Quadtree Based JBIG Compression

B. Fowler R. Arps* A. El Gamal D. Yang

ISL, Stanford University, Stanford, CA 94305-4055
{fowler,arps,abbas,dyang}@isl.stanford.edu

Abstract

A JBIG compliant, quadtree based, lossless image compression algorithm
is described. In terms of the number of arithmetic coding operations required
to code an image, this algorithm is significantly faster than previous JBIG
algorithm variations. Based on this criterion, our algorithm achieves an average
speed increase of more than 9 times with only a 5% decrease in compression
when tested on the eight CCITT bi-level test images and compared against the
basic non-progressive JBIG algorithm. The fastest JBIG variation that we know
of, using “PRES” resolution reduction and progressive buildup, achieved an
average speed increase of less than 6 times with a 7% decrease in compression,
under the same conditions.

1 Introduction

In facsimile applications it is desirable to integrate a bilevel image sensor with loss-
less compression on the same chip. Such integration would lower power consumption,
improve reliability, and reduce system cost. To reap these benefits, however, the se-
lection of the compression algorithm must take into consideration the implementation
tradeoffs introduced by integration. On the one hand, integration enhances the pos-
sibility of parallelism which, if properly exploited, can speed up compression. On the
other hand, the compression circuitry cannot be too complex because of limitations
on the available chip area. Moreover, most of the chip area on a bilevel image sensor
must be occupied by photodetectors, leaving only the edges for digital logic.

The first compression algorithm we investigated for integration with an aree im-
age sensor is based on the well known quadtree data structure [1]. The quadtree
algorithm we employeed involves performing logical OR operations on blocks of pixel
data to create pixels in successive layers of a resolution pyramid. This is a form of
fixed to variable length coding that exploits background skipping. Such simple logical
operations can be easily performed during the “read out” from a sensor without any
impact on access time. As a result, this algorithm is well suited for integration with
a sensor. It exploits the parallelism available on a chip without requiring complex

*IBM Almaden Research Center, San Jose, CA 95120-6099 (arps@almaden.ibm.com).

102 1068-0314/95$4.00 © 1995 IEEE

103

circuitry. Unfortunately, the quadtree algorithm does not provide adequate compres-
sion ratios, providing typically less than a factor of 2, compared to ratios of 20 to 100
for state of the art algorithms such as the JBIG standard [2]. To achieve maximal
compression we considered the basic, non-progressive JBIG. This algorithm does not,
however, take full advantage of the parallelism afforded by integration since only local
image information is used during the coding process.

To get the best of both worlds we decided to use adaptive arithmetic coding with
conditional prediction, as used in JBIG, following quadtree compression. We then re-
alized that such a combination can be made compliant with the JBIG standard! The
quadtree data structure can be viewed as a resolution reduction pyramid in a progres-
siwe JBIG version. The quadtree algorithm behaves like a combination of a resolution
reduction method and the deterministic prediction [3] option in a progressive JBIG
algorithm.

Deterministic prediction skips over pixels in coding that can be completely pre-
dicted at a decoder, given only the already reconstructed pixels of the progressive res-
olution pyramid. Such a quadtree (QT) algorithm can be completely realized within
the constraints of the JBIG user-specifiable resolution reduction method, along with
its corresponding constrained table for deterministic prediction. Note that the deter-
ministic prediction implied by the quadtree algorithm does not completely exploit all
of the deterministic prediction potential presented by its resolution reduction scheme.
This will be explained further in Section 3.

The paper is organized as follows. The next section provides a brief review of the
basic JBIG algorithm, hierarchical resolution reduction of binary images, and typical
and deterministic pixel prediction. Our JBIG compliant quadtree (QT) algorithm is
described in Section 3. In Section 4 we use a set of eight CCITT images to compare
our algorithm to other versions of JBIG algorithms on the basis of compression and
speed. We show that our algorithm is uniformly faster in terms of arithmetic coding
operations and achieves comparable compression.

2 Algorithmic Aspects of JBIG

JBIG compression algorithms can be categorized into two classes: non-progressive
and progressive, where in the latter case a hierarchy of resolution information about
the image is available for coding. Information on the basic non-progressive JBIG to
which we also compare our QT JBIG algorithm can be found in {2].

A block diagram of a progressive JBIG binary image compression encoder is given
in Figure 1. The algorithm begins by transforming the original image into a pyra-
mid of hierarchical, resolution reduced images. Each resolution reduced image is
then encoded, beginning with the lowest resolution image. Typical and deterministic
prediction [3] of pixels, as will be explained, is used where possible, so that such pix-
els can be skipped in the arithmetic coding step — thus achieving better compression
along with the desired compression speed up. The unskipped pixels are arithmetically
coded as described in [2].

Hierarchical resolution reduction (RR) of binary images transforms a single image

104

Binary Pixel - Skipping Prediction Compressed
Image pping Image Code
Cond-
. . Deter- L Adaptive
Resolution Typical e itional : .
—{Reduction [~ |Prediction|JIinIstic Predictive [—>|Arithmetic >
Prediction Coding
Model
7N

Matched Tables (PRES, QT etc.)

Resolution Deterministic
Reduction Prediction
Table Table

Figure 1: Block Diagram of JBIG Compression Encoder

into a pyramid of progressively smaller images. In keeping with the JBIG standard,
we assume that resolutions are reduced symmetrically by factors of two. Each layer
of the resolution reduction pyramid is created using information from the previous
higher resolution layer and possibly the present layer. Each pizel in the next lower
resolution layer replaces four pixels in the higher resolution layer. Typically, the same
method is used to create each successive layer of the resolution reduction pyramid.

The PRES resolution reduction method suggested in JBIG is more complicated
than the QT method. Its purpose is to generate high quality, i.e. visually appealing,
lower resolution images. To determine the value of a resolution reduced pixel, the
PRES method uses three pixels from the same layer and nine pixels from the previous
higher resolution layer. A complete description of this method is given in [2]. In
contrast to this, the quadtree reduction method uses only four higher resolution pixels.

Figure 2 illustrates results from the PRES and QT methods on a 256x256 pixel
image, assuming five resolution reductions for both. The resolution reduced images
in this figure, as well as in Figure 3, are shown with pixels representative of their
resolution. Note that with QT reduction, successive lower resolution images rapidly
become more black resulting in a faster loss of quality when compared with PRES
reduction. Total illegibility of the QT RR images occurs about one resolution reduc-
tion sooner than that of the PRES RR images. Coding time, measured in terms of
the number of arithmetically encoded pixels, is our design objective rather than the
quality of resolution reduced images as was done previously.

Pixel prediction exploits the fact that hierarchical resolution reduction layers, be-
ing multiple representations of the same image, contain highly related and sometimes
redundant information. Such prediction can be used to skip over and thus reduce the
number of pixels to be arithmetically coded, thereby increasing compression speed.

Typical Prediction (TPB or TPD). There are two methods for typical prediction:
one tailored for progressive (TPD) and the other for non-progressive (TPB) JBIG [2].

To determine if a 2 x 2 quad of higher resolution pixels is typical or not, TPD [2]
uses a 3 X 3 neighborhood of lower resolution pixels. A quad is defined to be typical
if all the pixels in it and all the pixels in the nine nearest lower resolution neighbors

dpi PRES % Black QT % Black
P.J. CROSS P.J. CROSS
Group Leader - Group Leader -
200 11.18 11.18
P.J. CROSS P.J. CROSS
Group Leader - Group Leader -
100 11.06 13.85
p.I, CROSY Fud, CXN3
Gravg Lesdsr - Samdar -
50 11.67 18.43
£t 12
. "
LT, ==
25 13.09 25.49
L i
A8 EESN
[“
1.5/ =" " 16.02 41.02
= il
| -
6.25 .. = 18.75 57.81

Figure 2: Resolution Reduced Images using the PRES or QT Methods.

105

106

have the same value. For example, a quad is non-typical if the nine nearest neighbors
have the same value but one or more of its four higher resolution pixels differ from
that value. A higher resolution line-pair of pixels is non-typical, if it contains any
non-typical quads. If a line-pair of pixels is typical, then all of its typical quads can
be skipped during arithmetic encoding.

When TPD is specified during encoding and decoding, a flag bit is used to indicate
typical behavior for each line pair in each image of the resolution reduction pyramid,
except that the lowest resolution layer is encoded using TPB. Although these flag
bits typically have a very skewed distribution, i.e. they are easy to compress, they
do reduce the compression ratio. As such, TPD trades the coding of a number of
predictable pixels for the coding of a few flag bits. The second column in Figure 3
illustrates the pixels skipped using TPD for the PRES RR images of Figure 2. In
contrast to Figure 2, the black pixels in Figure 3 are pseudo-images that represent
the arithmetically encoded pixels.

TPB uses the previous scan line to predict all the pixels in the next scan line of
image data. A flag bit is encoded at the beginning of each line to indicate whether
“typical” prediction held true for that line.

Deterministic Prediction (DP). DP [2] uses information from lower resolution
pixels to ezactly determine the value of the next higher resolution pixels. Since the
DP rules are based on inversion of the RR method, these methods must be matched.
Any higher resolution pixels that can be exactly determined are again not arithmeti-
cally encoded. For example, assume that the RR method used determines each lower
resolution pixel by finding the logical “AND” of the four associated higher resolution
pixels. Then, if a lower resolution pixel has a value of one, its corresponding higher
resolution pixels also have values of one and therefore can be predicted. The third col-
umn in Figure 3 illustrates the arithmetically encoded pixels using DP for the PRES
RR images. Notice how few of the arithmetically encoded pixels are skipped with DP,
that those skipped are concentrated near the edges and that they complement the
pixels skipped using TPD. Although few in number, DP skipped pixels contribute
more heavily to compression gains. The edge pixels skipped by DP, contain more
information than the background pixels skipped using TPD.

Typical and Deterministic Prediction (TPD/DP). When TPD and DP are
combined, they are commutative and can essentially be performed in parallel, i.e.
any pixel that is typically predicted is not arithmetically encoded and any pixel that
is deterministically predicted is also not arithmetically coded. The fourth column of
Figure 3 illustrates the arithmetically encoded pixels using TPD/DP for the PRES
RR images.

3 JBIG Compliant Quadtree Algorithm

The QT algorithm can be implemented using the JBIG standard with a user defined
RR table, and a matched DP table. Therefore to completely specify QT it is sufficient

107

to describe the RR and the DP methods.

The QT RR method uses a logical OR of four higher resolution pixels to determine
each lower resolution pixel, i.e. if all four higher resolution pixels are zero then the
corresponding lower resolution pixel is zero, otherwise it is a one.

The arithmetic coder following the QT DP method skips the coding of higher
resolution pixels if their corresponding lower resolution pixel is zero. Therefore, any
time a pixel with a value of zero is encountered during arithmetic encoding all cor-
responding higher resolution pixels need not be coded since all their values are zero.
This is true by construction because of the QT RR method.

The QT DP method does not fully exploit the information in the RR pyramid.
For example, if three higher resolution pixels in a given quad are zero but the as-
sociated lower resolution pixel is one then the remaining pixel is known to be one.
This addition to the RR method would reduce the total number of pixels that are
arithmetically encoded, but would slow down a hardware realization because of the
required additional pixel “reads”. Since this type of prediction increases the speed
by less than 1% and decreases the compression by 0.5%, the cost of additional pixel
reads outweighs the speed benefits obtained.

Figure 3 illustrates the operation of TPD and DP with QT RR using the QT
images from Figure 2. Note the horizontal stripes in the D5 QT TPD column, which
are caused by non-typical line pairs in the hierarchical image. One can visualize the
superior pixel-skipping achieved using QT, by comparing the D5 PRES TPD/DP
colum with rightmost, D5 QT TPD/DP, column of Figure 3.

4 Relative Speed and Compression of QT

The algorithms’ speed and compression are compared. We define algorithm speed to
be inversely proportional to the number of pixels presented to the arithmetic coder. To
benchmark our fastest JBIG compliant QT compression algorithm (D5 QT-TPD/DP)
we compare it to the basic non-progressive JBIG algorithm D0 known to achieve the
best compression, and to the suggested progressive JBIG algorithm using PRES (D5
PRES-TPD/DP) which previously achieved the best speed up known from skipping
arithmetically coded pixels. This comparison is done using a set of eight CCITT
test images. Each image has 1728x2376 pixels, but because of software limitations
the y dimension was reduced to 2304 by removing the last 72 lines. This results
in 1728x2304 images containing 3,981,312 pixels. The removed lines in each image
compress greatly since they are of uniform color and thus have relatively little impact
on the results.

Figure 4 compares the relative speed of compression achieved by the D5 QT-
TPD/DP, D5 PRES-TPD/DP, DO-TPB and DO using DO as a reference. Note that
our QT algorithm is in all cases faster than the other three algorithms. On average,
it is 1.6 times faster that the PRES algorithm, 6.8 times faster than the DO-TPB
algorithm, and 9.4 times faster than the DO algorithm used as a reference. The
compression ratios of the four algorithms are compared in Figure 5. The DO-TPB
algorithm achieves an average compression similar to that of the reference D0 algo-

108

LIS

D5 PRES | D5 PRES | D5 PRES D5 QT D5 QT D5 QT
TPD DP TPD/DP TPD DP TPD/DP
P, 08 P.J. CROSS P.J, C2OS8
Growp Leader ~ |Group leader -
FoT, CRRS Fods CHBS
frowy lasder -
1
]
Tl -
[T

vl
-
. "
=

Figure 3: Arithmetically Coded Pixels for PRES and QT Reduction using DP, TPD
or TPD/DP Prediction. The RR is the same as that in the previous figure.

109

rithm. Our algorithm achieves an average of 2% better compression than the PRES
algorithm and 5% less compression than the D0 algorithm. Note that our algorithm
also consistently achieves better compression than the PRES algorithm (D5 PRES-
TPD/DP). Tables 1 and 2 contain the results used to generate the figures.

5 Conclusion

We described a JBIG compliant quadtree based compression algorithm, intended for
integration with a bilevel area image sensor on the same chip. We demonstrated that
our algorithm is significantly faster than basic non-progressive JBIG, and progressive
JBIG using PRES, while achieving comparable compression. We believe that our
algorithm may also lend itself to faster operation even when implemented in software.

Another form of parallelism utilizes multiple adders to increase the speed of arith-
metic coding [4]. A hardware architecture displaying this type of parallelism was re-
cently presented by Feygin, et al. {5]. Note that multiple adders occupy more silicon
real estate than simple quadtree logic even when the quadtree logic must be replicated
for every scan line of an area image sensor. Furthermore, this parallel arithmetic cod-
ing technique exploits the same contiguous image background regions as a quadtree
front-end. We suspect that parallel arithmetic coding techniques will fail to increase
coding speed if background pixels are already skipped over by a quadtree front-end.
Since the two methods appear to be mutually exclusive, we chose to concentrate on
the quadtree parallelism.

Comparison of our results with those of Feygin, et al. [5] is not straightforward,
since they investigated speeding up ABIC [6] rather than JBIG and used a slightly
different scan of the CCITT test images. Although ABIC is a direct precursor of the
basic JBIG non-progressive algorithm, it has a smaller nearest neighbor model and
is based on the “Q” [7] rather than the “QM” adaptive arithmetic coder [2]. Nev-
ertheless, the results are quite consistent with our observation that both approaches
exploit image background regions. Their reported average speed up, 7 to 13 times de-
pending on complexity, is similar to our results. Moreover, the speed up per CCITT
test image is also quite similar.

We note that the CCITT test images used are representative of typical business
documents, but do not include “digital halftones”. We do not expect speed up perfor-
mance increases for our algorithm or other algorithms mentioned here when applied
to halftone images.

References

[1] T. Markas et al., “Quad tree structures for image compression applications,”

INFORMATION PROCESSING & MANAGEMENT, vol. 28, no. 6, 1992,

[2] International Telegraph and Telephone Consultative Committee (CCITT), Pro-
gressive Bi-level Image Compression, Recommendation T.82, February 1993

110

[3]

[4]

[7]

Sheinwald et al., “Deterministic prediction in progressive coding,” IEEE Trans-
actions on Information Theory, vol. 39, no. 2, March 1993.

W.B. Pennebaker and J.L. Mitchell, JPEG Still Image Data Compression Stan-
dard, Van Nostrand Reinhold, New York, 1993,

G. Feygin, P.G. Gulak, and P. Chow, “Architectural Advances in the VLSI Imple-
mentation of Arithmetic Coders for Binary Image Compression,” in Proc. 1994
Data Compression Conference, Snowbird, Utah, March 1994.

R.B. Arps, T.K. Truong, D.J. Lu, R.C. Pasco, and T.D. Friedman, “A Multi-
purpose VLSI Chip for Adaptive Data Compression of Bilevel Images,” IBM J.
of Research and Development, vol. 32, no. 6, Nov. 1988.

W.B. Pennebaker, J.L. Mitchell, G.G. Langdon, and R.B. Arps, “An Overview
of the Basic Principles of the Q-Coder Adaptive Binary Arithmetic Coder,” IBM
J. of Research and Development, vol. 32, no. 6, Nov. 1988.

Comparison of JBIG Compression Speeds
Pixel Skipping Modes vs. Basic DO Mode

B2

Eqid oo N\
g 4

~
4

Multiple of DO Co!

- W n
4)

= Y =1 ¥

2 3 4 5 6 7 s
CCITT Test Image (@ 200x200 dpi)

[« psaT-TPDDP -o- D5 PRES-TPD/DP -4~ DO-TPE = Do I

Figure 4: Comparison of JBIG Compression Speeds vs. Non-progressive JBIG

Comparison of JBIG Compression Ratios
Pixel Skipping Modes vs. Basic D0 Mode

8

o

©

«©
}

Mutitiple of DO Compression Ratio

e
8

<

2 3 4 s 6 7
CCITT Test Image (@ 200x200 dpi)

[=-po

-4~ DO-TPB

- D5 QUAD-TPD/DP -©- D5 PRES-TPD/DP |

111

Figure 5: Comparison of JBIG Compression Ratios vs. Non-progressive JBIG

I

Arithmetically Coded Pixel Count For CCITT Images 1-8

)

DO D0|D5 PRES | D5 PRES|D5 PRES| D5 QT| D5 QT| D5 QT

TPB TPD DP|TPD/DP| DP| TPD|TPD/DP

1]3081312| 1703808 604472| 4021440| 490978| 320616|1173044] 305348
2(3981312(3252096| 380464| 4035178| 318575 325348| 851048| 208152
313981312(3227904| 1274300| 4065718 1031557| 637812]2171528 589192
1(3981312|2897856| 1784552| 4112969| 1469132|1089676(2667868| 1074352
513981312]3352320f 1213000| 4063504 987180| 623752|2268912 594128
6(3981312{3077568| 775636| 4039549| 633469| 3999601766076 359480
7|3981312|3326400| 1876992 4087863| 1514283| 856240|3876300| 854680
8(3981312(3305664| 693006| 4512112| 576888|2312636]1642388| 395876

Table 1: Results for Non-progressive JBIG, and QT or PRES Progressive JBIG

{ Compressed Image Size (Bytes) For CCITT Images 1-8 J
DO| D0|D5 PRES|D5 PRES|D5 PRES|D5 QT{D5 QT| D5 QT
TPB TPD DP|TPD/DP| DP| TPD|TPD/DP
1]14655]14650 17447 16526 16533] 15787 16496 15895
2| 8456| 8515 9128 8734 8718 8563| 9179 8655
3|21907(21916 24633 23432 23460| 22893 23723 23061
415392553921 60347 57949 57890 57320 58346 57546
5[25792{25823 29216 27805 27828| 27194| 28160 27389
6112520112566 13989 13294 13317 12850{ 13584 12987
7156210(56211 64124 60280 60362 58062| 59101 58146
8/14197{14223 15673 15038 15037| 14625] 15299 14674

Table 2: Results for Non-progressive JBIG, and QT or PRES Progressive JBIG

