AN ARCHITECTURE FOR ELECTRICALLY CONFIGURABLE GATE ARRAYS

Abbas El Gamal, Jonathan Greene, Justin Reyneri,
Eric Rogoyski, Khaled El-Ayat and Amr Mohsen

Actel Corporation
320 Soquel Way
Sunnyvale, California 94086

ABSTRACT: A new architecture for electrically configurable
gate arrays using a two-terminal anti-fuse element is
described. The architecture is extensible, and can provide a
level of integration comparable to mask-programmable gate
arrays. This is accomplished by using a conventional gate
array organization with rows of logic modules separated by
wiring channels. Each channel contains segmented wiring
tracks. The overhead needed to program the anti-fuses is
minimized by an addressing scheme that utilizes the wiring
segments, pass transistors between adjacent segments, shared
control lines, and serial addressing circuitry at the periphery
of the array. By providing sufficient wiring tracks segmented
into carefully chosen lengths and a logic module with a high
degree of symmetry, fully automated placement and routing
is facilitated.

1. Introduction

Mask programmable gate arrays offer the architectural
fiexibility and efficiency to integrate thousands of gates, but
require long development time and high non-recurring
engineering costs. On the other hand, the convenience of
field programming is available with programmable logic
device (PLD) technologies, but their architectures have not
allowed integration of a wide variety of applications
exceeding a few hundred gates [1,2].

We describe a novel gate array architecture {3] which
combines the flexibility of mask-programmable arrays with
the convenience of field-programmability. Its implementation
is made possible by a two-terminal electrically programmable
anti-fuse offering low "on" resistance and small area. The
anti-fuse is so called because it irreversibly changes from
high to low resistance when “blown" by applying a
programming voltage across it. The anti-fuse, or fuse for
short, is further described in [4].

The architecture supports a design style similar to
conventional gate arrays, including fully automatic placement
and routing algorithms attaining 85 to 95 per cent utilization.
This required considerable emphasis on symmetry and
routability, which we touch on below.

2. Programmable Interconnect Architecture

The general architecture, shown in Figure 1, exhibits the
familiar gate array organization: TOWS of logic cells
interspersed with routing channels. There are, of course,
several key differences.

The tracks in the channels are not simply empty areas in
which metal lines can be arranged for a specific design.
Rather, they contain pre-defined wiring "segments” of various
lengths. Other wiring segments pass through the channels
vertically. Each input and output of a logic module is
connected to a dedicated vertical segment. Other vertical
segments just pass through the modules, serving as feed-
throughs between channels. (The number and lengths of
segments in Figure 1 are only suggestive and can be varied).

A fuse is located at each crossing of a horizontal and
vertical segment. Programming one of these "cross fuses"”
provides a low resistance bi-directional connection between
the segments. Other fuses are located between adjacent
horizontal segments within a track. When blown, these
"horizontal fuses” connect the two segments to form a longer
one. (Although not shown in the diagram, fuses may also be
placed to connect adjacent vertical segments).

In order to program a fuse, we need to apply high
voltage across it. This is accomplished by an efficient
addressing scheme that uses the wiring segments themselves,
pass transistors connecting adjacent segments, and control
logic at the periphery of the array. Fuse addresses are shifted
into the chip serially.

As shown in Figure 1, each column of "horizontal pass
transistors” conpecting horizontal tracks is controlled by a
shared "horizontal control" line running across the array.
Each row of "vertical pass transistors” is controlled by a
“vertical control” line. The peripheral circuitry can drive the
control lines and the segments at the end of each track.

Horizontal fuse programming is quite simple. In the
example of Figure 2, we apply programming voltage Vpp
across the fuse F;. All horizontal control lines except the one
in the column containing F, are turned on by connecting
them to Vpp, and the appropriate track segments are driven
to GND and Vpp as shown. (Vertical fuses, if present, are
programmed similarly.) Cross fuse programming uses both
horizontal and vertical control lines as shown in Figure 3.
Segments not driven to either GND or Vpp are left
precharged to Vpp/2. Thus the voltage across fuses not being

15.4.1

CH2584-1/88/0000-0091 $1.00 © 1988 IEEE

IEEE 1988 CUSTOM INTEGRATED CIRCUITS CONFERENCE

S N VO Y PR LY
vertical . F" - F" r = =
control o
vertical ¢ » ® P
track ~._
segment T
N Iy o
ay K,
cross SO0 — 0T
fuse \\.\ A a5 I3 o Py . . N, N H - Jj ?
\\\ \ AY AN VAN v l j/ \') L U\ A\ % A ZAEEAN VN v |
4\‘\ - i
Va
DD e 2 il g
vertical -B—b—bd S . . .
pass - o sl Tu - ol al U
transistor m |) it .| It
logic . 1 P ?
module
D, N T ml
S-S ST 06— S—o—S—0—T-¢-
N W% 4 Y Y N | g AN, S, o\ N
__________ -\ \J\ L/ U\]’Z j’\\\1J L/ L/ U
horizontal / / S~
track horizontal horizontal horizontal
segment control pass transistor fuse

Fig. 1: Interconnect Architecture

programmed is either zero or Vpp/2.

Some care is required to assure that a unique fuse is
addressed. Figure 4 shows how incorrect addressing allows
diversion of current along a "sneak path", in this case
programming fuse Fs through previously blown fuses Fj
and F, instead of programming F,. Sneak paths are
eliminated by blowing the fuses in proper order. The order is
dependent on the set of fuses to be blown.

The pass transistors and control logic are also used to
test the chip prior to programming. For instance, the
continuity of the segments in a track can be verified by
turning on all horizontal control lines. All cross fuses can be
stressed in parallel to check for shorts before programming
by turning on all control lines, grounding all horizontal
segments and driving all vertical segments to the stress
voltage. The vertical segments and pass transistors can also
be used to apply test patterns to the logic modules.

3. Choice of the Logic Module

As outlined so far, the programmable interconnection
architecture could be used with a variety of logic modules.
Which would be best? This turned out to be a very difficult
question, involving subtle tradeoffs among routability, the
logical capability of the module as perceived by the user, and
delays due to capacitive loading in the routing segments.

The complexity of the module must be balanced with
the routing overhead. Mask-programmed gate arrays provide
very flexible and efficient routing. They therefore use a
simple four transistor cell. On the other hand, routing is very
expensive in both area and delay with present programmable
logic arrays. These generally use a module capable of
implementing more complex functions [2]. The architecture
outlined here has a cost of routing closer to a conventional
gate array, suggesting a logic module of intermediate size.
Because this is about the same complexity as conventional
gate array hard macros, the designer can use a library like the
familiar gate array cell libraries; there is no need to map
logic into a more complex module. The table below lists
several typical gate array macros and the numbers of four

15.4.2

Fig. 2: Horizontal Fuse Programming

GND V. Vv

PP PP

o | I

Fig. 3: Cross Fuse Programming

transistor ce!s and logic modules required to implement
them.

macro 4 transistor cells { modules
3 input NOR 2 1
4:1 mux, non-inverting 6 1
D latch with clear 4 1
D flip-flop with clear/set 7 2

Our chosen module has eight inputs and a single output.
Various macros, such as those in the table, are implemented
by using an appropriate subset of the inputs and tying the
remaining inputs high or low. Thus the module can
implement all macros with two inputs, most with three
inputs, many with four inputs, etc.

The module’s output is connected to a vertical segment
spanning several channels. Each input is connected to a
short vertical segment spanning one channel. Four of these
span the channel above the module, four the channel below.
The use of short segments for the inputs reduces parasitic
capacitance and hence delay.

Note that each input is accessible from either the
channel above or below but not both. At first, this would
appear to limit routability compared to a conventional
"double-entry" gate array cell, which wires may enter from
either direction. However, there is nearly always more than
one way to implement a macro. By letting the router choose
the implementation that uses inputs accessed from convenient
channels, the benefits of full double-entry symmetry are
approached or sometimes attained. The degree of symmetry

GND Vo, Vip Vi

PP

F, Fy

Fig. 4: A Sneak Path

depends on the mix of macros and the details of the module,
and is an important criterion for choosing a module.

4. Routing

Figure 5 illustrates the routing of a net. The long
vertical segment connected to the driving module’s output is
connected by cross fuses to horizontal segments, which in
turn connect to the segments associated with module inputs.
In the top channel, a horizontal fuse has been used to link
two segments into a longer one.

The resistance of the blown fuses and the parasitic
capacitance of the segments used form an R-C tree, with the
driver of the net as the root. Note that each input is driven
through a maximum of three and generally two fuses to limit
the delay. The maximum number of fuses and the segment
lengths (hence capacitances) can be altered to suit the chip
dimensions and the resistance of the fuse technology.

To minimize clock skew due to differential routing
delay, one entire track (or more if needed) in each channel is
set aside for clock distribution. These tracks are connected
directly to buffers, so that each input presents a similar load
driven through exactly one fuse.

An interesting theoretical question is whether more
horizontal tracks are needed in each channel here (where the
lengths of the wiring segments must be predetermined) than
in mask-programmed routing (where the wiring is customized
for the design). Surprisingly, a high probability of routability
is obtained with only a few tracks above channel density.
This requires careful choice of the lengths of the segments
according to statistics from a suite of designs, and taking
advantage of the symmetry of the macros where possible. For
example, observe that if macro 4 in Figure 5 permits its input
to be routed from either the upper or lower channel, there is
a better chance of finding a free horizontal segment to
connect it.

15.4.3

Programmed
Horizontal Fuse

Output
Segment -._
.

Logic Module
Output

/7

Logic Module -
Input

1. Programmed
.—-—-~--'|_—;$5' [Cross Fuses

Rows of

Logic Modules
N

Fig. 5: A Routing Path

5. Implementation: Silicon and Software

The architecture has been implemented in a CMOS
device described in [4].

Computer-aided design tools have been developed to
support the architecture. Designs are entered as schematics
or netlists using a cell library.

The placement and routing algorithms are specific to the
architecture. As usual these are time consuming, taking up to
a few hours on a low-cost workstation. They achieve 100%
routing completion. (Even expert users have never been able
to improve manually on the automatic router). The
probability of successful routing can be predicted by
analyzing some statistics of the design.

Because the nets are R-C trees, delays are not a simple
function of capacitive load as with mask-programmed gate
arrays. Nevertheless, we are able to quickly calculate precise
delays at each input for post-layout simulation and timing
verification.

Acknowledgement

The authors gratefully acknowledge the technical
contributions of John Chang, David Gluss, Richard Guo,
Dana How, and Faysal Sohail.

References

(11 S. Wong, H. So, C. Hung, J. Ou, "CMOS Erasable
Programmable Logic with Zero Standby Power," Inr'l
Solid State Circuits Conf. Digest of Technical Papers,
Feb. 1986, pp. 242-243.

[2] H. Hsieh, K. Duog, J. Ja, R. Kanazawa, L. Ngo, L.
Tinkey, W. Carter, R. Freeman, "A Second Generation
User Programmable Gate Array," Proc. of the Custom
Integrated Circuits Conf., May 1987, pp. 515-521.

[3] A. El Gamal, K. El-Ayat, A. Mohsen. "Programmable
Interconnect Architecture”, pending U.S. patent.

[4] K. El-Ayat, A. El Gamal, R. Guo, J. Chang, E. Hamdy,
J. McCollum, A. Mohsen, "A CMOS Electrically
Configurable Gate Array," Int'l Solid State Circuits
Conf. Digest of Technical Papers, Feb. 1988.

15.4.4

