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curve A’B; in the probability plane. For s > 0.5, we can see by 
numerical calculation that the curve A’B; is very close to the 
straight line A’B;. Also, the boundary curve AB, of Go, 
ahho@ convex outward, is well approximated by .the straight 
line AB,. 

Now let us examine condition (9) in order to compare GJ with 
Go. Let us define 

f(4,42)=11-52 

For s=0.5,j(q,,q2) is nonpositive for all q,,q2 For q1  =qz= l/2, 
f(1/2,1/2)= 1-2h(c/2)+h(s)/2 is an increasing function of s 
and becomes 0 for s = s,, = 0.5754. For this value of s, condition 
(9) is satisfied only at A’, B;, and B& [i -t2 =j(q,,q2) is negative 
on the curve A’B; (except at the end points), and n1 - q2= 
j(q2,q,) is negative on the curve A’B;. Thus the boundaries of GJ 
and Go coincide only at A, B,, and B, for s= se. Since the 
boundary AB, of Go is well approximated by the straight line 
AB,, G, will be a fairly good approximation to G even in this 
case. 

When s exceeds s,,, the region in the probability plane for 
which 6, <5; moves towards the q2  axis. This region and the 
region for which n, < q2 are shaded in Fig. 3. The points C; and 
C; in Fig. 3  are on the boundaries of the above regions, and the 
points C, and C2 in Fig. 2  are generated by these probabilities, 
respectively. Thus the boundaries of GJ and Go coincide with 
each other, and therefore with the boundary of G, except along 
B, C, and B2C2. Therefore GJ will be a good approximation to G 
for s > s,. If we connect B, and C, as well as B2 and C2 by a 
straight line, the resulting region will be a fairly good approxi- 
mation to G even if we do not calculate GJ accurately. 

We  can further show that the segments B,C1 and B2C2 of the 
boundary curve of Fig. 2  become very short for large s. Let the 
q2  coordinate of Ci in Fig. 3  be qo, and let the R, and R2 
coordinates of Ci in Fig. 2  be x0 andy,. The values of qo,yo (in 
bits) and yo/xo are listed in Table I. For s > 0.7, q. and y. are 
calculated from the following relation obtained by expansion: 

log2 qo=lw, (l/9+ 1 -mq,)/~ 

~hn)=[slog2 {(‘-Sq,>/s42}-h(sqm)+h(s4m) 

+ %?I~ log2 (s/3+(1 -%n)w]/% 

Yo=4*[ii,~{1+log2(l/q,)}+(q,-q,s)log2(l/s)]. 

The table shows that the B,C, and B2C2 segments of the 
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boundary diminish very rapidly for increasing s, and GJ is 
practically coincident with the capacity region G for s larger 
than 0.7. 

We  have shown that, for a  particular discrete two-user chan- 
nel, G, is a good approximation to G for strong interference and 
is practically coincident with G for very strong interference. 
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The Feedback Capacity of Degraded Broadcast 
Channels 

ABBAS EL GAMAL 

Abstnw-Tke fact that the capacity region of the discrete memoryless 
physically degraded broadcast  channel  is not increased by  feedback is 
establisked. 

I. INTRODUCTION 

The capacity region of the discrete memoryless degraded 
broadcast channel (Cover [l]) was established in [2]-[4] and [6]. 
Bergmans [2] exhibited an achievable rate region. A converse for 
the binary symmetric broadcast channel was established by 
Wyner and Ziv [3]. Gallager [4] then proved a converse for the 
general discrete memoryless degraded broadcast channel. An 
alternative proof of the converse was given by Ahlswede [6]. 
Using methods similar to those in [4], it will be shown that the 
capacity region is unchanged by feedback when the degradation 
is physical. 

II. PRELIMINARIES AND DEFINITIONS 

The model under investigation is shown in Fig. 1. 
There are two sources, the first producing an integer W i E xi 

={I,. . . ,M,}, and the second an integer W 2  E s = 
{l;** ,M,}. At the nth transmission the encoder maps the 
pair ( W,, W,} and the past outputs {Z,, . . . ,Zn-i} and 
{Y,,***, Y,-,} into X,. Thus 

xn=fn(w1,w2,~,,~~~,zn-I,~,,~~‘,~n-,), n=l,2;..,N. 

(1) 
The channel consists of three finite alphabets x E% = 

{l;.. ,Z},y~~={l,~~~,J},zE%={l,~~~,K},andtwotransi- 
tion matrices {P,(y]x)} and { P2(z]y)}. By the discrete memory- 
lessness of the channel, for any N, 
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for xE!V,yE9P, zEV. 
Define an (M,, M,, N,X,) code for the channel to be a set of 

functions {f,} together with the associated set of codewords 
generated as in (1) and two decoding maps 

g1: ?v+alL*, g2 : IN-+%, 
such that 

where, assuming uniform distribution on %, X Gx, 

P$ = 
(w,,w2)2q xnz, Ml& 

P { sd Y)z wII(wItw2) sent I9 

P$= 
(w,,w,&, xnr, W1M2 

-p { b-2tz)zw2ltwbw2) sent >, 

are the average probabilities of error. 
A rate pair (R,,R,) is said to be achieuuble if there exists a 

sequence of (2nRI, 2”R z,n,&) codes with &-+O. The capacity re- 
gion is defined to be the closure of the set of all achievable 
(R,,R,) pairs. 

As established by [2]34], and [6], the capacity region for the 
channel without feedback is given by the following. 

Theorem 1: Let U,X, Y, Z be a joint ensemble such that 
X, Y,Z are as before, the number of sample points U can take 
on is min {I, J,K}, and the probability mass function on 
U,X, Y,Z is of the form 

Then the set of all pairs { (Z(X; Y] U),Z( U; Z))} is the capac- 
ity region. 

= g Z(Z,; U,). 
n=l 

An equivalent characterization is R* = {(R,, R2) : R, +AR, The change in (5) from [4] in which U,, =( W2, Y1; * . , Y,- 1) is 
< C(A), VA > 0}, where C(A) = maxQ,(u)Q,(xlu){ Z (U; Z) + AI necessary since, with feedback, Z, and Z,, * * . ,Z,... , are not 
0(X; Y) U)}. It will be shown that C(X) is unchanged when necessarily independent given Y,, . . . , Y,, _, . 
feedback is added. Next we show that 

III. FEEDBACK CONVERSE Z(W,; YIW2) c 2 ztxn; Ynl K). 
n=l 

Theorem 2: (converse): If for some A > 0, E > 0 we have 
R,+AR, > C(~)+E, (2) 

then there exists an 6 >0 such that 

max { P~~~,P$} 2 6, for all N. 

Proof Given any (M,, M,,N) code, the probability mass 
function on the joint ensemble W,, W,,X, Y,Z is of the form 

P(w,,w,,w,z) 

= & F qn(x”lw,,w2JI,-~~ A-bYI,’ . . J,-I) 
n-l 

follows that 
i) Z(W,;Z)=H(W,)-H(W21Z) 

= NR,- Zf( W,lZ), 

ii) Z(W,; YIW2)=H(W,IW2)-H(W,IY,W2) 
>NR,-H(W,IY), 

where Ri is the rate of source i, i= 1,2. 
Thus 

Nt&+%)~[Z(W,; Z)+U(w,; Ylw,)] 

+[H(W2IZ)+~Hw,IY)l. (4) 

The following lemma relates the first bracketed quantity to 
ctw. 

Lemma 3: For all A > 0, 

I(W2; Z)+xI(W,; YIW*)G 5 [Z(K; Z,)+~(&; YnlK)] 
n=l 

where 
< NC(X), 

u”~(w2,Y,,~~~,Y,_1,z1,~~~,z,-,). (5) 
Proof A similar lemma was proved in [4] for the channel 

without feedback. We follow steps parallel to those in [4] in 
order to show the necessity of introducing a different definition 
for U,,, as well as adding an additional identity that demon- 
strates the intuitive fact that, even if the receiver Y were given 
the sequence Z, the achievable rate region would remain un- 
changed. Now consider 

Z(W2; Z)= 5 I(W2; ZnlZ,,~~~,Zn-,) 
tl=l 

= 2 H(Z,IZ,, . . ..Z._,)-H(Z,IW,,Z,,...,Z,-,) 
n=l 

< 2 H(Z,)-H(Z,IWz,Z,;..,Z,-,,Y,;..,Y,-,) 
n=l 

From the definition of the channel it is clear that 

Z(WG YIWd 
=Z(Wi; Y,ZIW,) 

= 5 ztw,; r,,z,lw,,y,,...,y,-,,z,;..,z,-,) 
II=1 

= 2 Z(W,; y,,znIK). 
n=l 

Applying the data processing inequality we get 

where {qn(xn~w~,w2,z~,~~~,z~-1,y1,~~~,yn-1)}, 1 <n<N, is the 
set of probability transition functions generated by the code. It = 5 ~(r,~z,lu,)-~(r,,z,l~,,~,,w,) 

It=1 
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But by the discrete memoryless assumption (Y,,, Z,) and (U,, W,) 
are conditionally independent given X,,. Thus 

5 Z(W,,&; y,,z,1K)= 5 ZK; Yn,ZnlGJ. 
n=l n=l 

Since 

Z(Xn; Yn,Glv,)=Z(&; y”lvJ+z(x”; GlYmK), 
it remains to show that Z(X,; Z,] Y,, U,)=O. But this is true 
because U,+X,,+Y,-+Z,, form a Markov chain in this order. 
Hence 

~(z,ly,,v,)=~(z,ly,,~,,x,)=~(z,ly,). 
This establishes the required result, that 

Z(WG YIW2)< 2 Z(Xn; YnlW, 
?Z=l 

and Lemma (3) is proved. 

Now, combining Lemma 3 and (4), and applying Fano’s 
inequality, we obtain 

(R2+u,) 

G C(A)+ [ W’e3+ ~~(~~)+~~p,~,+h~~(~~~)]. (6) 

Now taking the limit in (6) as N tends to infinity, and assuming 
that (R,, R,) is achievable, we obtain 

(R2+XR,) < C(X). 

But this contradicts Assumption 2). Therefore there must exist 
8 >O such that 

max { Peyl, f$ } 2 6, for all N, 

and the proof of Theorem 2 is completed. 

IV. DISCUSSION 

It has been shown that feedback cannot increase the capacity 
of the physically degraded broadcast channel. This is consistent 
with Shannon’s result on the discrete memoryless channel with 
feedback [5]. We believe that a similar result can be proved for 
any discrete memoryless broadcast channel. However, the corre- 
lation between the outputs of the channel seem to cause some 
difficulties in generalizing the proof even to the general degraded 
case. 

It is also important to point out that, in the case of multiple 
access channels, feedback can increase the channel capacity [7]. 

Additional Comment: While this paper was being refereed, it 
has come to the author’s attention that W. J. Leighton and H. H. 
Tan of Princeton University were independently able to prove 
the result in this paper. Their proof is essentially along the same 
lines. 
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Optimal Linear Coding Schemes for Feedback 
Communication with Noisy Side Information 

HIDEAKI SAKAI, TAKASHI SOEDA, AND 
HIDEKATSU TOKUMARU 

Ahstmef-Optimal linear coding schemes for feedback communication 
with noisy side information are derived. The performance of two schemes 
with side information are compared with the information-theoretic hmds. 
The side information at tke transmitter significantly reduces the mean- 
squared error. The correspondiug contiuuous-time system is briefly men- 
tioned. 

I. INTRODUCTIONANDSLJMMARY 

This correspondence considers the problem of transmitting 
amplitude-continuous information X taken from a distribution 
N (0,~;) once every N channel uses over a time-discrete ampli- 
tude-continuous additive white Gaussian noise channel. At the 
nth time instant, the signal S, having average energy not more 
than EO is sent over the chaMe1 and is corrupted by zero-mean 
white Gaussian noise N, having variance us. Also there is a 
noiseless feedback link from the receiver to the transmitter 
through which a convenient feedback signal j, can be trans- 
mitted with one time unit delay. This problem has been well 
studied in the literature, and some simple coding schemes actu- 
ally attain the rate-distortion bounds (RDB) both for the dis- 
crete-time case [I] and the continuous-time case [2]. 

In addition, the communication schemes considered here are 
provided with noisy side information Y+ W,, where Y is the side 
information correlated with X and { W,} is a sequence of inde- 
pendent identically distributed N (0, &) random variables. We 
assume that all random quantities are mutually uncorrelated 
except X and Y. When the side information was available only 
at the receiver, the performance of a suboptimal coding scheme 
was calculated in [3]. In this note, we derive the optimal linear 
coding schemes for the following two assumptions about the side 
information, by using the theory of innovation processes. 

Case I: Only the receiver can use the side information. This is 
the same situation as in [3]. 

Case 2: Both the transmitter and the receiver can use the side 
information. 

When the side information is noise-free we can compare the 
performance of the optimal linear schemes for the above cases 
with the RDB’s. In this special situation, it follows from the 
result of Wyner and Ziv [4] that the RDB’s are the same for both 
cases. However, it is shown below that the optimal linear scheme 
for Case 2 can attain the ideal performance, whereas the one for 
Case 1 cannot. In other words, the noise-free side information at 
the transmitter contributes significantly to the reduction of the 
mean-squared error by causal linear coding, whereas it is no use 
for reducing the error by noncausal block coding. However there 
is no difference between Case 1 and Case 2 in the continuous- 
time version of the problem, for which the optimality of the 
linear scheme can be established without knowledge of the 
corresponding rate-distortion functions. 
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