<H(Wa, W) +H (W, | W, W,)+n{eites
+28. ) <I(W,, Wy Y)+H(Wy; Z{W,, W,) 4 (es+eemt25,)
<H(W,, W V) HI(W,, W, Y, YL V)+H (W VW, W)

FI{Wy; L, Zs| Wo, Wy, V)R (e teant20.) SH(V)

W, W Yo, Ya | VYHT (Wi Z, 2] Wo, W, V) tn(emterat26.).

Similarly to (30), we can readily show that
n(R°+R‘+R=} SHMV)+H[ (W, W, Z, V; Y) +I (W Zzi W, W, Z, V) I+ (X, Y, tn(entent26.).

Moreover,

n(Ro+RAR)SH(NV)+[H(Wo, W, Y2, V5 Z,) +1(W,; Y, |W,, W, Y, V)1HI(Xe; Z)+n(eatent28,).

Now we require an analog of Lemma 1 in order to bound the right sides in (86}~ (92).
LEMMA 2, We set U,;2 (Y,, W,, Wy, Y1T1.V), i<i<n*:

Uyl (Zy, Wy, Wo, 200 V), A i< (n — g

Then
P(N‘.", Lty Yiny zu) =P(uu)P(1u| uﬂ)p{ylh z,,i::,()‘
Pl2a, Taq, Vo 22) EP{uzt)P(rﬂiuzi}P{ylh z;;lx,()
and _
) I(Wa W, VYo Y 1T Va),
ETY |

HWo, Wa, V; Z,) < E U 2.0,

L]

Ty (82b)

,(83)

(84)

" (85)

(86)

E7)

(88)

(89}

(90)
(91)

(92)
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) [(We W, Y., V;Y)< Y IWY.D,

HW, Wy Z, Vi )< E (U Z.)

L) TP YW, W, Yo VI 3 10K YU,

L ]

(W, Z,|W, W, L, V)= 2 (X, Zz-‘lei) .

1o

The proof of this lemma is analogous to that of Lemina 1, and will therefore be omitted.

Now we will bound H{V) from above. Using standard reasoning involving complex functions, we obtain

H(V)=< Z-‘H(V‘) = Z“, EMV)=n (—l-i MV ) <nh{n,/n), (93)

loml il

gince n,== ZVFM ZV.-. Combining (86)-(92), Lemma 2, and {93), and using the fact that Cg is convex,

i (] .

we cbtain that there exists an o = nf/ n and random variables U, and U, such that (R,, R,, R,} satisfies the in-
equalities of Theorem 3.

7. Conclusions

In this paper we have obtained the capacity of the sum and product of degraded broadeast channels, The
product of channels is a model for a channel with spectral noise. The sum of channels is of interest in terms
of its mathematical duality with the product of channels. The capacity regions for both channels have a rela-
tively similar description. The proofs of the converses in Theorems 1-3 are comparatively similar. In the
case of a Gaussian spectral channel, the entropy power inequality is used to bound the entropy of a noisy chan-
nel. In the case of a sum of channels, we reduce the volume of the specified code book by a factor of n, ob-
taining a code that is not a produet and has an exponential volume as before. Then we apply Fano’s inequality
and other bounds to the resultant code, these yielding bounds for the rate of the original code,

The author wishes to thank T, Cover and J. van Kampenhout for discussions in the course of writing the
paper.
APPENDIX 1

Convexity of C,. Assume that (U;, Upj. Xyiy Xpis Yiis Y2is Zais Z2i)s 1 =1, 2,aretwo sets of random
variables whose distributions lie in #. Assume, moreover, that T is a random variable that assumes the
values 1 and 2 with probabilities @ and @, respectively. We set

UlT=Ul( Uz:':Um X(““Xm X:=Xm
Y1=Ym Y,— T zn='zm Z,_-——Zu

for T =i.

Then the sequences
(T, Ug)~X,~Y,~Z,
and
(T, Uyp)=X;—~Y.—~2,
form two Markov chains in the order indicated. We have

CU'(U“; Y.J‘*'G.[(Uu; Yn) +C!J(U::; Y1|)+ﬁ-l(Uu; Y:z)
=/ Y, |} + (U Yo | TY<<I(T, Uiy YYHI(T, Usr; ¥a)
! =HUG YY) HI(Ug YY),
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where the distribution U = (Ty, UiTi3_ coincides with (Tj, Uith 1 =1, 2, while T, and T, are Independent._ We

should note that we have employed Remark 1 from Sec. 2 here,
o Similarly we have - R

al (U Y?l).+&I(UH; Yo tal (X, Y. )+al(X,,; Yoy |
S R f § 21 Y,|T)+I(X.; Y,[T)SI(U,,. T, Y.)+I(X,; Y S e SR T
=I(Us; )+ (X, 1), g

Finally,

al(X,; Y,,) +al(X,;; ¥,5) Fad (Uy; Yy} +al(Uyy; .Y::)
tad (Xai; Za | Us ) ad (Xu Zog | U) =T (X2 YD)+ (Usr; Y| T)-
H(X,; Z,| Uy, Ny<i{X; Yy +I(U,; V) +I(Xs; Z|Uy). P

o APPENDIX 2 _ Lo
Proof of Lemma 1. We will prove only (33a) and (35a). The other two inequalities can be proved simi-
larly. We have ' 5

(W, W, Y,)= E (W, W, Y, YY)

Tum]

-“.’,-:_' Z!(W.l W;, Y:[-" ZI.; Yz;‘} “‘; ZI{W‘;, W;, Z:_‘ N Z,; Y;[) L Zl [{Ull; Y!l)-

dmat € (e | da=
Now let us consider (35a). We have
TOW YW Wa Yo)= Y IO Yl W, W Yo, 117 Vv,
Tami Tomaf

To prove Markov property (32) we write the joint distribution of the channel:

p{ws, w,, Xys Xz, ¥y Yoo 20, Bp) = (105, w0, 04} P(xy, X110, W, w,) 2 P(yuIZH}P(z.i!yﬁ)P{Zulln)P(!-ht'zzi)-

ey

Summing first over w, and z,, we obtain

P, W, X, X3, ¥4, ¥, 2) =p (0. 179) p{X,, Xa [ 104, 18) HP (32 I-‘U;()P (zulyu}P (yalzs)

=2 (e )P (510w wp(xal w0, w2, x)p (3212 [T a2 p(2alya).

[T ]

Now summing over x,, we obtain

P wa, x4, ¥4, Y2, 24) =p (e, ) p{¥z, x| 10,, 0.} Hp (gaulzu}p(zicly).

Tt

Now we sum over (Y1j+1s Yin) and over all z;; except for z1j. We obtain

=1
Py, ws, K Yt e oy Hss ¥a, £yg) =p (w,, w,) 1678 x,|w,, wz)P(yqlz.j)p(zufyu) Hp(y..l::.;).

Finally, summing over all x,; except for Xij, we obtain

- =
P, &2, ¥2, J1 ‘» Top Yigi Zu) =p{iy, w:) p(y,, Lrg y:J "Iw., w:)P(Hu‘«":u)P(hi’L’u)-
APPENDIX 3

Convexity of Cs. The proof is analogous to what is contained in Appendix 1, so we will point out only the
auditional necessary steps. Let g € [0, 1]. Consider the following expression:
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ﬁall(Uu; Yl!) +Bﬂ:f (Ulz;le) +§h (Ch) 1 E‘h (az)

Pes (U Y0) ]+ﬁh(a1)+ﬁk(az), (A3.1)

fee,
= i+ e i Y e
i [ (B tPa) A 256 (Ba,tPaa)

We set a;i po.+fa. and define T as before, but with P(T = 1} = ga,/(Ba, + ﬁagi. Then the left side in (A3.1) docs

not exceed
al (U Vi) +h(a)<al(Ug, T; Y +h{a).
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